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The Observation
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The  21 cm transition

• The 21 cm hyperfine transition is a forbidden 
transition between the two 12s1/2 ground level 
states of hydrogen. 

• The relative population of the two states is 
given, n1/n0=g1/g0 exp(-T*/Ts)  with Ts (the 
spin temp.) and T*=0.068 k

• The value of the Ts is given by:n0, g0

n1, g1

21 cm

Field 1958
Madau et al 98
Ciardi&Madau 2003
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The brightness temperature: 
The measured quantity

 The quantity that is measured with radio 
telescopes along a given line of sight and is given 
by:

 The Interpretation might be very complicated
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The Global evolution of the 
Spin Temperature

At z~10 Ts is tightly 
coupled to TCMB. In 
order to observe the 
21 cm radiation 
decoupling must occur.

Loeb & 
Zaldarriaga 04

Heating much above the CMB 
temp. and decoupling do not 
necessarily occur together.
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Noise Issues
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Sensitivity & S/N

Morales & Hewitt 2004
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Sensitivity & S/N

Morales& Hewitt 2004

# of cells in 
an annulus

System 
Temp.

efficiency Station 
area

Integration
time

B =Bandwidth
dh=inv. Bandwidth
n= mean # of baselines

# of 
beams

Not relevant for
FG fitting
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Extraction
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The signal + Foregrounds

Jelic et al. 2009
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Under- and Over-fitting

D

Real Space
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Wish list for a foreground 
fitting algorithm

●Algorithm should be accurate to better than 
1/1000 per 1MHz.
● Should be Unbiased.
●Avoid under-fitting or over-fitting.
●Make minimal assumptions about the functional 
form of the foregrounds; i.e., exploit their 
smoothness directly.
●Speed (less important since fitting is done once) 
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Extraction with Polynomials
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Statistical approach

●Model data points (xi ,yi ) by:

●Then we wish to solve the following problem:

“Least squares” Roughness penalty
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Choosing a roughness penalty R[f]

●Require a roughness 
penalty that stops the curve 
wiggling towards individual 
data points, but avoids the 
problem of attrition.
●‘Smoothing splines’ use 
integrated curvature as the 
roughness penalty, but in Wp 
smoothing the integrated 
change of curvature is used 
instead.

True function

Fit



Stockholm2009

Wp smoothing

●An approximation to the 
change of curvature, f ’’’/f’’, 
blows up at the inflection 
points f ’’=0.
●R[f] measures the change 
of curvature ‘apart from the 
inflection points’, wi 
●Perform the minimization 
with the position of the 
inflection points (and sf ) 
fixed.
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Wp smoothing

●Mächler (1993,1995), who proposed the method, showed that the variational 
problem leads to the following differential equation:

where  a+ =max(0,a),                                 , and the boundary conditions are



Stockholm2009

Implementation

●In general we need a method to find the number of inflection points, 
and need to perform a further minimization over their position.
●For the foreground fitting we find that it works well to have no 
inflection points (this would be the case anyway for a sum of negative-
index power laws).
●The differential equation and the boundary conditions are in a 
nonstandard form:

● Can rewrite as a system of 5n-4 coupled first-order equations and use a 
standard BVP solver.

● Alternatively, convert to a finite difference equation and perform a 
multidimensional function minimization (seems better so far).

●Either approach requires a reasonable initial guess for the solution; we  
fit a power law since this has no inflection points.
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RMS fitting error
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Cross-correlation of residuals 
with foregrounds
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Power spectra of various 
contributions

Jelic at el. 2009
Santos et al.2006 

Fitting is expected to be worse 
 at large scales (small l)



Stockholm2009

Create a Datacube with 
cosmic signal, FG and inst. model.

Labropulous et 
al, 2009
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Power Spectrum Recovery
100 Mpc/h simulation
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z=7.7
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200 Mpc/h
Preliminary Results

Harker et al. In prep.
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High Order Statistics
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The Skewness

Original simulations
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Extraction through the 
skewness

Harker et al. 2009

Iliev et al. 2006

Thomas et al. 2008
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Conclusions

●Interpretation of the Power Spectrum measurements might be 
complicated due to the T

s
.

● Simple fitting procedure can bias the results.
●Accurate and unbiased foreground fitting is a crucial part of 
our signal extraction.
●Non-parametric methods are promising but more approaches 
should be applied.
● Recovering the PS on very large scales might be biased due 
to the FG power on these scales. 
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