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Context: gravitational wave astronomy

We already have experimental evidence for GWs: PSR1913+16,
winning Hulse & Taylor the 1993 Nobel Prize.
We want to detect GWs directly. There are two reasons for this:
To test Einstein’s theory of General Relativity.
To learn about the objects that produce them, i.e. to open up the
new field of gravitational wave astronomy.
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Overview

The detectors
Types of source
Neutron stars as sources
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Direct detection: Interferometers

UK/Germany: GEO600 (600 m, shown above).
US: LIGO Hanford (2 km, 4 km) and LIGO Livingstone (4 km).
France/Italy: VIRGO (3 km).
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Sources of gravitational waves

Can divide into four subclasses:
Binary inspiral.
Bursts.
Stochastic background.
Periodic sources.
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Sources of GWs: Binary inspiral

Considered (by many!) most promising sources for detection.
Made up from neutron stars and/or black holes.
Would probe strong field gravity → excellent test of Relativity.
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Signal analysis for binary inspiral

Relies on the idea of matched filtering:
Detector output is noisy time-series o(t).
Construct a bank of templates u(θa, t), where θa is a vector of
source parameters (e.g. mass, spin, frequency).
For each template construct the signal to noise ratio:

ρ2 = 4 Re

∫

ũ(f)õ(f)?

Sh(f)
df.

Claim a detection when ρ exceeds some threshold, plus other
consistency checks...

Example observational upper limit (Abbott et al. 2008):
Inspiral rate < 1.2 yr−1 L−1

10 for masses 1–3M�.
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Sources of GWs: Bursts

Possible burst sources include:
Supernova (Cas A is shown above).
Gamma ray bursts.
Soft gamma ray repeaters (SGRs).

GW emission depends upon how asymmetric the explosion is.
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Signal analysis for bursts

Difficult because shape of waveform less well unknown.
A possible strategy is to match filter using a guessed waveform,
e.g. a damped sine wave.
Statistical significance improved by:

Coincidence between multiple GW detectors.
Coincidence with electromagnetic events.

Example observational upper limit (Abbott et al. 2008):
EGW < 30EEW for SGR 1806-20 giant flare, assuming

duration 100 ms, and white noise frequency spectrum
100 < fGW/Hz < 200.
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Sources of GWs: Stochastic
background

Just as there is a background of electromagnetic radiation left
over from the Big Bang (shown above), so there must be a GW
background too.
Would probe the Universe at very early times e.g. during the
inflationary era.
However, the strength of the background is unknown, and may be
very weak.
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Signal analysis for a stochastic
background

Must use cross-correlation between detectors.
For outputs o1(t) and o2(t):

C =

∫

dt1

∫

dt2 o1(t1)Q(t1 − t2)o2(t2),

where Q(t1 − t2) is a filter to account for different detector
locations, orientations and sensitivities.

Example observational upper limit (Abbott et al. 2007)
ΩGW(H0/72kms−1Mpc−1) < 6.5 × 10−5 for

frequency-independent spectrum over interval
51 < f/Hz < 150.

Ian Jones Searching for gravitational waves from neutron stars 11/23



Sources of GWs: Periodic sources

Neutron stars are small and dense and rotate rapidly.
→ They would be good GW emitters if the are asymmetric.
Possible emission mechanisms:

Triaxiality
Free precession
Fluid oscillations
None of the above
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Continuous waves

A continuous monochromatic source is specified by a set of
parameters:

θ = (h0,Φ0, ι, ψ, α, δ, f, ḟ . . . ).

Main search technique is matched filtering, where signal phase is
all important:

Φ(t) = Φ0 + 2π

∫

f + ḟ t+
1

2!
f̈ t2 + . . . dt.

The way search proceeds depends upon whether source is
known or unknown.
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Known spinning stars: results so far

Searches have looked for GWs from triaxial stars:

h =

(

2

15

)1/2
G

c4
8Ω2

d
εI; ε =

I2 − I1
I1

.

Parameter space small as emission is at 2Ω.
Upper limits placed on ε for many known radio pulsars.
But what is the astrophysical interest?
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Theoretical upper limit

Mountain size determined by balance between gravitational and
elastic forces:

ε ≈ [rigidity parameter] × [breaking stain],

ε ≈
µVcrust

GM2/R
ubreak ≈ 10−7

(ubreak

10−2

)

.

Confirmed by rigorous calculation of Ushomirsky, Cutler &
Bildsten (2000).
Mountains could be much bigger (e.g. 10−4) for exotic crystalline
phases (Owen 2005, Haskell et al 2007, Lin 2007).
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Indirect electromagnetic upper limit

Assume all spin-down energy goes into gravitational wave production:
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Direction gravitational wave upper limit

Analysis of data from first half of S5 has beaten the spin-down
limit of Crab (Abbott et al 2008).
No more than 6% of spin-down energy going into gravitational
wave channel.
Ellipticity is no more than 1.9 × 10−4.
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Possible emission mechanisms

Now want to expand the search to other parts of parameter space.
Search parameters must satisfy two conditions:
1. Search is computationally feasible.
2. Search is physically motivated.
Need to think about all possible emission mechanisms...
1. Triaxiality
2. Free precession
3. Fluid oscillations
4. None of the above.
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Going beyond 2f : pinned superfluids

In 1977 Shaham investigated effect of pinned superfluidity on
neutron star precession:

Ja = IC
abΩ

C
b + ISFΩSF

a .

Found that precession frequency in massively increased by
addition of a gyroscopic-type term:

ψ̇ ≈ (1 + ε)Ω, ε ≈
I3 − I1
I3

+
ISF

I3
.

But what of the non-precessional solution?
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Going beyond 2f : pinned superfluids
cont...

Can identify non-precessional solution as one where ΩC
a is

parallel to Ja.
Can then plug this motion into mass quadrupole approximation to
General Relativity to calculate GW emission.
Key quantities are the multipole moments:

Qlm =

∫

δρlm(r)rl+2 dr.

Look for solution where pinned superfluid does not point along a
principal axis of the crust...
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Going beyond 2f : pinned superfluids
cont...

If superfluid has orientation (θ, ψ) with respect to crustal axes find
emission at both f and 2f .
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�

This means even steadily rotating non-precessing star may have a
GW harmonic at the spin frequency.
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Going beyond 2f : pinned superfluids
cont...

Computational burden of search very low.
Open issues:

What would produce misalignment of crustal principal axes
and pinned superfluidity in the first place?
What limits maximum amplitude?
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Summary

Detectors have taken high quality data, and even better data
coming soon.
Various upper limits have been obtained; some starting to reach
regime of astrophysical interest.
Astrophysics key to designing new searches.
Even for relatively well understood sources choice is far from
obvious.
Pinned superfluidity motivates a simple low-cost search of
significant astrophysical interest.
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