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Scattering amplitudes in N' = 4 SYM - motivation

supersymmetric YM as a tool for QCD

© perturbatively, the theories are very similar
= certain tree-level amplitudes identical in both theories

= at one loop, susy decomposition:
Ag = (Ag +4Ar + 3A) — 4(Ar + As) + A
~— —————— N——

N=4 N=1

@ develop and test new methods in N’ = 4 SYM
= e.g. recursion relations for tree amplitudes, (generalized) unitarity
= application to QCD e.g. Blackhat, ...
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Scattering amplitudes in N' = 4 SYM - motivation

supersymmetric YM as a tool for QCD

© perturbatively, the theories are very similar
= certain tree-level amplitudes identical in both theories

= at one loop, susy decomposition:
Ag = (Ag +4Ar + 3A) — 4(Ar + As) + A
N—— S——

N=4 N=1
@ develop and test new methods in N’ = 4 SYM

= e.g. recursion relations for tree amplitudes, (generalized) unitarity
= application to QCD e.g. Blackhat, ...

Ambitious goals and prospects in N' =4 SYM

© Discover and understand new hidden symmetries
(e.g. dual conformal symmetry)

© Compute amplitudes for arbitrary number of legs and/or loops?!
© Test AdS/CFT

[2/24]



Scattering amplitudes in N/ = 4 SYM

@ n-particle scattering amplitude

helicity: h; = 0 scalar, h; = £1 gluon, h; = i% gluino
@ color structure
An{pihivait) = D e[t 7] X An({poy, hoy b -5 {Poys hoy })
O'ESn/Zn
A,: Color ordered amplitude

o IR divergences (well-understood) due to massless particles
use e.g. dimensional regularization;
this talk: use Higgs masses as a regulator
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Reminder: Dual conformal symmetry

Lo i
pi = Xi — X1

@ Planar MHV amplitudes have SO(4,2) symmetry in the dual x; space

[Drummond, J.H., Smirnov, Sokatchev, 2006; Drummond, J.H., Korchemsky, Sokatchev, 2007]

@ Can be extended to dual superconformal symmetry
applicable to MHV and non-MHV amplitudes [Drummond, J.H., Korchemsky, Sokatchev, 2008]

@ Conventional + dual superconformal — Yangian symmetry  [prummond, J.H., Plefka, 2009]

0 g 0
JOAE =N "7 — JWAL = N ZAZC Z (i
_ 4 gzE > 44 57¢ 78~ 1))
i ! i<j ! J
related references: [Beisert et al, 2009+2010; Korchemsky, Sokatchev, 2009+2010, Drummond, Ferro, 2010]

— talks by N. Beisert, L. Ferro and E. Sokatchev at this conference
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Planar amplitudes on the Coulomb branch of A/ = 4 Super

Yang-Mills

o U(N + M) — U(N) x U(M)
[Alday, Maldacena, 2007; Kawai, Suyama, 2007; Schabinger, 2008; Sever, McGreevy, 2008]
[Alday, J.H., Plefka, Schuster, 2009]

— leads to massive particles
o scatter massless U(M) particles
o N > M: only allow loops in N-part of U(N + M)
— renders amplitudes IR finite

o e.g. colour-ordered four-point one-loop amplitude
p2 P3

P1/ \ Pa
MO(m? /s, m?/t),  s=(p1+p)?, t=(p2+ps)’

[5/24]



One-loop example

Various interesting limits
@ Regge limit s > t, m?

ML — Iog(s/mz)a(t/m2) + O(so) , o is Regge trajectory
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One-loop example

Various interesting limits
@ Regge limit s > t, m?

ML — Iog(s/mz)a(t/m2) + O(so) , o is Regge trajectory

@ large mass limit m?>>s,t [cf. Gorsky and Zhiboedov 2009]
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One-loop example

Various interesting limits
@ Regge limit s > t, m?

M®) = log(s/m?)a(t/m?) + O(s°), « is Regge trajectory
@ large mass limit m?>>s,t [cf. Gorsky and Zhiboedov 2009]
@ small mass limit m> < s, t (“mass regulator”)

1

1 s
MO — D oe?
{ og m2+2

5 log F} + - log (;)—i——w +O(m?)

2 2

reminder: in dimensional regularization

1 /u2\¢ 1 2\ € 1 s 2
o_ |t L~ o2 (3 L 4.2
M [62<5>+62(t>}+2|0g (t)+37r + O(e)
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One-loop example

Various interesting limits
@ Regge limit s > t, m?
ML) = log(s/m*)a(t/m?) + O(s°), o is Regge trajectory
@ large mass limit m?> st [cf. Gorsky and Zhiboedov 2009]
@ small mass limit m> < s, t (“mass regulator”)
M) = — B log? % + % log? %} + % log? (%) + %73 + O(m?)

reminder: in dimensional regularization

1 /p2\S 1 /p®\] 1 s\ 2
MO = 1S () S (=) | +2lo 2(—)+—7T2+06
e\ s 2\t 2% \7 3 ()
Comments:
@ geometrical interpretation as volume of tetrahedron in AdSs
[Mason, Skinner 2010; see also Davydychev and Delbourgo 1998]

@ useful in connection with momentum twistor space [Hodges 2010]
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Extended dual conformal symmetry

[Alday, J.H., Plefka, Schuster, 2009]

refinement: U(N + M) — U(N) x U(1)M

©

on-shell conditions now read p? = —(m; — m;1)?

©

particles in loop have mass m;

“extended” dual conformal symmetry

@ in addition to the dual coordinates x,f‘, we can vary the masses m;

A 0 0
— o, _ m2
KH = KF + g [2X,- m; o m; Dxin

©

very natural from string theory: m corresponds to radial coordinate of AdSs
@ conjecture: loop integrals have exact dual conformal symmetry
Krl =0
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String theory motivation

@ string picture:

Alday, Maldacena z=0

Y
f M D3-branes

/ N D3-branes

()

[*] bOSOﬂIC + fermionic T—duallty |S relevant [Alday, Maldacena, 2007; Berkovits, Maldacena, 2008]
@ isometries of AdSs in T-dual theory

J_14=
J4nu - J_lvl'b
J47p' + J_lap‘

@ Expectation: Amplitudes

Mo, + x8, = D
= 8# = ’Su
= 2yu(x,0" + mOp) — (X2 + mz)a“ = ku

regulated by Higgs masses should be invariant exactly

under extended dual conformal symmetry K, and D ! [Alday, J.H., Plefka, Schuster, 2000]

[similar ideas used in Jevicki, Kazama, Yoneda, 1998]
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Properties of the Higgs regulator

Conceptual advantages

@ natural from AdS/CFT viewpoint
@ makes dual conformal symmetry exact
@ restricts integral basis

@ masses have physical interpretation

Practical advantages

@ higher loop orders of amplitudes easy to compute
e.g. O(e) x 1/e = O(1) problems as in dimensional regularization

@ Regge limit can be computed systematically
e.g. LL and NLL computed to all orders [J.H., Naculich, Schnitzer, Spradiin, 2010]
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Implications for higher loop integral basis

@ basis of loop integrals in A/ = 4 SYM constrained by dual conformal symmetry?
[Drummond, J.H., Smirnov, Sokatchev, 2006; Bern, Czakon, Dixon, Kosower, Smirnov, 2006; Bern, Carrasco, Johansson, Kosower, 2007]

[Drummond, Korchemsky, Sokatchev, ‘07; Nguyen, Spradlin Volovich, ‘07; Bern, Dixon, Kosower, Roiban, Spradlin, Vergu, Volovich, ‘08]
[Spradlin, Volovich, Wen, 2008]

@ it seems reasonable to speculate that [J.H., Naculich, Schnitzer, Spradlin, 2010]
Mp=1+> a'B (1)1,
T

where: coupling a, loop order L(Z)
coefficients ¢(Z) = compute by (generalized) unitarity
integrals 7 = restricted set of extended dual conformal integrals
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Implications for higher loop integral basis

@ basis of loop integrals in A/ = 4 SYM constrained by dual conformal symmetry?
[Drummond, J.H., Smirnov, Sokatchev, 2006; Bern, Czakon, Dixon, Kosower, Smirnov, 2006; Bern, Carrasco, Johansson, Kosower, 2007]
[Drummond, Korchemsky, Sokatchev, ‘07; Nguyen, Spradlin Volovich, ‘07; Bern, Dixon, Kosower, Roiban, Spradlin, Vergu, Volovich, ‘08]

[Spradlin, Volovich, Wen, 2008]

@ it seems reasonable to speculate that [J.H., Naculich, Schnitzer, Spradlin, 2010]
Mp=1+> a'B (1)1,
T

where: coupling a, loop order L(Z)
coefficients ¢(Z) = compute by (generalized) unitarity
integrals 7 = restricted set of extended dual conformal integrals

o absence Of trlang|eS at one |OOp [Boels; also: Schabinger]
@ additional constraints from expected IR structure [Korchemsky, Sterman,...]
M, = exp —gl'cusp(a) Z log Pl §G0(a) z log 5T O(log” m?)
1 1

@ insights from analytic structure for generic m?, and Regge limit(s)?
@ further constraints from the (broken) conventional conformal symmetry?
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Extended dual conformal invariance at higher loops

@ At 2 loops: Only one integral is allowed by

extended dual conformal symmetry:

@ At 3 loops: four integrals allowed:

3a o3 3¢ T 34
Mz =1/(—8) [c3a3a + c3ph3p + C3clac + c3qh3q + {5 < t}]

@ Similarly restricts integral basis for more loops and legs.
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Higher-loop exponentiation

o ana|0g Of Bern—DiXOn—SmirnOV formula [Anastasiou, Bern, Dixon, Kosower, 2002; BDS, 2003]
in Higgs regularization: [Alday, J. H., Plefka, Schuster, 2000; J. H., Naculich, Schnitzer, Spradlin, 2010]
1 ~ s t
log My = _Zrcusp(a) Iog 5+ |Og —5 | — Go(a) |log m2 + log m

+4Te(a) [Iog2 >+ + Z-(a) +0(m?)
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Higher-loop exponentiation

o ana|0g Of Bern—DiXOn—SmirnOV formula [Anastasiou, Bern, Dixon, Kosower, 2002; BDS, 2003]
in Higgs regularization: [Alday, J. H., Plefka, Schuster, 2000; J. H., Naculich, Schnitzer, Spradlin, 2010]
1 ~ s t
log My = _Zrcusp(a) Iog 5+ |Og —5 | — Go(a) |log m2 + log m

+4Te(a) [Iog2 >+ + Z-(a) +0(m?)

@ verified by computing dual conformal integrals up to O(m?)

- at two loops [Alday, J. H., Plefka, Schuster, 2009]

- at three IOOpS [J. H., Naculich, Schnitzer, Spradlin, 2010]

- at four loops (|R divergent terms and Regge Iimit) [J. H., Naculich, Schnitzer, Spradlin, 2010]

@ method used: MB representation of all integrals, asymptotic expansion,
numerical integration (Mathematica packages MBasymptotics, MB; CUBA)
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Higher-loop exponentiation

o ana|0g Of Bern—DiXOn—SmirnOV formula [Anastasiou, Bern, Dixon, Kosower, 2002; BDS, 2003]
in Higgs regularization: [Alday, J. H., Plefka, Schuster, 2000; J. H., Naculich, Schnitzer, Spradlin, 2010]
1 ~ s t
logM, = _Zrcusp(a) Iog 5+ |Og —5 | — Go(a) |log m2 + log m

+4Te(a) [Iog2 >+ + E(a) +O(m’)

@ verified by computing dual conformal integrals up to O(m?)

- at two loops [Alday, J. H., Plefka, Schuster, 2009]

- at three IOOpS [J. H., Naculich, Schnitzer, Spradlin, 2010]

- at four loops (|R divergent terms and Regge Iimit) [J. H., Naculich, Schnitzer, Spradlin, 2010]

@ method used: MB representation of all integrals, asymptotic expansion,
numerical integration (Mathematica packages MBasymptotics, MB; CUBA)

o five-loop computation of ['¢,sp to test Beisert-Eden-Staudacher prediction

[Bourjaily, J. H., Spradlin, work in progess|
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Application to two-loop integrals/amplitudes

@ expected dual conformal integrals:

1

see e.g. six-point two-loop MHV case (in dimensional regularization)
[Bern, Dixon, Kosower, Roiban, Spradlin, Vergu, Volovich, 2008]

and for higher-point amplitudes [Vergu, 2009]

@ integrals can be evaluated straightforwardly (numerically) in mass regularization
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The analytic S-matrix

The Analytic
S-Matrix
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Regge limits for amplitudes on the Coulomb branch

@ take Regge limit s = (p1 + p2)? — o0 [J. H., Naculich, Schnitzer, Spradiin, 2010]
expect

ate/m?) (25) "+ o(m)

trajectory a(t/m?) = — 1l usp(a) log(t/m?) — Go(a) [Korchemsky; . ..]
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Regge limits for amplitudes on the Coulomb branch

@ take Regge limit s = (p1 + p2)? — o0 [J. H., Naculich, Schnitzer, Spradiin, 2010]

expect X
ate/m?) (55)" )+ o(m?)

trajectory a(t/m?) = — 1l usp(a) log(t/m?) — Go(a)

[Korchemsky; . ..]

@ dual conformal symmetry implies:
mypms3 momy
M(pi, m;) = M(u,v), v=—", Vv=—>""
(pi, mi) (u,v) s+ (my — m3)? s+ (mp — my)?

equal mass case two-mass case

mi=m m =m3=m
my=mg=M

2 2 2 2

- m — m° — m: — M
u_s’ V_t u_s’ V_t
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Regge limits for amplitudes on the Coulomb branch

@ take Regge limit s = (p1 + p2)? — o0 [J. H., Naculich, Schnitzer, Spradiin, 2010]
expect
s \ot/m?)
o(e/m?) (=) +O(m?)
trajectory at/m?) = — 1l usp(a) log(t/m?) — Go(a) [Korchemsky; ]

@ dual conformal symmetry implies:
Regge limit s > m?,t equivalent to m? < M? in “Bhabha-type” scattering

m M

s> mAt m? < M?
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Regge limits for amplitudes on the Coulomb branch

") take Regge ||m|t S = (pl —+ p2)2 — O [J. H., Naculich, Schnitzer, Spradlin, 2010]
eXpeCt

ate/m?) (=)™ + o(m)

2
m
trajectory at/m?) = — 1l usp(a) log(t/m?) — Go(a) [Korchemsky; ]
@ dual conformal symmetry implies:
Regge limit s > m?,t equivalent to m? < M? in “Bhabha-type” scattering

m M
s> m’t = m? < M?
M m
@ determine leading Regge behavior of integrals [Eden et al, The analytic S-matrix]

@ systematics of Regge limit simpler here compared to dimensional regularization
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LL and NLL Regge limit to all loop orders

P2 3

p1.-

(]
I leading log (LL) and NLL It 1 NLL
Regge limit to all loop orders:
@ LL : ladder integrals

@ NLL and LL : ladders and ladders with one H-shaped insertion

[J. H., Naculich, Schnitzer, Spradlin, 2010]
@ in contrast, in dimensional regularization, many different diagrams contribute
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@ Higgs IR regulator for planar N/ = 4 SYM

<

makes dual conformal symmetry exact
@ restricts integral basis

@ exponentiation of amplitude easier to compute

<

Regge limit: LL and NLL computed to all loop orders
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@ advantages over dimensional regularization
= previously hard/impossible computations seem accessible
e.g. two-loop amplitudes with n > 6 external particles

e.g. can one compute the five-loop value of the cusp anomalous dimension?
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@ use analytic of amplitudes structure for finite m?
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@ advantages over dimensional regularization
= previously hard/impossible computations seem accessible
e.g. two-loop amplitudes with n > 6 external particles

e.g. can one compute the five-loop value of the cusp anomalous dimension?
@ use analytic of amplitudes structure for finite m?

@ Yangian symmetry is essential part of
Grassmannian formula Arkani-Hamed et al
=> mass regulator relevant for extension to loop level

momentum twistor variables might play an important role
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Extra slides
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Exponentiation in Higgs regularization

@ universal planar structure
log My = D(s) + D(t) + Fa(s/t) + O(e)

@ reminder: dimensional regularization (3 = 0)

D(s) = ~1/2 3 a" M, /(ee) + 60 /)| (2/5)"

") f|n|te part F4(S/t) iS alSO Slmp|e| [Anastasiou, Bern, Dixon, Kosower 2002; Bern, Dixon, Smirnov, 2003]
1 1 s 2
Fp==T a) | =log? > + =7?| +¢(a
= 3Tenla) 1082 + 577 + (2
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Exponentiation in Higgs regularization

@ universal planar structure
log My = D(s) + D(t) + Fa(s/t) + O(e)

@ reminder: dimensional regularization (3 = 0)

D(s) = ~1/2 3 a" M, /(ee) + 60 /)| (2/5)"

") f|n|te part F4(S/t) iS alSO Slmp|e| [Anastasiou, Bern, Dixon, Kosower 2002; Bern, Dixon, Smirnov, 2003]
1 1 s 2
Fp==T a) | =log? > + =7?| +¢(a
= 3Tenla) 1082 + 577 + (2

M®) — : (M(l))2 interference 1/e x O(e) = O(1)
= in order to compute log M, need O(¢) terms in M
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Exponentiation in Higgs regularization

@ universal planar structure
log My = D(s) + D(t) + Fa(s/t) + O(e)

@ reminder: dimensional regularization (3 = 0)

D(s) = ~1/2 3 a" M, /(ee) + 60 /)| (2/5)"

") f|n|te part F4(S/t) iS alSO Slmp|e| [Anastasiou, Bern, Dixon, Kosower 2002; Bern, Dixon, Smirnov, 2003]
1 1 s 2
Fp==T a) | =log? > + =7?| +¢(a
= 3Tenla) 1082 + 577 + (2

M®) — : (M(l))2 interference 1/e x O(e) = O(1)
= in order to compute log M, need O(¢) terms in M

o analog in Higgs regularization [Alday, J. H., Plefka, Schuster, 2009; J. H., Naculich, Schnitzer, Spradlin, 2010]
[based on general field theory analysis by Korchemsky, Sterman, ...]
1 s ~ s
D(s) = —=Tusp(a) log? — — Go(a) log —
(5) = — Teusp(a) log” —5 — Go(a) log

F4 equal up to scheme-dependent constant
we have m? x log m?> — 0 = can drop all O(m?) terms
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Three-loop exponentiation

. .. 2
For simplicity, set s=t, log(F)=1L [J. ., Naculich, Schnitzer, Spradin, 2010]
Infrared consistency:

(3) g, ™4 3 i rgﬁ)sp 2
On the other hand,
35 3 7 3 7 34

Mz = 1/(—4) [c3232 + c3p13p + C3cl3c + C34134]
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Three-loop exponentiation

. .. 2
For simplicity, set s=t, log(F)=1L [J. ., Naculich, Schnitzer, Spradin, 2010]
Infrared consistency:

(3) g, ™4 3 i rgﬁ)sp 2
On the other hand,
35 3 7 3 7 34

Mz = 1/(—4) [c3232 + c3p13p + C3cl3c + C34134]

Compute... 17 §
@Z%ﬁ+%ﬁ+nw he = O(L?),

43 2
/3b:mL6—§L4+---, ha = O(L)

Hence c3, =1, ¢35 =2
122/24]



Dual conformal symmetry (1/2)

@ observation: N/ =4 SYM loop integrals have a dual conformal symmetry

[Drummond, J.H., Smirnov, Sokatchev, 2006]

p2\\ ) P3 X3
R — _(//
|
X2 X4
X,
. ko ’
p1 P4 X1

@ loop integrand has conformal symmetry in dual space
I B .
Xigr —Xi = Pi
e.g. inversion symmetry x* — x*/x? or special conformal transformations

0 0
— Ko v 2
KH = g [2)(1- X D — X i

i

@ breaking of symmetry D = 4 — 2¢ under control  [prummond, J.H., Korchemsky, Sokatchev, 2007]
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Dual conformal symmetry (2/2)

refinement: U(N + M) — U(N) x U(l)M [Alday, J.H., Plefka, Schuster, 2009]

@ on-shell conditions now read p? = (m; — my1)
@ particles in loop have mass m;

P2 P3 (x5, ms3)
(X2 , M2 X4 , m4)
k (Xa , 0)
P1 P4 (Xl : ml)

@ important: in addition to the dual coordinates x;, we can vary the masses m;

A 0 0
Kt = K+ 2x!' m; ?
! z,: [ 5 om M o,
@ integral has exact dual conformal symmetry
KrI =0

@ very natural from string theory: m corresponds to radial coordinate of AdSs
124 /24]



