
What has quantum mechanics to do with factoring?

Things I wish they had told me about Shor’s algorithm

Stockholm, 23 April, 2009

1

Question:

What has quantum mechanics to do with factoring?

2

Question:

What has quantum mechanics to do with factoring?

Answer:

Nothing!

3

Question:

What has quantum mechanics to do with factoring?

Answer:

Nothing!

But quantum mechanics is good at diagnosing periodicity,

which (for purely arithmetic reasons) helps in factoring.

4

FACTORING AND PERIOD FINDING

You can factor N = pq, with p, q huge (e.g. 300 digit) primes,

if, for integers a having no factors in common with N ,

you can find the smallest r with ar = 1 (mod N)

b = c (mod N) ⇔ b and c differ by a multiple of N

ax (mod N) is periodic with period r.

Example:

5x (mod 7): 51 = 5, 52 = 4, 53 = 6,

54 = 2, 55 = 3, 56 = 1, 57 = 5.

Pick random a. Use quantum computer to find r.

Pray for two pieces of good luck!

5

Quantum computer gives smallest r with ar − 1 divisible by N = pq

First piece of luck: r even.

Then (ar/2 − 1)(ar/2 + 1) is divisible by N , but ar/2 − 1 is not ,

Second piece of luck: ar/2 + 1 is also not divisible by N .

Then product of ar/2 − 1 and ar/2 + 1 is divisible by both p and q

although neither factor is divisible by both.

Since p, q primes, one factor divisible by p and other divisible by q.

So one factor is greatest common divisor of N and ar/2 − 1;

other factor is greatest common divisor of N and ar/2 + 1.

FINISHED!

6

Finished, because:

1. Can find greatest common divisor of two integers using

method known to ancient Greeks: Euclidean algorithm.

2. If a is picked at random, an hour’s argument∗ shows that the

probability is at least 50% that both pieces of luck will hold.

——————————∗ N. D. Mermin, Quantum Computer Science (2007), Appendix M

7

Amazing! (but wrong):

[After the computation] the solutions — the factors of

the number being analyzed — will all be in superposition.

— George Johnson, A Shortcut Through Time.

[The computer will] try out all the possible factors simultan-

eously, in superposition, then collapse to reveal the answer.

— Ibid.

Unexciting but correct!

A quantum computer is efficient at factoring because

it is efficient at period-finding.

8

Next question: What’s so hard about period finding?

Given graph of sin(kx) it’s easy to find the period 2π/k. Since

no value repeats inside a period, ax (mod N) is even simpler.

9

Next question: What’s so hard about period finding?

Given graph of sin(kx) it’s easy to find the period 2π/k. Since

no value repeats inside a period, ax (mod N) is even simpler.

What makes it hard:

Within a period, unlike the smooth, continuous sin(kx), the

function ax (mod N) looks like random noise.

Nothing in a list of r consecutive values gives a hint that the

next one will be the same as the first.

10

PERIOD FINDING WITH A QUANTUM COMPUTER

Represent n bit number

x = x0 + 2x1 + 4x2 + · · · + 2n−1xn−1 (each xj 0 or 1)

by product of states |0〉 and |1〉 of n 2-state systems (Qbits):

|x〉 = |xn−1〉 · · · |x1〉|x0〉
↗

Classical or Computational basis.

Computer acts on states with unitary transformations U

that can be built from 1-Qbit and 2-Qbit unitary gates

acting on single Qbits or on pairs of Qbits.

11

QUANTUM COMPUTATIONAL ARCHITECTURE

Represent function f taking n-bit to m-bit integers

by a linear, norm-preserving (unitary) transformation Uf

acting on n-Qbit input register and m-Qbit output register:

input register

↓ ↓

Uf |x〉|0〉 = |x〉|f(x)〉.

↑ ↑

output register

12

QUANTUM PARALLELISM

Uf |x〉|0〉 = |x〉|f(x)〉

Put input register into superposition of all possible inputs :

|φ〉 =
(

1√
2

)n ∑

0≤x<2n

|x〉

= 1√
2

(

|0〉 + |1〉
)

· · · 1√
2

(

|0〉 + |1〉
)

.

Applying linear Uf gives

Uf

(

|φ〉|0〉
)

=
(

1√
2

)n ∑

0≤x<2n

|x〉|f(x)〉.

13

QUANTUM PARALLELISM

Uf

(

|φ〉|0〉
)

=
(

1√
2

)n ∑

0≤x<2n

|x〉|f(x)〉.

Question:

Has one invocation of Uf computed f(x) for all x?

14

QUANTUM PARALLELISM

Uf

(

|φ〉|0〉
)

=
(

1√
2

)n ∑

0≤x<2n

|x〉|f(x)〉.

Question:

Has one invocation of Uf computed f(x) for all x?

Answer:

No. Given a single system in an unknown state,

there is no way to learn what that state is.

15

QUANTUM PARALLELISM

Uf

(

|φ〉|0〉
)

=
(

1√
2

)n ∑

0≤x<2n

|x〉|f(x)〉.

Question:

Has one invocation of Uf computed f(x) for all x?

Answer:

No. Given a single system in an unknown state,

there is no way to learn what that state is.

Information is acquired only through measurement.

Direct measurement of input register gives random x0;

Direct measurement of output register then gives f(x0).

16

APPLICATION TO PERIOD FINDING

Uf

(

|φ〉|0〉
)

=
(

1√
2

)n ∑

0≤x<2n

|x〉|f(x)〉.

Special form when f(x) = ax (mod N):

∑

0≤x<2n

|x〉|ax〉 =
∑

0≤x<r

(

|x〉 + |x + r〉 + |x + 2r〉 + · · ·
)

|ax〉

Measuring output register leaves input register in state

|x〉 + |x + r〉 + |x + 2r〉 + · · ·

for random x < r.

17

Given n Qbits in the state |x〉 + |x + r〉 + |x + 2r〉 + · · ·

If you could learn what the state was you would know r.

18

Given n Qbits in the state |x〉 + |x + r〉 + |x + 2r〉 + · · ·

If you could learn what the state was you would know r.

But there is no way to learn what the state is.

19

Given n Qbits in the state |x〉 + |x + r〉 + |x + 2r〉 + · · ·

If you could learn what the state was you would know r.

But there is no way to learn what the state is.

If you could make exact copies of an unknown state

you could learn several random multiples of r.

20

Given n Qbits in the state |x〉 + |x + r〉 + |x + 2r〉 + · · ·

If you could learn what the state was you would know r.

But there is no way to learn what the state is.

If you could make exact copies of an unknown state

you could learn several random multiples of r.

But there is no way to duplicate an unknown state.

21

Given n Qbits in the state |x〉 + |x + r〉 + |x + 2r〉 + · · ·

If you could learn what the state was you would know r.

But there is no way to learn what the state is.

If you could make exact copies of an unknown state

you could learn several random multiples of r.

But there is no way to duplicate an unknown state.

Question: How can one learn anything about r?

22

Given n Qbits in the state |x〉 + |x + r〉 + |x + 2r〉 + · · ·

If you could learn what the state was you would know r.

But there is no way to learn what the state is.

If you could make exact copies of an unknown state

you could learn several random multiples of r.

But there is no way to duplicate an unknown state.

Question: How can one learn anything about r?

Answer: Through quantum Fourier analysis!

23

THE QUANTUM FOURIER TRANSFORM

VFT |x〉 =
(

1√
2

)n ∑

0≤y<2n

e2πixy/2
n

|y〉

Acting on superpositions, VFT Fourier-transforms amplitudes:

VFT

∑

α(x)|x〉 =
∑

β(x)|x〉

β(x) =
(

1√
2

)n ∑

0≤z<2n

e2πixz/2
n

α(z)

If α has period r as in |x〉 + |x + r〉 + |x + 2r〉 + · · ·

then β is sharply peaked at integral multiples of 2n/r.

24

Question: Is that all there is to it?

VFT is boring :

1. Just familiar transformation from

position to momentum representation.

2. Everybody knows Fourier transform

sharply peaked at multiples of inverse period.

25

But VFT is not boring because:

1. x has nothing to do with position, real or conceptual.

x is arithmetically useful but physically meaningless:

x = x0 + 2x1 + 4x2 + 8x3 + 16x4 + · · · ,

where |xj〉 = |0〉 or |1〉 is state of j-th 2-state system.

2. Sharp means sharp compared with resolution of apparatus.

But the period r is hundreds of digits long.

Need to know r exactly — every single digit.

Error in r of 1 in 1010 messes up almost every digit.

26

Under VFT shifts become phase factors:

VFT

(

|x〉 + |x + r〉 + |x + 2r〉 + · · ·
)

=

=
(

1√
2

)n ∑

0≤y<2n

(

1 + α + α2 + α3 + · · ·
)

e2πixy/2
n

|y〉,

α = exp
(

2πiy/(2n/r)
)

.

Sum of powers of α sharply peaked at values of y as close as

possible to (i.e. within 1

2
of) integral multiples of 2n/r.

Question: How sharply peaked?

Answer: Probability of measuring such a y > 40%!

27

So we have a significant (> 40%) chance of learning an integer y

within 1

2
of a (more or less) random integral multiple of 2n/r.

Then y/2n is within 1/2n+1 of j/r.

Question: Does this pin down a unique rational number j/r?

28

We have a significant (> 40%) chance of learning an integer y

within 1

2
of j(2n/r) for some (more or less) random integer j.

Then y/2n is within 1/2n+1 of j/r.

Question: Does this pin down a unique rational number j/r?

Answer: It depends. Suppose j′/r′ 6= j/r. Then

|j′/r′ − j/r| ≥ 1/rr′ ≥ 1/N2

Answer is yes, if 1/N 2 > 1/2n: 2n > N2

Input register must be large enough to represent N 2.

Then have 40% chance of learning a divisor r0 of r.

(r0 is r divided by factors it shares with (random) j)

(j and r given from continued-fraction expansion of y/2n)

29

A comment:

When N = pq, easy to show period r necessarily < N/2.

So
∣

∣

∣

j′

r′
−

j

r

∣

∣

∣
>

4

N2

and therefore don’t need y as close as possible

to integral multiple of 2n/r.

Second, third, or fourth closest do just as well.

Raises probability of learning divisor of r

from 40% to 90%.

30

Have 90% chance of learning a divisor r0 of r.

If j happens to share no factors with r, then r0 = r.

Can try it out: Calculate ar0 (mod N). Is it 1?

If not, repeat the calculation. Get a new (probable) divisor r′0.

Try for r the least common multiple of r0 and r′0
(with help from ancient Greeks.)

With several runs of the quantum computation,

and some detective work (on a classical computer),

one finds r and therefore (unless unlucky) factors N .

31

Another comment:

Should the period r be 2m, then 2n/r is itself an integer,

and probability of y being multiple of that integer

is easily shown to be 1, even if input register

contains just a single period.

A pathologically easy case.

Question: When must all periods r be powers of 2?

Answer: When p and q are both primes of form 2j + 1.

(Periods are divisors of (p − 1)(q − 1).)

Therefore factoring 15 = (2 + 1) × (4 + 1)

— i.e. finding periods modulo 15 —

is not a serious demonstration of Shor’s algorithm.

32

Some neat things about the quantum Fourier transform

VFT |x〉 =
(

1√
2

)n ∑

0≤y<2n

e2πixy/2
n

|y〉

1. Constructed entirely out of 1-Qbit and 2-Qbit gates.

2. Number of gates and therefore time grows only as n2.

3. With just one application,
∑

α(x)|x〉 −→
∑

β(x)|x〉,

β(x) =
(

1√
2

)n ∑

0≤z<2n

e2πixz/2
n

α(z)

In classical “Fast Fourier Transform” time grows as n2n.

But classical FFT gives all the β(x), while QFT gives only
∑

β(x)|x〉.

33

x x

x

x

x2

x1

x0

x5

4

3

VFT

|0〉
|1〉

}

{

1√
2
(|0〉 + |1〉)

1√
2
(|0〉 − |1〉)

eπinn′/2 eπinn′/4 eπinn′/8 eπinn′/16 eπinn′/32

|0〉|0〉, |0〉|1〉, |1〉|0〉 invariant; |1〉|1〉 −→ eπi/2
j

|1〉|1〉

34

A PROBLEM?

x x

x

x

x2

x1

x0

x5

4

3

VFT

Number n of Qbits: 2n > N2, N hundreds of digits.

Phase gates eπinn′/2
m

impossible to make for most m,

since can’t control strength or time of interactions

to better than parts in 1010 = 230.

But need to learn period r to parts in 10300 or more!

35

Question:

So is it all based on a silly mistake?

36

Question:

So is it all based on a silly mistake?

Answer:

No, all is well.

37

Question:

So is it all based on a silly mistake?

Answer:

No, all is well.

Question:

How can that be?

38

Question:

So is it all based on a silly mistake?

Answer:

No, all is well.

Question:

How can that be?

Answer:

Because of the quantum-computational

interplay between analog and digital.

39

Quantum Computation is Digital

Information is acquired only by measuring Qbits.

The reading of each 1-Qbit measurement gate

is only 0 or 1.

The 103 bits of the output y of Shor’s algorithm

are given by the readings (0 or 1) of 103

1-Qbit measurement gates.

There is no imprecision in those 103 readings.

The output is a definite 300-digit number.

But is it the number you wanted to learn?

40

Quantum Computation is Analog

Before a measurement the Qbits

are acted on by unitary gates with

continuously variable parameters.

These variations affect the amplitudes

of the states prior to measurement

and therefore they affect the probabilities

of the readings of the measurement gates.

41

So all is indeed well

“Huge” errors (parts in 104) in the phase gates

may result in comparable errors in the probability that

the 300 digit number given precisely by the measurement gates

is the right 300 digit number.

So the probability of getting a useful number

may not be 90% but only 89.99%.

Since “90%” is actually “about 90%”

this makes no difference.

42

In fact this makes things even better

x x

x

x

x2

x1

x0

x5

4

3

VFT

eπinn′/2 eπinn′/4 eπinn′/8 eπinn′/16 eπinn′/32

Since only top 20 layers of phase gates matter when N > 220 = 106,

time for QFT scales not quadratically but linearly in number of Qbits.

43

Another Important Simplification 1-Qbit measurements
↘

y5

y4

y3

y2

y1

y0

|x〉

+|x + r〉

+|x + 2r〉

+|x + 3r〉

+ · · ·

eπinn′/2 eπinn′/4 eπinn′/8 eπinn′/16 eπinn′/32

44

Another Important Simplification 1-Qbit measurements
↘

y0

|x〉

+|x + r〉

+|x + 2r〉

+|x + 3r〉

+ · · ·

eπiy0n/2 eπiy0n/4 eπiy0n/8 eπiy0n/16 eπiy0n/32

To execute the Quantum Fourier transformation and then

measure its output you only need 1-Qbit gates!

45

References:

Quantum Computer Science: An Introduction

N. David Mermin

Cambridge University Press

Physics Today , April and October, 2007

March, 2008

46

Quantum Versus Classical Programming Styles

Question: How do you calculate ax when x is a 300 digit number?

Answer: Not by multiplying a by itself 10300 times!

How else, then?

Write x as a binary number: x = x999x998 · · ·x2x1x0.

Next square a, square the result, square that result . . . ,

getting the 1,000 numbers a2
j

.

Finally, multiply together all the a2
j

for which xj = 1.
999
∏

j=0

(

a2
j
)xj

= a

∑

j
xj2

j

= ax

47

Classical: Cbits Cheap; Time Precious

ax =

999
∏

j=0

(

a2
j
)xj

Once and for all, make and store a look-up table:

a, a2, a4, a8, . . . , a2
999

A thousand entries, each of a thousand bits.

For each x multiply together all the a2
j

in the table

for which xj = 1.

48

Quantum: Time Cheap; Qbits Precious

Circuit that executes

ax =
999
∏

j=0

(

a2
j
)xj

is not applied 2n times to input register for each |x〉.

It is applied just once to input register in the state

|φ〉 =
(

1√
2

)n ∑

0≤x<2n

|x〉.

So after each conditional (on xj = 1) multiplication by a2
j

can store
(

a2
j)2

= a2
j+1

using same 1000 Qbits

that formerly held a2
j

.

49

Some other things I wish they had told me:

Question:

Why must a quantum computation be reversible

(except for measurements)?

Superficial answer:

Because linear + norm-preserving ⇒ unitary

and unitary transformations have inverses.

Real answer:

Because standard architecture for evaluating f(x),

f(x)
U f

x x

0

oversimplifies the actual architecture:

50

Need additional work registers for doing calculation:

f(x)

Wx
f

x

0 g(x)

0

Registers

Work

Input

Output

If input register starts in standard state
∑

x |x〉

then final state of all registers is
∑

x |g(x)〉|x〉|f(x)〉.

Work register entangled with input and out registers,

Quantum parallelism breaks down.

Quantum parallelism maintained if |g(x)〉 = |0〉, for any x.

Final state is then |0〉
(

∑

x |x〉|f(x)〉
)

.

51

How to keep the work register unentangled:

f(x)

Wx
f

x

0

0 0

=

Work

Input

Output

g(x) g(x)

0 0

f(x)

f(x)

x x
Vf

0
Vf

C
f(x)

f(x)

0

52

C is built out of 1-Qbit controlled-NOT gates:

C C= =

x x

0 x

controlled-NOT:

53

Question:

How do you do arithmetic on a quantum computer?

Answer:

By copying the (pre-existing) classical theory

of reversible computation.

Question (from reversible-classical-computer scientist):

But that theory requires an irreducibly

3-Cbit doubly-controlled-NOT (Toffoli) gate!

Answer:

In a quantum computer 3-Qbit Toffoli gate

can be built from a few 2-Qbit gates.

54

The 3-Cbit Doubly-Controlled-NOT (Toffoli) gate:

x

y

0

x

y

xy
↑

logical AND

of x and y

55

Building 3-Qbit Doubly-Controlled-NOT gate from 2-Qbit gates:

y

x

z z

y

x

X
xy BA A B

U
=

X =

(

0 1
1 0

)

= σx U = e−πinn′/2

A = â · σ B = b̂ · σ â × b̂ = x̂ sin θ A
2 = B

2 = 1

AB = â · b̂ + iâ × b̂ · σ = cos θ + iσx sin θ
(

AB
)2

= cos 2θ + iσx sin 2θ

If angle θ between â and b̂ is π/4 then
(

AB
)2

= iX = eπi/2X

56

References:

Quantum Computer Science: An Introduction

N. David Mermin

Cambridge University Press

Physics Today , April and October, 2007

March, 2008

57

