Clustering, caustics \& collisions ofparticles suspended in turbulent flows
B. Mehlig') \& M.Wilkinson ${ }^{2)}$,
V. Bezuglyy ${ }^{(2,2)}$, K. Duncan ${ }^{2}$), K. Gustavsson ${ }^{1), ~ S t . ~ O ̈ s t l u n d ~}{ }^{1),}$
B. Andersson ${ }^{1}$, M. Ljunggren ${ }^{\text {I) }}$, T.Weber ${ }^{1)}$ V. Uski²), E.Werner ${ }^{\text {1) }}$
${ }^{1)}$ Department of Physics, Göteborg University, Sweden
${ }^{2)}$ Department of Mathematics \& Computing, The Open University, England
-clustering of inertial particles in random \& turbulent flows
-collision rate of advected particles (small St)
-caustics
-collision speeds of inertial particles at large St

Formulation of the problem

Dynamics of particles suspended in turbulent flows.
Spherical particles of size a move independently.
Force on particles: drag force given by Stokes law $\ddot{\boldsymbol{r}}=\gamma(\boldsymbol{u}(\boldsymbol{r}, t)-\dot{\boldsymbol{r}})$.
Flow velocity field $\boldsymbol{u}(\boldsymbol{r}, t)$ random function with appropriate statistics.
$\log \mathrm{St}^{-1}$
Dimensionless parameters

$$
\mathrm{St}=\frac{1}{\gamma \tau} \quad \mathrm{Ku}=\frac{u_{0} \tau}{\ell}
$$

St Stokes number, Ku Kubo number, ℓ, τ, u_{0} Kolmogorov length, time, velocity.

Brownian notion

Scottish botanist R. Brown (I773-1858) observed motion of pollen grains in water.

In 1905 Einstein explained that their motion is due to the concerted effect of the small water molecules on the pollen grains. Water molecules (and thus pollen grains) move the faster the higher the temperature. Prediction:

$$
\Delta x_{t}^{2}=2 D t \quad \text { with } \quad D=\frac{k_{\mathrm{B}} T}{6 \pi \eta a}
$$

Experimental verification:
J. B. Perrin, Ann. de Chemie et de Physique (VIII) I8, 5 (I909)

Brownian motion, diffusion, random walk.

Mixing by random stirring

Computer simulation of 10^{4} particles (red) in two-dimensional random flow (periodic boundary conditions in space)

\mathbf{a} initial distribution, \mathbf{b} particle positions after random stirring.

Clustering of inertial particles

Computer simulation of 10^{4} particles (blue) in two-dimensional smooth random incompressible flow $\boldsymbol{u}(\boldsymbol{r}, t)$

Bec, Phys. Fluids I5 (2003) L8।

Wang \& Maxey, J. Fluid. Mech. 256 (1993) 27

An example

An example: correlated random walks

n

Consider N random walks $x_{i}(t)(i=1, \ldots, N)$, discrete in time $\left(t_{n}=n \delta t\right)$

$$
x_{i}\left(t_{n+1}\right)=x_{i}\left(t_{n}\right)+\xi\left(x_{i}\left(t_{n}\right), t_{n}\right)
$$

with Gaussian random displacements $\xi(x(t), t)$ satisfying

$$
\begin{aligned}
& \left\langle\xi\left(x, t_{n}\right)\right\rangle=0 \\
& \left\langle\xi\left(x, t_{n}\right) \xi\left(y, t_{m}\right)\right\rangle=\delta_{n m} \xi_{0}^{2} \mathrm{e}^{-(x-y)^{2} / 2 \ell^{2}}
\end{aligned}
$$

An example: correlated random walks

Consider two particles with small initial separation $\delta x(0)$. Does $\delta x(t)$ typically decrease as $t \rightarrow \infty$? Linearise

$$
\delta x\left(t_{n+1}\right)=\delta x\left(t_{n}\right)\left(1+\frac{\partial \xi}{\partial x}\left(x\left(t_{n}\right), t_{n}\right)\right)
$$

and determine

$$
\begin{aligned}
\lambda & =\lim _{t \rightarrow \infty} \frac{1}{t}\langle\log | \frac{\delta x(t)}{\delta x(0)}| \rangle \\
& =\frac{1}{\delta t}\langle\log | 1+\frac{\partial \xi}{\partial x}| \rangle
\end{aligned}
$$

An example: correlated random walks

$$
\lambda=\lim _{t \rightarrow \infty} \frac{1}{t}\langle\log | \frac{\delta x(t)}{\delta x(0)}| \rangle=\frac{1}{\delta t}\langle\log | 1+\frac{\partial \xi}{\partial x}| \rangle
$$

Assume that $\partial \xi / \partial x$ is small $\left(\xi_{0} \ll \ell\right)$. Neglect $|\cdots|$, expand logarithm and average

$$
\lambda \approx-\frac{1}{2 \delta t} \frac{\xi_{0}^{2}}{\ell^{2}}<0
$$

Lyapunov exponents

Exponents $\lambda_{1}>\lambda_{2}>\lambda_{3}$ describe rate of contraction or expansion of small length element δr_{t}, area element $\delta \mathcal{A}_{t}$, and volume element $\delta \mathcal{V}_{t}$

$$
\begin{aligned}
\lambda_{1} & =\lim _{t \rightarrow \infty} t^{-1} \log _{\mathrm{e}}\left(\delta r_{t}\right) \\
\lambda_{1}+\lambda_{2} & =\lim _{t \rightarrow \infty} t^{-1} \log _{\mathrm{e}}\left(\delta \mathcal{A}_{t}\right) \\
\lambda_{1}+\lambda_{2}+\lambda_{3} & =\lim _{t \rightarrow \infty} t^{-1} \log _{\mathrm{e}}\left(\delta \mathcal{V}_{t}\right)
\end{aligned}
$$

Stochastic differential equation

To calculate $\lambda_{1}>\lambda_{2}>\lambda_{3}$ express spatial separations $\delta \boldsymbol{r}_{\mu}(\mu=1,2,3)$ in terms of a co-moving coordinate system $\mathbf{n}_{\mu}(t)=\mathbf{O}(t) \mathbf{n}_{\mu}(0)$, momentum separations $\delta \boldsymbol{p}_{\mu}$ as $\delta \boldsymbol{p}_{\mu}=\mathbf{R} \delta \boldsymbol{r}_{\mu}$.

$$
\begin{aligned}
& \lambda_{\mu}=\left\langle R_{\mu \mu}^{\prime}\right\rangle / m \\
& \dot{\mathbf{R}}^{\prime}=-\gamma \mathbf{R}^{\prime}-\mathbf{R}^{\prime 2} / m+\left[\mathbf{R}^{\prime}, \mathbf{O}^{\dagger} \dot{\mathbf{O}}\right]_{-}+\mathbf{F}^{\prime} \\
& F_{\mu \nu}(t)=\gamma m \frac{\partial u_{\mu}}{\partial r_{\nu}}, \partial u_{\mu} / \partial r_{\nu} \text { is the strain tensor, }
\end{aligned}
$$

and $R_{\mu \nu}^{\prime}(t)=\mathbf{n}_{\mu}(t) \cdot \mathbf{R}(t) \mathbf{n}_{\nu}(t)$ as well as $F_{\mu \nu}^{\prime}(t)=\mathbf{n}_{\mu}(t) \cdot \mathbf{F}(t) \mathbf{n}_{\nu}(t)$. For rapidly fluctuating forcing ($\mathrm{Ku} \ll 1$) obtain generalised diffusion equation for \mathbf{R}^{\prime} which can be mapped onto a quantum problem.

Mapping onto quantum problem

Generalised diffusion equation for 3×3 matrix \mathbf{R}^{\prime} equivalent to perturbation of nine-dimensional isotropic harmonic oscillator

$$
\hat{H}=\hat{H}_{0}+\mathcal{I}^{1 / 2} \hat{H}_{1} \quad \begin{aligned}
& \hat{H}_{0}=-\sum_{i=1}^{9} \hat{a}_{i}^{\dagger} \hat{a}_{i} \\
& \hat{H}_{1}=-\sum_{i j k} H_{i j k}^{(1)} \hat{a}_{i}^{\dagger}\left(\hat{a}_{j}^{\dagger}+\hat{a}_{j}\right)\left(\hat{a}_{k}^{\dagger}+\hat{a}_{k}\right)
\end{aligned}
$$

where $\mathcal{I}=\frac{1}{2 \gamma} \int_{-\infty}^{\infty} \mathrm{d} t\left\langle\frac{\partial u_{1}}{\partial x_{1}}(\boldsymbol{r}(t), t) \frac{\partial u_{1}}{\partial x_{1}}(\boldsymbol{r}(0), 0)\right\rangle \propto \mathrm{Ku}^{2} \mathrm{St}$ is dimensionless
measure of strain correlations.
Coefficients $H_{i j k}^{(1)}$ exactly known. Lyapunov exponents are obtained as matrix elements between ground state of \hat{H}_{0} and the state $|Q\rangle$ given by $\hat{H}|Q\rangle=0$.

Perturbation expansion

$$
\begin{aligned}
\lambda_{1} / \gamma= & 3 \mathcal{I}-29 \mathcal{I}^{2}+564 \mathcal{I}^{3} \\
& -14977 \mathcal{I}^{4}+488784 \mathcal{I}^{5}-18670570 \mathcal{I}^{6}+\cdots \\
\lambda_{2} / \gamma= & 8 \mathcal{I}^{2}-459 / 2 \mathcal{I}^{3}+14281 / 2 \mathcal{I}^{4} \\
& -757273 / 3 \mathcal{I}^{5}+361653709 / 36 \mathcal{I}^{6}+\cdots \\
\lambda_{3} / \gamma= & -3 \mathcal{I}-9 \mathcal{I}^{2}-789 / 2 \mathcal{I}^{3}-5787 / 2 \mathcal{I}^{4} \\
& -895169 / 3 \mathcal{I}^{5}-101637719 / 36 \mathcal{I}^{6}+\cdots .
\end{aligned}
$$

Mehlig \& Wilkinson, Phys. Rev. Lett. 92 (2004) 250602
Duncan, Mehlig, Östlund \& Wilkinson, Phys. Rev. Lett. 95 (2005) 165503
Valid for $\mathrm{Ku} \ll 1$. Expansion parameter $\mathcal{I} \propto \mathrm{Ku}^{2}$ St.
As $\mathcal{I} \rightarrow 0$ obtain known results for advective limit $\left(\lambda_{1}+\lambda_{2}+\lambda_{3}=0\right)$
Falkovich, Gawedzki \& Vergassola, Rev. Mod. Phys. 73 (2001) 913

Perturbation series in one dimension

Obtain series expansion for λ_{1}

$$
\lambda_{1} / \gamma=-\sum_{l=1}^{\infty} c_{l} \mathcal{I}^{l}
$$

Coefficients satisfy recursion ($c_{1}=1$)

$$
c_{l+1}=(6 l-2) c_{l}+\sum_{j=1}^{l} c_{j} c_{l+1-j} .
$$

l	c_{l}
1	1
2	5
3	60
4	1105
5	27120
6	828250
7	30220800
8	1282031525
9	61999046400
10	3366961243750

Same coefficients appear in
D. Aldous, Brownian excursions, critical random graphs, and the multiplicative coalescent (I996) J. Spencer, Enumerating Graphs and Brownian Motion, Comm. Pure Appl. Math. I (I997) 029 I P. Flajolet and P. Poblete and A.Viola, On the analysis of linear probing hashing,

Algorithmica 22 (I998) 490
Sv. Janson, The Wiener index of simply generated random trees (2002)

Fractal clustering

Fractal dimension of attractor in d-dimensional space

$$
d_{\mathrm{f}}=d-\Delta \quad(\text { when } \Delta>0) .
$$

Dimension deficit Δ. For particles in $d=3$ incompressible flow estimate

$$
\Delta=-\frac{1}{\left|\lambda_{3}\right|}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)
$$

Kaplan \& Yorke (1979)
J. Sommerer \& E. Ott, Science 259 (1993) 35I

From Pade-Borel resummation of series for Lyapunov exponents obtain good agreement with direct numerical simulations of particles suspended in turbulent flow (\quad, from Bec et al. nlin.CD/0606024).

Since Ku is not known for turbulent flow, adjusted x-axis by setting $\mathrm{Ku}=0.25$.

Wilkinson, Mehlig, Östlund \& Duncan, Phys. Fluids I9 (2007) II 3303

Collision rate R

Small St : advective collisions.

In turbulent flow:

$$
R_{\mathrm{adv}}=K_{d} n a^{d} \frac{\mathcal{E}^{1 / 2}}{\nu^{1 / 2}}
$$

(\mathcal{E} dissipation, ν viscosity, n number density, K_{d} constant).

Large St: collisions in gas of randomly moving particles. Random single-scale flow: $R_{\text {gas }} \propto \mathrm{St}^{-1 / 2}$.

Advective collisions ($\dot{r}=u(r, t)$)

Consider two spatial dimensions. Collision rate (polar coordinates r, θ)

$$
R=-2 a n_{0} \int_{0}^{2 \pi} \mathrm{~d} \theta v_{r}(2 a, \theta, t) \Theta\left(-v_{r}(2 a, \theta, t)\right) \chi(2 a, \theta, t)
$$

measures flux of particles into disc of radius $2 a$ around test particle (radius a).

Characteristic function $\chi(2 a, \theta, t)=0$ for particles which have already collided, otherwise $\chi(2 a, \theta, t)=1$. Initially, $\chi=1$ but in general: χ depends upon history of flow.

Relative velocity v_{r}.
Number density n_{0}. P. G. Saffman \& J. S. Turner, J. Fluid. Mech. I, I6 (I956)

Numerical results

Collision rate

$$
R=-2 a n_{0} \int_{0}^{2 \pi} \mathrm{~d} \theta v_{r}(2 a, \theta, t) \Theta\left(-v_{r}(2 a, \theta, t)\right) \chi(2 a, \theta, t)
$$

Results of numerical simulations (point-particles advected in random flow at small Ku , record collision when separation is for the first time $<2 a$):

Andersson, Gustavsson, Mehlig \& Wilkinson, Europhys. Lett. 80 (2007)

Theory in the limit of small Ku

Problem: in time-dependent flow, the separation \boldsymbol{X}_{t} may pass the collision region more than once (whether or not depends upon history of flow).

In the limit of small Ku , the separation \boldsymbol{X}_{t} diffuses with diffusion constant

$$
t=20 \tau
$$

$$
D_{i j}=\frac{1}{2} \int_{-\infty}^{\infty} \mathrm{d} t\left\langle\left[u_{i}(\boldsymbol{X}, \mathrm{t})-u_{i}(\mathbf{0}, t)\right]\left[u_{j}(\boldsymbol{X}, 0)-u_{j}(\mathbf{0}, 0)\right]\right\rangle
$$

The collision rate can be evaluated exactly in this limit.
In $d=2$ dimensions (with $X=|\boldsymbol{X}|$)

$$
R=16 \pi \mathcal{D} n_{0} a^{2} \quad \text { with } \mathcal{D}=\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} X} D_{11}(X=0) \sim \frac{u_{0}^{2} \tau}{2 \ell^{2}} \propto \frac{\mathrm{Ku}^{2}}{\tau}
$$

Caustics

Falkovich, Fouxon \& Stepanov, Nature 419 (2002)I5I Wilkinson \& Mehlig, Phys. Rev. E 68 (2003) 04010, Europhys. Lett. 7 I (2005) I86

One-dimensional model $\ddot{x}=\gamma(u(x, t)-\dot{x})$.

This singularity ('catastrophe') is a caustic. Implications for collision rates.

Caustic activation

One-dimensional model $\ddot{x}=\gamma(u(x, t)-\dot{x})$.
Exact result for rate of caustic formation in the limit of small Ku

$$
\begin{aligned}
\mathcal{J} / \gamma= & -\frac{1}{2 \pi} \operatorname{Im}\left[\frac{1}{\sqrt{z}} \frac{\mathrm{Ai}^{\prime}(z)}{\operatorname{Ai}(z)}\right]_{z=(\mathrm{i} \sqrt{\mathcal{I}})^{-4 / 3} / 4} \\
& \sim \frac{1}{2 \pi} \mathrm{e}^{-1 /(6 \mathcal{I})}
\end{aligned}
$$

where Ai is the Airy function, $\mathcal{I} \propto \mathrm{Ku}^{2} \mathrm{St}$, and 'action' $1 / 6$.
Caustic formation is an activated process (compare Arrhenius law $\left.r=r_{0} \mathrm{e}^{-T_{0} / T}\right)$.
Similar in two and three dimensions, but 'action' not known analytically. Duncan, Mehlig, Östlund \& Wilkinson, Phys. Rev. Lett. 95 (2005) 165503

St-dependence of collision rate

Collision rate well approximated by $R=R_{\mathrm{adv}}+\exp (-S / \mathcal{I}) R_{\text {kin }}$. Remember $J / \gamma \sim \mathrm{e}^{-S / \mathcal{I}}$ and $\mathcal{I} \propto \mathrm{Ku}^{2} \mathrm{St}$.

Relative speeds in turbulence at large St

Inertial range becomes important $\left(\langle\Delta u(l, t) \Delta u(l, 0)\rangle=(\mathcal{E} l)^{2 / 3} f\left(t \mathcal{E}^{1 / 3} / l^{2 / 3}\right)\right.$ (here Δu is component of $\Delta \boldsymbol{u}(l, t)=\boldsymbol{u}(l, t)-\boldsymbol{u}(0, t)$ and $\ell \ll l \ll L$, $\ell \sim\left(\nu^{3} / \mathcal{E}\right)^{1 / 4}$ Kolmogorov scale). Grain dynamics in accretion disks.

Model: distribution of collision speeds non-Gaussian:

$$
P(\Delta V)=A \mathrm{e}^{-C|\Delta V|^{4 / 3} \gamma^{2 / 3} \mathcal{E}^{-2 / 3}}
$$

where A and C are constants and \mathcal{E} is rate of dissipation per unit mass.
This result implies

$$
\begin{aligned}
& \Delta V \sim \sqrt{\mathcal{E} / \gamma} \\
& \text { (dimensional analysis) } \\
& R_{\text {gas }} \sim \mathrm{St}^{1 / 2} \\
&(\text { Epstein damping: St } \sim a)
\end{aligned}
$$

Mehlig,Wilkinson \& Uski, Phys. Fluids 19 (2007) 098I97
Wilkinson, Mehlig \& Uski, Astrophys. J. Suppl. Ser. I 76 (2008) 484
Gustavsson, Mehlig, Wilkinson \& Uski, Phys. Rev. Lett. IOI (2008) I74503

One-dimensional model

Assume $\mathrm{Ku} \ll 1$. Dimensionless variables $t^{\prime}=\gamma t, \Delta x=\Delta X / \ell$, and $\Delta v=\Delta V /(\ell \gamma)$.When Δu fluctuates rapidly, can approximate dynamics by Langevin equation

$$
\mathrm{d} \Delta x=\Delta v \mathrm{~d} t^{\prime}, \quad \mathrm{d} \Delta v=-\Delta v \mathrm{~d} t^{\prime}+\delta w
$$

with random increments

$$
\langle\delta w\rangle=0 \quad\left\langle\delta w^{2}\right\rangle=2 \mathcal{D}(\Delta x) \mathrm{d} t^{\prime}
$$

with diffusion constant $\mathcal{D}(\Delta x)=\epsilon|\Delta x|^{\alpha}$.
Parameters ϵ and α. Relevant choice: $\alpha=2 / 3$ and $\epsilon=1$.
Asymptotically exact WKB solution of corresponding Fokker-Planck equation for $\rho(\Delta x, \Delta v)$.

Mehlig, Wilkinson \& Uski, Phys. Fluids 19 (2007) 098I97

Gustavsson, Mehlig, Wilkinson \& Uski, Phys. Rev. Lett. (2008) in press

Conclusions

Clustering of inertial particles -exact solution for $\mathrm{Ku} \ll 1$ compared to DNS (Bec et al. nlin.CD/0606024) Parameter \mathcal{I} from DNS?

Caustics

-activated caustic formation $\mathrm{e}^{-C / S t}$, C determined from DNS Pumir \& Falkovich, J.Atm. Sci 64 (2007) Collision rate of advected particles
-exact result for $\mathrm{Ku} \ll 1$, influence of clustering -expect $R=K_{d} n_{0} a^{d}(\mathcal{E} / \nu)^{1 / 2}$ in turbulent flows $\log \mathrm{St}^{-1}$

Determine universal constants (DNS)

Inertial collisions at large $\mathrm{St}: \quad R=K_{d}^{(1)} n a^{d-1} \frac{\mathcal{E}^{1 / 2}}{\gamma^{1 / 2}}$
Gustavsson, Mehlig,Wilkinson \& Uski, Phys. Rev. Lett. IOI (2008) 174503
Advective collisions at small St: $R=K_{d}^{(2)} n a^{d} \frac{\mathcal{E}^{1 / 2}}{\nu^{1 / 2}}$
Gustavsson, Mehlig,Wilkinson, New J. Phys. 10 (2008) 075014
Andersson, Gustavsson, Mehlig, Wilkinson, Europhys. Lett. 80 (2007) 6900।
Fractal dimension of inertial particles determined by $\epsilon^{2}=\frac{K_{d}^{(3)}}{\gamma} \frac{\mathcal{E}^{1 / 2}}{\nu^{1 / 2}}$
Mehlig \& Wilkinson, Phys. Rev. Lett. 92 (2004) 250602
Duncan, Mehlig, Östlund \& Wilkinson, Phys. Rev. Lett. 95 (2005) 165503
Caustic activation $\mathrm{e}^{-K_{d}^{(4)} / \mathrm{St}}$
Falkovich, Fouxon \& Stepanov, Nature 4 I9 (2002)I5I
Wilkinson, Mehlig \& Bezuglyy, Phys. Rev. Lett. 97 (2006) 04850।
Pumir \& Falkovich, J.Atm. Sci. 64 (2007) 4497

