Scattering on the Coulomb branch of $\mathcal{N}=4$ super Yang-Mills

Johannes M Henn

Humboldt-Universität zu Berlin

> based on
F. Alday, J. H., J. Plefka and T. Schuster, arXiv:0908.0684 [hep-th]
J. H., S. Naculich, H. Schnitzer and M. Spradlin, arXiv:1001.1358 [hep-th]
J. H., S. Naculich, H. Schnitzer and M. Spradlin, arXiv:1004.5381 [hep-th]

+ work in progress
IGST 2010, Stockholm, July 1

Outline

Scattering on the Coulomb branch of $\mathcal{N}=4$ SYM

- Motivation and Introduction
- Setup and one-loop example
- Extended dual conformal symmetry
- Integral basis at higher loops
- Regge limit

Scattering amplitudes in $\mathcal{N}=4$ SYM - motivation

supersymmetric YM as a tool for QCD
(1) perturbatively, the theories are very similar
\Rightarrow certain tree-level amplitudes identical in both theories
\Rightarrow at one loop, susy decomposition:

$$
A_{g}=(\underbrace{A_{g}+4 A_{f}+3 A_{s}}_{\mathcal{N}=4})-4(\underbrace{A_{f}+A_{s}}_{\mathcal{N}=1})+A_{s}
$$

(2) develop and test new methods in $\mathcal{N}=4$ SYM
\Rightarrow e.g. recursion relations for tree amplitudes, (generalized) unitarity \Rightarrow application to QCD e.g. Blackhat, ...

Ambitious goals and prospects in $\mathcal{N}=4$ SYM
(1) Discover and understand new hidden symmetries (e.g. dual conformal symmetry)
(2) Compute amplitudes for arbitrary number of legs and/or loops?!
(3) Test AdS/CFT

Scattering amplitudes in $\mathcal{N}=4$ SYM - motivation

supersymmetric YM as a tool for QCD
(1) perturbatively, the theories are very similar
\Rightarrow certain tree-level amplitudes identical in both theories
\Rightarrow at one loop, susy decomposition:

$$
A_{g}=(\underbrace{A_{g}+4 A_{f}+3 A_{s}}_{\mathcal{N}=4})-4(\underbrace{A_{f}+A_{s}}_{\mathcal{N}=1})+A_{s}
$$

(2) develop and test new methods in $\mathcal{N}=4$ SYM
\Rightarrow e.g. recursion relations for tree amplitudes, (generalized) unitarity \Rightarrow application to QCD e.g. Blackhat, ...

Ambitious goals and prospects in $\mathcal{N}=4$ SYM
(1) Discover and understand new hidden symmetries (e.g. dual conformal symmetry)
(2) Compute amplitudes for arbitrary number of legs and/or loops?!
(3) Test AdS/CFT

Scattering amplitudes in $\mathcal{N}=4$ SYM

- n-particle scattering amplitude

helicity: $h_{i}=0$ scalar, $h_{i}= \pm 1$ gluon, $h_{i}= \pm \frac{1}{2}$ gluino
- color structure

$$
A_{n}\left(\left\{p_{i}, h_{i}, a_{i}\right\}\right)=\sum_{\sigma \in S_{n} / Z_{n}} \operatorname{tr}\left[t^{a_{1}} \ldots t^{a_{n}}\right] \times \mathcal{A}_{n}\left(\left\{p_{\sigma_{1}}, h_{\sigma_{1}}\right\}, \ldots,\left\{p_{\sigma_{1}}, h_{\sigma_{1}}\right\}\right)
$$

\mathcal{A}_{n} : Color ordered amplitude

- IR divergences (well-understood) due to massless particles use e.g. dimensional regularization; this talk: use Higgs masses as a regulator

Reminder: Dual conformal symmetry

$$
p_{i}^{\mu}=x_{i}^{\mu}-x_{i+1}^{\mu}
$$

- Planar MHV amplitudes have $S O(4,2)$ symmetry in the dual x_{i} space
[Drummond, J.H., Smirnov, Sokatchev, 2006; Drummond, J.H., Korchemsky, Sokatchev, 2007]
- Can be extended to dual superconformal symmetry applicable to MHV and non-MHV amplitudes
[Drummond, J.H., Korchemsky, Sokatchev, 2008]
- Conventional + dual superconformal \rightarrow Yangian symmetry [Drummond, J.H., Pleffa, 2009]

$$
J^{(0) A}{ }_{B}=\sum_{i} Z_{i}^{A} \frac{\partial}{\partial Z_{i}^{B}}, \quad J^{(1) A}{ }_{B}=-\sum_{i<j} Z_{i}^{A} Z_{j}^{C} \frac{\partial}{\partial Z_{i}^{C}} \frac{\partial}{\partial Z_{j}^{B}}-(i \leftrightarrow j)
$$

related references:
[Beisert et al, 2009+2010; Korchemsky, Sokatchev, 2009+2010, Drummond, Ferro, 2010]
\rightarrow talks by N. Beisert, L. Ferro and E. Sokatchev at this conference

Planar amplitudes on the Coulomb branch of $\mathcal{N}=4$ Super Yang-Mills

- $U(N+M) \rightarrow U(N) \times U(M)$
\rightarrow leads to massive particles
- scatter massless $U(M)$ particles
- $N \gg M$: only allow loops in N-part of $U(N+M)$
\rightarrow renders amplitudes IR finite
- e.g. colour-ordered four-point one-loop amplitude

$$
M^{(1)}\left(m^{2} / s, m^{2} / t\right), \quad s=\left(p_{1}+p_{2}\right)^{2}, \quad t=\left(p_{2}+p_{3}\right)^{2}
$$

One-loop example

Various interesting limits

- Regge limit $s \gg t, m^{2}$

$$
M^{(1)}=\log \left(s / m^{2}\right) \alpha\left(t / m^{2}\right)+O\left(s^{0}\right), \quad \alpha \text { is Regge trajectory }
$$

- large mass limit $m^{2} \gg s, t$
- small mass limit $m^{2} \ll s, t$ ("mass regulator")

reminder: in dimensional regularization

Comments:

- geometrical interpretation as volume of tetrahedron in AdS_{5}
- useful in connection with momentum twistor space

One-loop example

Various interesting limits

- Regge limit $s \gg t, m^{2}$

$$
M^{(1)}=\log \left(s / m^{2}\right) \alpha\left(t / m^{2}\right)+O\left(s^{0}\right), \quad \alpha \text { is Regge trajectory }
$$

- large mass limit $m^{2} \gg s, t$
- small mass limit $m^{2} \ll s, t$ ("mass regulator")

reminder: in dimensional regularization

Comments:

- geometrical interpretation as volume of tetrahedron in AdS_{5}

One-loop example

Various interesting limits

- Regge limit $s \gg t, m^{2}$

$$
M^{(1)}=\log \left(s / m^{2}\right) \alpha\left(t / m^{2}\right)+O\left(s^{0}\right), \quad \alpha \text { is Regge trajectory }
$$

- large mass limit $m^{2} \gg s, t$
- small mass limit $m^{2} \ll s, t$ ("mass regulator")

$$
M^{(1)}=-\left[\frac{1}{2} \log ^{2} \frac{s}{m^{2}}+\frac{1}{2} \log ^{2} \frac{t}{m^{2}}\right]+\frac{1}{2} \log ^{2}\left(\frac{s}{t}\right)+\frac{1}{2} \pi^{2}+\mathcal{O}\left(m^{2}\right)
$$

reminder: in dimensional regularization

$$
M^{(1)}=-\left[\frac{1}{\epsilon^{2}}\left(\frac{\mu^{2}}{s}\right)^{\epsilon}+\frac{1}{\epsilon^{2}}\left(\frac{\mu^{2}}{t}\right)^{\epsilon}\right]+\frac{1}{2} \log ^{2}\left(\frac{s}{t}\right)+\frac{2}{3} \pi^{2}+\mathcal{O}(\epsilon)
$$

Comments:

- geometrical interpretation as volume of tetrahedron in AdS_{5}
- useful in connection with momentum twistor space

One-loop example

Various interesting limits

- Regge limit $s \gg t, m^{2}$

$$
M^{(1)}=\log \left(s / m^{2}\right) \alpha\left(t / m^{2}\right)+O\left(s^{0}\right), \quad \alpha \text { is Regge trajectory }
$$

- large mass limit $m^{2} \gg s, t$
- small mass limit $m^{2} \ll s, t$ ("mass regulator")

$$
M^{(1)}=-\left[\frac{1}{2} \log ^{2} \frac{s}{m^{2}}+\frac{1}{2} \log ^{2} \frac{t}{m^{2}}\right]+\frac{1}{2} \log ^{2}\left(\frac{s}{t}\right)+\frac{1}{2} \pi^{2}+\mathcal{O}\left(m^{2}\right)
$$

reminder: in dimensional regularization

$$
M^{(1)}=-\left[\frac{1}{\epsilon^{2}}\left(\frac{\mu^{2}}{s}\right)^{\epsilon}+\frac{1}{\epsilon^{2}}\left(\frac{\mu^{2}}{t}\right)^{\epsilon}\right]+\frac{1}{2} \log ^{2}\left(\frac{s}{t}\right)+\frac{2}{3} \pi^{2}+\mathcal{O}(\epsilon)
$$

Comments:

- geometrical interpretation as volume of tetrahedron in AdS_{5}
[Mason, Skinner 2010; see also Davydychev and Delbourgo 1998]
- useful in connection with momentum twistor space

Extended dual conformal symmetry

$$
\text { refinement: } U(N+M) \rightarrow U(N) \times U(1)^{M}
$$

- on-shell conditions now read $p_{i}^{2}=-\left(m_{i}-m_{+1}\right)^{2}$
- particles in loop have mass m_{i}
"extended" dual conformal symmetry
- in addition to the dual coordinates x_{i}^{μ}, we can vary the masses m_{i}

$$
\hat{K}^{\mu}=K^{\mu}+\sum_{i}\left[2 x_{i}^{\mu} m_{i} \frac{\partial}{\partial m_{i}}-m_{i}^{2} \frac{\partial}{\partial x_{i \mu}}\right]
$$

- very natural from string theory: m corresponds to radial coordinate of AdS_{5}
- conjecture: loop integrals have exact dual conformal symmetry

$$
\hat{K}^{\mu} I=0
$$

String theory motivation

- string picture:

Alday, Maldacena

N D3-branes
(a)

- bosonic + fermionic T-duality is relevant
- isometries of $A d S_{5}$ in T -dual theory

$$
\begin{aligned}
J_{-1,4} & =m \partial_{m}+x^{\mu} \partial_{\mu}=\hat{D} \\
J_{4, \mu}-J_{-1, \mu} & =\partial_{\mu}=\hat{P}_{\mu} \\
J_{4, \mu}+J_{-1, \mu} & =2 y_{\mu}\left(x_{\nu} \partial^{\nu}+m \partial_{m}\right)-\left(x^{2}+m^{2}\right) \partial_{\mu}=\hat{K}_{\mu}
\end{aligned}
$$

- Expectation: Amplitudes regulated by Higgs masses should be invariant exactly under extended dual conformal symmetry \hat{K}_{μ} and \hat{D} !
[Alday, J.H., Plefka, Schuster, 2009]

Properties of the Higgs regulator

Conceptual advantages

- natural from AdS/CFT viewpoint
- makes dual conformal symmetry exact
- restricts integral basis
- masses have physical interpretation

> Practical advantages

- higher loop orders of amplitudes easy to compute e.g. $\mathcal{O}(\epsilon) \times 1 / \epsilon=\mathcal{O}(1)$ problems as in dimensional regularization
- Regge limit can be computed systematically e.g. LL and NLL computed to all orders

Implications for higher loop integral basis

- basis of loop integrals in $\mathcal{N}=4$ SYM constrained by dual conformal symmetry?
[Drummond, J.H., Smirnov, Sokatchev, 2006; Bern, Czakon, Dixon, Kosower, Smirnov, 2006; Bern, Carrasco, Johansson, Kosower, 2007]
[Drummond, Korchemsky, Sokatchev, '07; Nguyen, Spradlin Volovich, '07; Bern, Dixon, Kosower, Roiban, Spradlin, Vergu, Volovich, '08]
[Spradlin, Volovich, Wen, 2008]
- it seems reasonable to speculate that
[J.H., Naculich, Schnitzer, Spradlin, 2010]

$$
M_{n}=1+\sum_{\mathcal{I}} a^{L(\mathcal{I})} c(\mathcal{I}) \mathcal{I}
$$

where: coupling a, loop order $L(\mathcal{I})$
coefficients $c(\mathcal{I}) \Rightarrow$ compute by (generalized) unitarity integrals $\mathcal{I} \Rightarrow$ restricted set of extended dual conformal integrals

- absence of triangles at one loop
- additional constraints from expected IR structure

- insights from analytic structure for generic m^{2}, and Regge limit(s)?
- further constraints from the (broken) conventional conformal symmetry?

Implications for higher loop integral basis

- basis of loop integrals in $\mathcal{N}=4$ SYM constrained by dual conformal symmetry?
[Drummond, J.H., Smirnov, Sokatchev, 2006; Bern, Czakon, Dixon, Kosower, Smirnov, 2006; Bern, Carrasco, Johansson, Kosower, 2007]
[Drummond, Korchemsky, Sokatchev, '07; Nguyen, Spradlin Volovich, '07; Bern, Dixon, Kosower, Roiban, Spradlin, Vergu, Volovich, '08]
[Spradlin, Volovich, Wen, 2008]
- it seems reasonable to speculate that
[J.H., Naculich, Schnitzer, Spradlin, 2010]

$$
M_{n}=1+\sum_{\mathcal{I}} a^{L(\mathcal{I})} c(\mathcal{I}) \mathcal{I}
$$

where: coupling a, loop order $L(\mathcal{I})$
coefficients $c(\mathcal{I}) \Rightarrow$ compute by (generalized) unitarity integrals $\mathcal{I} \Rightarrow$ restricted set of extended dual conformal integrals

- absence of triangles at one loop
- additional constraints from expected IR structure
- insights from analytic structure for generic m^{2}, and Regge limit(s)?
- further constraints from the (broken) conventional conformal symmetry?

Implications for higher loop integral basis

- basis of loop integrals in $\mathcal{N}=4$ SYM constrained by dual conformal symmetry?
[Drummond, J.H., Smirnov, Sokatchev, 2006; Bern, Czakon, Dixon, Kosower, Smirnov, 2006; Bern, Carrasco, Johansson, Kosower, 2007]
[Drummond, Korchemsky, Sokatchev, '07; Nguyen, Spradlin Volovich, '07; Bern, Dixon, Kosower, Roiban, Spradlin, Vergu, Volovich, '08]
[Spradlin, Volovich, Wen, 2008]
- it seems reasonable to speculate that
[J.H., Naculich, Schnitzer, Spradlin, 2010]

$$
M_{n}=1+\sum_{\mathcal{I}} a^{L(\mathcal{I})} c(\mathcal{I}) \mathcal{I}
$$

where: coupling a, loop order $L(\mathcal{I})$
coefficients $c(\mathcal{I}) \Rightarrow$ compute by (generalized) unitarity
integrals $\mathcal{I} \Rightarrow$ restricted set of extended dual conformal integrals

- absence of triangles at one loop
- additional constraints from expected IR structure

$$
M_{n}=\exp \left[-\frac{1}{8} \Gamma_{\text {cusp }}(a) \sum_{i} \log ^{2} \frac{s_{i}}{m^{2}}-\frac{1}{2} \tilde{G}_{0}(a) \sum_{i} \log \frac{s_{i}}{m^{2}}+\mathcal{O}\left(\log ^{0} m^{2}\right)\right]
$$

- insights from analytic structure for generic m^{2}, and Regge limit(s)?
- further constraints from the (broken) conventional conformal symmetry?

Extended dual conformal invariance at higher loops

- At 2 loops: Only one integral is allowed by extended dual conformal symmetry:
- At 3 loops: four integrals allowed:

- Similarly restricts integral basis for more loops and legs.

Higher-loop exponentiation

- analog of Bern-Dixon-Smirnov formula in Higgs regularization:
[Alday, J. H., Plefka, Schuster, 2009; J. H., Naculich, Schnitzer, Spradlin, 2010]

$$
\begin{aligned}
\log M_{4}= & -\frac{1}{4} \Gamma_{\text {cusp }}(a)\left[\log ^{2} \frac{s}{m^{2}}+\log ^{2} \frac{t}{m^{2}}\right]-\tilde{G}_{0}(a)\left[\log \frac{s}{m^{2}}+\log \frac{t}{m^{2}}\right] \\
& +\frac{1}{4} \Gamma_{\text {cusp }}(a)\left[\log ^{2} \frac{s}{t}+\pi^{2}\right]+\tilde{c}(a)+\mathcal{O}\left(m^{2}\right)
\end{aligned}
$$

- verified by computing dual conformal integrals up to $\mathcal{O}\left(m^{2}\right)$
- at two loops
- at three loops
- at four loops (IR divergent terms and Regge limit)
- method used: MB representation of all integrals, asymptotic expansion, numerical integration (Mathematica packages MBasymptotics, MB; CUBA)
- five-loop computation of $\Gamma_{\text {cusp }}$ to test Beisert-Eden-Staudacher prediction

Higher-loop exponentiation

- analog of Bern-Dixon-Smirnov formula in Higgs regularization:

$$
\begin{aligned}
\log M_{4}= & -\frac{1}{4} \Gamma_{\operatorname{cusp}}(a)\left[\log ^{2} \frac{s}{m^{2}}+\log ^{2} \frac{t}{m^{2}}\right]-\tilde{G}_{0}(a)\left[\log \frac{s}{m^{2}}+\log \frac{t}{m^{2}}\right] \\
& +\frac{1}{4} \Gamma_{\operatorname{cusp}}(a)\left[\log ^{2} \frac{s}{t}+\pi^{2}\right]+\tilde{c}(a)+\mathcal{O}\left(m^{2}\right)
\end{aligned}
$$

- verified by computing dual conformal integrals up to $\mathcal{O}\left(m^{2}\right)$
- at two loops
[Alday, J. H., Plefka, Schuster, 2009]
- at three loops
[J. H., Naculich, Schnitzer, Spradlin, 2010]
- at four loops (IR divergent terms and Regge limit) [J. H., Naculich, Schnitzer, Spradlin, 2010]
- method used: MB representation of all integrals, asymptotic expansion, numerical integration (Mathematica packages MBasymptotics, MB; CUBA)
- five-loop computation of $\Gamma_{\text {cusp }}$ to test Beisert-Eden-Staudacher prediction

Higher-loop exponentiation

- analog of Bern-Dixon-Smirnov formula in Higgs regularization:
[Alday, J. H., Plefka, Schuster, 2009; J. H., Naculich, Schnitzer, Spradlin, 2010]

$$
\begin{aligned}
\log M_{4}= & -\frac{1}{4} \Gamma_{\text {cusp }}(a)\left[\log ^{2} \frac{s}{m^{2}}+\log ^{2} \frac{t}{m^{2}}\right]-\tilde{G}_{0}(a)\left[\log \frac{s}{m^{2}}+\log \frac{t}{m^{2}}\right] \\
& +\frac{1}{4} \Gamma_{\text {cusp }}(a)\left[\log ^{2} \frac{s}{t}+\pi^{2}\right]+\tilde{c}(a)+\mathcal{O}\left(m^{2}\right)
\end{aligned}
$$

- verified by computing dual conformal integrals up to $\mathcal{O}\left(m^{2}\right)$
- at two loops
[Alday, J. H., Plefka, Schuster, 2009]
- at three loops
[J. H., Naculich, Schnitzer, Spradlin, 2010]
- at four loops (IR divergent terms and Regge limit) [. H., Naculich, Schnitzer, Spradili, 2010]
- method used: MB representation of all integrals, asymptotic expansion, numerical integration (Mathematica packages MBasymptotics, MB; CUBA)
- five-loop computation of $\Gamma_{\text {cusp }}$ to test Beisert-Eden-Staudacher prediction

Application to two-loop integrals/amplitudes

- expected dual conformal integrals:

see e.g. six-point two-loop MHV case (in dimensional regularization)
[Bern, Dixon, Kosower, Roiban, Spradlin, Vergu, Volovich, 2008]
and for higher-point amplitudes
- integrals can be evaluated straightforwardly (numerically) in mass regularization

The analytic S-matrix

The Analytic S-Matrix

R.J.EDEN
P.V.LANDSHOFF
D.I.OLIVE
J.C.POLKINGHORNE

Cambridge University Press

Regge limits for amplitudes on the Coulomb branch

- take Regge limit $s=\left(p_{1}+p_{2}\right)^{2} \rightarrow \infty$
[J. H., Naculich, Schnitzer, Spradlin, 2010] expect

$$
\beta\left(t / m^{2}\right)\left(\frac{s}{m^{2}}\right)^{\alpha\left(t / m^{2}\right)}+\mathcal{O}\left(m^{2}\right)
$$

trajectory $\alpha\left(t / m^{2}\right)=-\frac{1}{2} \Gamma_{\text {cusp }}(a) \log \left(t / m^{2}\right)-\tilde{\mathcal{G}}_{0}(a)$

- dual conformal symmetry implies:

$$
M\left(p_{i}, m_{i}\right)=M(u, v), \quad u=\frac{m_{1} m_{3}}{s+\left(m_{1}-m_{3}\right)^{2}}, \quad v=\frac{m_{2} m_{4}}{s+\left(m_{2}-m_{4}\right)^{2}}
$$

equal mass case
$m_{i}=m$
$u=\frac{m^{2}}{s}, \quad v=\frac{m^{2}}{t}$
two-mass case
$m_{1}=m_{3}=m$
$m_{2}=m_{4}=M$
$u=\frac{m^{2}}{s}, \quad v=\frac{M^{2}}{t}$

Regge limits for amplitudes on the Coulomb branch

- take Regge limit $s=\left(p_{1}+p_{2}\right)^{2} \rightarrow \infty$
[J. H., Naculich, Schnitzer, Spradlin, 2010] expect

$$
\beta\left(t / m^{2}\right)\left(\frac{s}{m^{2}}\right)^{\alpha\left(t / m^{2}\right)}+\mathcal{O}\left(m^{2}\right)
$$

trajectory $\alpha\left(t / m^{2}\right)=-\frac{1}{2} \Gamma_{\text {cusp }}(a) \log \left(t / m^{2}\right)-\tilde{\mathcal{G}}_{0}(a)$

- dual conformal symmetry implies:

$$
M\left(p_{i}, m_{i}\right)=M(u, v), \quad u=\frac{m_{1} m_{3}}{s+\left(m_{1}-m_{3}\right)^{2}}, \quad v=\frac{m_{2} m_{4}}{s+\left(m_{2}-m_{4}\right)^{2}}
$$

equal mass case
two-mass case

$$
m_{i}=m
$$

$$
m_{1}=m_{3}=m
$$

$$
m_{2}=m_{4}=M
$$

$$
u=\frac{m^{2}}{s}, \quad v=\frac{m^{2}}{t}
$$

$$
u=\frac{m^{2}}{s}, \quad v=\frac{M^{2}}{t}
$$

Regge limits for amplitudes on the Coulomb branch

- take Regge limit $s=\left(p_{1}+p_{2}\right)^{2} \rightarrow \infty$
[J. H., Naculich, Schnitzer, Spradlin, 2010] expect

$$
\beta\left(t / m^{2}\right)\left(\frac{s}{m^{2}}\right)^{\alpha\left(t / m^{2}\right)}+\mathcal{O}\left(m^{2}\right)
$$

trajectory $\alpha\left(t / m^{2}\right)=-\frac{1}{2} \Gamma_{\text {cusp }}(a) \log \left(t / m^{2}\right)-\tilde{\mathcal{G}}_{0}(a)$

- dual conformal symmetry implies: Regge limit $s \gg m^{2}, t \quad$ equivalent to $m^{2} \ll M^{2}$ in "Bhabha-type" scattering

- determine leading Regge behavior of integrals
- systematics of Regge limit simpler here compared to dimensional regularization

Regge limits for amplitudes on the Coulomb branch

- take Regge limit $s=\left(p_{1}+p_{2}\right)^{2} \rightarrow \infty$
[J. H., Naculich, Schnitzer, Spradlin, 2010] expect

$$
\beta\left(t / m^{2}\right)\left(\frac{s}{m^{2}}\right)^{\alpha\left(t / m^{2}\right)}+\mathcal{O}\left(m^{2}\right)
$$

trajectory $\alpha\left(t / m^{2}\right)=-\frac{1}{2} \Gamma_{\text {cusp }}(a) \log \left(t / m^{2}\right)-\tilde{\mathcal{G}}_{0}(a)$

- dual conformal symmetry implies: Regge limit $s \gg m^{2}, t \quad$ equivalent to $\quad m^{2} \ll M^{2}$ in "Bhabha-type" scattering

- determine leading Regge behavior of integrals
- systematics of Regge limit simpler here compared to dimensional regularization

LL and NLL Regge limit to all loop orders

Regge limit to all loop orders:

- LL : ladder integrals
- NLL and LL : ladders and ladders with one H-shaped insertion
[J. H., Naculich, Schnitzer, Spradlin, 2010]
- in contrast, in dimensional regularization, many different diagrams contribute

Summary

- Higgs IR regulator for planar $\mathcal{N}=4$ SYM
- makes dual conformal symmetry exact
- restricts integral basis
- exponentiation of amplitude easier to compute
- Regge limit: LL and NLL computed to all loop orders

Outlook

- advantages over dimensional regularization
\Rightarrow previously hard/impossible computations seem accessible e.g. two-loop amplitudes with $n \geq 6$ external particles
e.g. can one compute the five-loop value of the cusp anomalous dimension?
- use analytic of amplitudes structure for finite m^{2}
- Yangian symmetry is essential part of Grassmannian formula Arkani-Hamed et al \Rightarrow mass regulator relevant for extension to loop level momentum twistor variables might play an important role

Outlook

- advantages over dimensional regularization
\Rightarrow previously hard/impossible computations seem accessible e.g. two-loop amplitudes with $n \geq 6$ external particles
e.g. can one compute the five-loop value of the cusp anomalous dimension?
- use analytic of amplitudes structure for finite m^{2}
- Yangian symmetry is essential part of Grassmannian formula Arkani-Hamed et al \Rightarrow mass regulator relevant for extension to loop level momentum twistor variables might play an important role

Outlook

- advantages over dimensional regularization
\Rightarrow previously hard/impossible computations seem accessible
e.g. two-loop amplitudes with $n \geq 6$ external particles
e.g. can one compute the five-loop value of the cusp anomalous dimension?
- use analytic of amplitudes structure for finite m^{2}
- Yangian symmetry is essential part of

Grassmannian formula Arkani-Hamed et al
\Rightarrow mass regulator relevant for extension to loop level momentum twistor variables might play an important role

Extra slides

Exponentiation in Higgs regularization

- universal planar structure

$$
\log M_{4}=D(s)+D(t)+F_{4}(s / t)+\mathcal{O}(\epsilon)
$$

- reminder: dimensional regularization $(\beta=0)$

$$
D(s)=-1 / 2 \sum a^{\ell}\left[\Gamma_{\operatorname{cusp}}^{(\ell)} /(\ell \epsilon)^{2}+\mathcal{G}_{0}^{(\ell)} /(\ell \epsilon)\right]\left(\mu^{2} / s\right)^{\ell \epsilon}
$$

- finite part $F_{4}(s / t)$ is also simple! [Anastasiou, Bern, Dixon, Kosower 2002; Bern, Dixon, Smirnov, 2003]

$$
F_{4}=\frac{1}{2} \Gamma_{\text {cusp }}(a)\left[\frac{1}{2} \log ^{2} \frac{s}{t}+\frac{2}{3} \pi^{2}\right]+c(a)
$$

- analog in Higgs regularization

F_{4} equal up to scheme-dependent constant
we have $m^{2} \times \log m^{2} \rightarrow 0 \Rightarrow$ can drop all $O\left(m^{2}\right)$ terms

Exponentiation in Higgs regularization

- universal planar structure

$$
\log M_{4}=D(s)+D(t)+F_{4}(s / t)+\mathcal{O}(\epsilon)
$$

- reminder: dimensional regularization $(\beta=0)$

$$
D(s)=-1 / 2 \sum a^{\ell}\left[\Gamma_{\text {cusp }}^{(\ell)} /(\ell \epsilon)^{2}+\mathcal{G}_{0}^{(\ell)} /(\ell \epsilon)\right]\left(\mu^{2} / s\right)^{\ell \epsilon}
$$

- finite part $F_{4}(s / t)$ is also simple! [Anastasiou, Bern, Dixon, Kosower 2002; Bern, Dixon, Smirnov, 2003]

$$
F_{4}=\frac{1}{2} \Gamma_{\text {cusp }}(a)\left[\frac{1}{2} \log ^{2} \frac{s}{t}+\frac{2}{3} \pi^{2}\right]+c(a)
$$

$M^{(2)}-\frac{1}{2}\left(M^{(1)}\right)^{2}$ interference $1 / \epsilon \times O(\epsilon)=O(1)$
\Rightarrow in order to compute $\log M$, need $O(\epsilon)$ terms in M

- analog in Higgs regularization

F_{4} equal up to scheme-dependent constant
we have $m^{2} \times \log m^{2} \rightarrow 0 \Rightarrow$ can drop all $O\left(m^{2}\right)$ terms

Exponentiation in Higgs regularization

- universal planar structure

$$
\log M_{4}=D(s)+D(t)+F_{4}(s / t)+\mathcal{O}(\epsilon)
$$

- reminder: dimensional regularization $(\beta=0)$

$$
D(s)=-1 / 2 \sum a^{\ell}\left[\Gamma_{\text {cusp }}^{(\ell)} /(\ell \epsilon)^{2}+\mathcal{G}_{0}^{(\ell)} /(\ell \epsilon)\right]\left(\mu^{2} / s\right)^{\ell \epsilon}
$$

- finite part $F_{4}(s / t)$ is also simple!

> [Anastasiou, Bern, Dixon, Kosower 2002; Bern, Dixon, Smirnov, 2003]

$$
F_{4}=\frac{1}{2} \Gamma_{\text {cusp }}(a)\left[\frac{1}{2} \log ^{2} \frac{s}{t}+\frac{2}{3} \pi^{2}\right]+c(a)
$$

$M^{(2)}-\frac{1}{2}\left(M^{(1)}\right)^{2}$ interference $1 / \epsilon \times O(\epsilon)=O(1)$
\Rightarrow in order to compute $\log M$, need $O(\epsilon)$ terms in M

- analog in Higgs regularization
[Alday, J. H., Plefka, Schuster, 2009; J. H., Naculich, Schnitzer, Spradlin, 2010] [based on general field theory analysis by Korchemsky, Sterman, ...]

$$
D(s)=-\frac{1}{4} \Gamma_{\text {cusp }}(a) \log ^{2} \frac{s}{m^{2}}-\tilde{G}_{0}(a) \log \frac{s}{m^{2}}
$$

F_{4} equal up to scheme-dependent constant
we have $m^{2} \times \log m^{2} \rightarrow 0 \Rightarrow$ can drop all $O\left(m^{2}\right)$ terms

Three-loop exponentiation

For simplicity, set $\quad s=t, \quad \log \left(\frac{m^{2}}{s}\right) \equiv L$
Infrared consistency:

$$
M^{(3)}=-\frac{1}{6} L^{6}+\frac{\pi^{2}}{12} L^{4}+2 \zeta_{3} L^{3}+\left(-\frac{\pi^{4}}{30}-\frac{\Gamma_{\text {cusp }}^{(3)}}{4}\right) L^{2}+\mathcal{O}(L)
$$

On the other hand,

Compute...

Three-loop exponentiation

For simplicity, set $\quad s=t, \quad \log \left(\frac{m^{2}}{s}\right) \equiv L$
Infrared consistency:

$$
M^{(3)}=-\frac{1}{6} L^{6}+\frac{\pi^{2}}{12} L^{4}+2 \zeta_{3} L^{3}+\left(-\frac{\pi^{4}}{30}-\frac{\Gamma_{\text {cusp }}^{(3)}}{4}\right) L^{2}+\mathcal{O}(L)
$$

On the other hand,

3a

3b

$3 c$

3d

$$
M_{3}=1 /(-4)\left[c_{3 a} l_{3 a}+c_{3 b} l_{3 b}+c_{3 c} l_{3 c}+c_{3 d} l_{3 d}\right]
$$

Compute...

$$
\begin{array}{ll}
I_{3 a}=\frac{17}{90} L^{6}+\frac{\pi^{2}}{9} L^{4}+\ldots, & I_{3 c}=\mathcal{O}\left(L^{0}\right), \\
I_{3 b}=\frac{43}{180} L^{6}-\frac{\pi^{2}}{9} L^{4}+\ldots, & I_{3 d}=\mathcal{O}(L)
\end{array}
$$

Hence $c_{3 a}=1, \quad c_{3 b}=2$

Dual conformal symmetry (1/2)

- observation: $\mathcal{N}=4$ SYM loop integrals have a dual conformal symmetry
[Drummond, J.H., Smirnov, Sokatchev, 2006]

X_{1}
- loop integrand has conformal symmetry in dual space

$$
x_{i+1}^{\mu}-x_{i}^{\mu}=p_{i}
$$

e.g. inversion symmetry $x^{\mu} \rightarrow x^{\mu} / x^{2}$ or special conformal transformations

$$
K^{\mu}=\sum_{i}\left[2 x_{i}^{\mu} x_{i}^{\nu} \frac{\partial}{\partial x_{i \nu}}-x_{i}^{2} \frac{\partial}{\partial x_{i \mu}}\right]
$$

- breaking of symmetry $D=4-2 \epsilon$ under control

Dual conformal symmetry (2/2)

refinement: $U(N+M) \rightarrow U(N) \times U(1)^{M}$

- on-shell conditions now read $p_{i}^{2}=\left(m_{i}-m_{+1}\right)$
- particles in loop have mass m_{i}

- important: in addition to the dual coordinates x_{i}, we can vary the masses m_{i}

$$
\hat{K}^{\mu}=K^{\mu}+\sum_{i}\left[2 x_{i}^{\mu} m_{i} \frac{\partial}{\partial m_{i}}-m_{i}^{2} \frac{\partial}{\partial x_{i \mu}}\right]
$$

- integral has exact dual conformal symmetry

$$
\hat{K}^{\mu} I=0
$$

- very natural from string theory: m corresponds to radial coordinate of AdS_{5}

