

STOCKHOLM, August 2009

Cross-correlation Study between the Cosmological 21cm Signal and the kinetic SZ effect

collaborators: S. Zaroubi, N. Aghanim, M. Douspis, L.V.E. Koopmans, M. Langer, G. Mellema, H. Tashiro, R.M. Thomas

Outline

Introduction

- basic ideal
- motivation

Simulations

- cosmological 21cm (EoR) signal
- kSZ anisotropies

kSZ-EoR cross-correlation

- homogeneous vs. patchy
- primordial CMB fluctuations

Summary and Conclusions

Introduction: basic idea

 CMB photons scatter off the ionized bubbles produced during the EoR → secondary CMB anisotropies
 thermal SZ effect, kinetic SZ effect & imprint in polarization
 the kSZ – the EoR map should anti-correlate

Introduction: motivation

Kapteyn Astronomical Institute, RUG

Introduction: motivation

planned cosmological 21-cm experiments
 (e.g. LOFAR-EoR, MWA & SKA) and CMB experiments (e.g. Planck)

kSZ-EoR cross-correlation

- additional probe of the EoR
- the measurable statistics sould suffer less from the foregrounds and systematics as in the case of autocorrelation studies

Simulations: EoR & kSZ maps

- BEARS algorithm (Thomas et al. 2009)
 - N-body DM simulation along with a 1-D radiative transfer code
 - density, neutral fraction & velocity cubes
 - 100 Mpc/h comoving in size
 - 3 homogeneous and 2 patchy reionization history models

Simulations: kSZ maps

• **BEARS:** density, neutral fraction & velocity cubes

$$\tau = c\sigma_{T} \int_{0}^{z} n_{e} \frac{(1+z)^{2}}{H} dz$$

$$\int \left(\frac{\delta T}{T}\right)_{kSZ} = -\sigma_{T} \int_{0}^{t_{0}} e^{-\tau} n_{e}(\hat{r} \cdot \vec{v}) dt$$

$$n_{e} = \bar{n}_{H} \bar{\chi}_{e}(1+\delta+\delta_{\chi_{e}}+\delta\delta_{\chi_{e}})$$

$$\chi_{e} = 1-\chi_{n}$$

$$\int \frac{\delta T}{T} \int_{kSZ} = -\sigma_{T} \bar{n}_{H(0)} \int \frac{(1+z)^{2}}{H} e^{-\tau} \bar{\chi}_{e} \cdot (1+\delta) + \delta_{\chi_{e}} + \delta\delta_{\chi_{e}}) v_{r} dz$$
Interception representation term mixed term

Kapteyn Astronomical Institute, RUG

Simulation: patchy RH

Kapteyn Astronomical Institute, RUG

Simulations: kSZ maps

δT [μK] maps 0.6 deg x 0.6 deg

	$\delta T_{ m kSZ}$	$1 + \delta$	δ_{χ_e}	$\delta \delta_{\chi_e}$	TOTAL
STARS	mean [µK]	0.03	0.58	0.02	0.63
	rms [µK]	0.80	1.74	0.40	2.00
QSOS	mean [µK]	0.03	0.27	0.01	0.30
	rms [µK]	0.93	1.28	0.28	1 <i>5</i> 7

X-correlation: homogeneous RH

 for HRH: kSZ & EoR map correlate and correlation is strongest for sharp reionization history (*Alvarez et al. 2006*)

Kapteyn Astronomical Institute, RUG

Kapteyn Astronomical Institute, RUG

kSZ (z) & EoR (z)

• for PRH: kSZ & EoR map as a func. of redshift anticorrelate and strongest signal we get around z~8.5 (half of the reionization)

integ. EoR & integ. kSZ maps (0.6 deg x 0.6 deg)

Stars: patchy term dominates over the other terms
QSOs: homog. & patchy term have the same order and tend to cancel each other; bubbles larger → more noise in correlation

Kapteyn Astronomical Institute, RUG

Cross-correlation as a function of lag

integ. kSZ & integ. EoR for Stars patch reion.

Cross-correlation as a function of z

integ. kSZ & EoR(z) for Stars patchy reion.

LOS through the kSZ cube

no coherent redshift evolution of the kSZ effect

Kapteyn Astronomical Institute, RUG

X-correlation: pCMB

pCMB map produced using CMBFAST power spectra

integ. EoR map

kSZ map

pCMB map

once the pCMB fluctuations are included the correlation between the kSZ-EoR maps is not significant any more (C₀=-0.0±0.2)

Kapteyn Astronomical Institute, RUG

X-correlation: pCMB

Kapteyn Astronomical Institute, RUG

X-correlation: pCMB

different filtering procedures

once the pCMB included: no significant X-correlation

Kapteyn Astronomical Institute, RUG

Summary & Conclusions

the kSZ anisotropies from the homogeneous and patchy reionization are calculated based on radiative transfer EoR numerical simulations and then cross-correlated with cosmological 21-cm maps

for HRH: kSZ & EoR map correlate and correlation is strongest for sharp reionization history

For PRH: integrated kSZ & EoR maps

extended history: patchy term dominates → -0.16±0.02
sharper history: homog. & patchy term have the same order and tend to cancel each other; larger bubbles introduce more noise in the correlation (-0.05±0.02)

> once the pCMB fluctuations are included the correlation between the kSZ-EoR maps is not significant any more

Jelic et al. 2009, astro-ph 0907.5179

Kapteyn Astronomical Institute, RUG