5-loop test of the AdS/CFT spectral equations

Tomasz Łukowski

Institute of Physics, Jagiellonian University, Kraków

IGST 2010, Stockholm
02.07.2010

with Adam Rej and Vitaly Velizhanin 0912.1624, Nuclear Physics B

Overview

- Introduction and motivation
- AdS/CFT spectral equations
- Twist operators - test of the spectral equations
- Five-loop result
- Conclusions and perspectives

Planar limit

Planar limit

N^{2}

Planar AdS/CFT

Amplitudes

more...

Planar AdS/CFT

Planar AdS/CFT

Planar AdS/CFT

Spectral problem

Superstrings on $A d S_{5} \times S^{5}$

$$
\mathcal{N}=4 \text { super Yang-Mills theory }
$$

Objects and quantities

single trace operators \longleftrightarrow non-interacting strings

Objects and quantities

single trace operators \longleftrightarrow non-interacting strings

anomalous dimension \longleftrightarrow energy of the string excitation

Objects and quantities

single trace operators \longleftrightarrow non-interacting strings

anomalous dimension \longleftrightarrow energy of the string excitation

- At weak coupling Asymptotic Bethe Ansatz equations give us asymptotic spectrum

Objects and quantities

single trace operators \longleftrightarrow non-interacting strings

anomalous dimension \longleftrightarrow energy of the string excitation

- At weak coupling Asymptotic Bethe Ansatz equations give us asymptotic spectrum
- At loop order higher than length wrapping interactions start to play a role

Wrapping corrections

- The wrapping diagrams can be identified with the virtual corrections on the cylinder.
[J.Ambjorn, R. Janik, C. Kristjansen '05]

Wrapping corrections

- The wrapping diagrams can be identified with the virtual corrections on the cylinder.
[J.Ambjorn, R. Janik, C. Kristjansen '05]
- These were investigated in the relativistic case already in the mid-80s
[Lüscher '86]

Wrapping corrections

- The wrapping diagrams can be identified with the virtual corrections on the cylinder.
[J.Ambjorn, R. Janik, C. Kristjansen '05]
- These were investigated in the relativistic case already in the mid-80s
[Lüscher '86]
- Can be generalised to the non-relativistic theories ...

Wrapping corrections

- The wrapping diagrams can be identified with the virtual corrections on the cylinder.
[J.Ambjorn, R. Janik, C. Kristjansen '05]
- These were investigated in the relativistic case already in the mid-80s
[Lüscher '86]
- Can be generalised to the non-relativistic theories ...
- ... and to the multi-particle case.

Wrapping corrections

- The wrapping diagrams can be identified with the virtual corrections on the cylinder.
[J.Ambjorn, R. Janik, C. Kristjansen '05]
- These were investigated in the relativistic case already in the mid-80s
[Lüscher '86]
- Can be generalised to the non-relativistic theories ...
- ... and to the multi-particle case.

Leading Lüscher correction

$$
\begin{aligned}
E(L) & =\sum_{k} \epsilon\left(p_{k}\right)-\sum_{j, k} \epsilon^{\prime}\left(p_{k}\right)\left(\frac{\delta B Y_{k}}{\delta p_{j}}\right)^{-1} \delta \Phi_{j} \\
& -\int_{-\infty}^{\infty} \frac{d \tilde{p}}{2 \pi} \operatorname{Str}\left[S\left(\tilde{p}, p_{1}\right) S\left(\tilde{p}, p_{2}\right) \ldots S\left(\tilde{p}, p_{N}\right)\right] e^{-\tilde{\epsilon}(\tilde{p}) L}
\end{aligned}
$$

TBA technique

- Recently, the techniques of Thermodynamic Bethe Ansatz have been applied to the planar AdS/CFT.

TBA technique

- Recently, the techniques of Thermodynamic Bethe Ansatz have been applied to the planar AdS/CFT.
- To determine the ground state energy of the original model it is enough to find a spectrum in „mirror" model in the infinite volume

double Wick rotation

TBA technique

- Recently, the techniques of Thermodynamic Bethe Ansatz have been applied to the planar AdS/CFT.
- To determine the ground state energy of the original model it is enough to find a spectrum in „mirror" model in the infinite volume

double Wick rotation

- The mirror model for the planar AdS/CFT has been extensively studied and the infinite volume solution (string hypothesis) has been formulated
[G. Arutyunov, S. Frolov, 2007],[G. Arutyunov, S. Frolov, 2009]

Spectral equations

- The Y-system and TBA equations for the ground state have proposed by different groups.
[D.Bombardielli, D. Fioravanti, R. Tateo '09; N.Gromov, V.Kazakov, A.Kozak, P.Vieira '09; G.Arutyunov, S.Frolov '09]

Spectral equations

- The Y-system and TBA equations for the ground state have proposed by different groups.
[D.Bombardielli, D. Fioravanti, R. Tateo '09; N.Gromov, V.Kazakov, A.Kozak, P.Vieira '09; G.Arutyunov, S.Frolov '09]
- In its functional form, the spectral equations read:
[N.Gromov, V.Kazakov, P.Vieira '09]

$$
\frac{Y_{a, s}^{+} Y_{a, s}^{-}}{Y_{a+1, s} Y_{a-1, s}}=\frac{\left(1+Y_{a, s+1}\right)\left(1+Y_{a, s-1}\right)}{\left(1+Y_{a+1, s}\right)\left(1+Y_{a-1, s}\right)}
$$

Spectral equations

- The Y-system and TBA equations for the ground state have proposed by different groups.
[D.Bombardielli, D. Fioravanti, R. Tateo '09; N.Gromov, V.Kazakov, A.Kozak, P.Vieira '09; G.Arutyunov, S.Frolov '09]
- In its functional form, the spectral equations read:
[N.Gromov, V.Kazakov, P.Vieira '09]

$$
\frac{Y_{a, s}^{+} Y_{a, s}^{-}}{Y_{a+1, s} Y_{a-1, s}}=\frac{\left(1+Y_{a, s+1}\right)\left(1+Y_{a, s-1}\right)}{\left(1+Y_{a+1, s}\right)\left(1+Y_{a-1, s}\right)}
$$

- infinitely many functions living on the T-hook

Spectral equations II

- Excited states can be obtained by analytic continuation of the ground-state TBA (known only for operators in $\mathfrak{s l}(2)$ sector so far)

Spectral equations II

- Excited states can be obtained by analytic continuation of the ground-state TBA (known only for operators in $\mathfrak{s l}(2)$ sector so far)
- The scaling dimension is then given by

$$
\Delta=\Delta_{0}+\sum_{j} \epsilon_{1}\left(u_{4, j}\right)+\sum_{a=1}^{\infty} \int_{-\infty}^{\infty} \frac{d u}{2 \pi i} \frac{\partial \epsilon_{a}}{\partial u} \log \left(1+Y_{a, 0}(u)\right)
$$

Spectral equations II

- Excited states can be obtained by analytic continuation of the ground-state TBA (known only for operators in $\mathfrak{s l}(2)$ sector so far)
- The scaling dimension is then given by

$$
\Delta=\Delta_{0}+\sum_{j} \epsilon_{1}\left(u_{4, j}\right)+\sum_{a=1}^{\infty} \int_{-\infty}^{\infty} \frac{d u}{2 \pi i} \frac{\partial \epsilon_{a}}{\partial u} \log \left(1+Y_{a, 0}(u)\right)
$$

- Has to be supplemented with the finite size quantization condition

$$
Y_{1,0}\left(u_{4, j}\right)=-1
$$

Spectral equations II

- Excited states can be obtained by analytic continuation of the ground-state TBA (known only for operators in $\mathfrak{s l}(2)$ sector so far)
- The scaling dimension is then given by

$$
\Delta=\Delta_{0}+\sum_{j} \epsilon_{1}\left(u_{4, j}\right)+\sum_{a=1}^{\infty} \int_{-\infty}^{\infty} \frac{d u}{2 \pi i} \frac{\partial \epsilon_{a}}{\partial u} \log \left(1+Y_{a, 0}(u)\right)
$$

- Has to be supplemented with the finite size quantization condition

$$
Y_{1,0}\left(u_{4, j}\right)=-1
$$

TBA equations should allow us to compute the scaling dimension of any local single-trace operator of the planar $\mathcal{N}=4$ gauge theory!

... but they are still a conjecture

Twist operators

- A suitable testing ground at weak coupling.

Twist-two operators

$$
\mathcal{O}=\operatorname{Tr}\left(\mathcal{D}^{M} \mathcal{Z}^{2}\right)+\ldots
$$

Twist operators

- A suitable testing ground at weak coupling.

Twist-two operators

$$
\mathcal{O}=\operatorname{Tr}\left(\mathcal{D}^{M} \mathcal{Z}^{2}\right)+\ldots
$$

- Anomalous dimension:
- Asymptotic Bethe Ansatz equations

$$
\begin{aligned}
\left(\frac{x_{k}^{+}}{x_{k}^{-}}\right)^{2} & =\prod_{\substack{j=1 \\
j \neq k}}^{M} \frac{x_{k}^{-}-x_{j}^{+}}{x_{k}^{+}-x_{j}^{-}} \frac{1-g^{2} / x_{k}^{+} x_{j}^{-}}{1-g^{2} / x_{k}^{-} x_{j}^{+}} \exp \left(2 i \theta\left(u_{k}, u_{j}\right)\right) \\
\gamma^{\mathrm{ABA}}(g) & =2 g^{2} \sum_{k=1}^{M}\left(\frac{i}{x_{k}^{+}}-\frac{i}{x_{k}^{-}}\right)
\end{aligned}
$$

Twist operators

- A suitable testing ground at weak coupling.

Twist-two operators

$$
\mathcal{O}=\operatorname{Tr}\left(\mathcal{D}^{M} \mathcal{Z}^{2}\right)+\ldots
$$

- Anomalous dimension:
- Asymptotic Bethe Ansatz equations

$$
\begin{aligned}
\left(\frac{x_{k}^{+}}{x_{k}^{-}}\right)^{2} & =\prod_{\substack{j=1 \\
j \neq k}}^{M} \frac{x_{k}^{-}-x_{j}^{+}}{x_{k}^{+}-x_{j}^{-}} \frac{1-g^{2} / x_{k}^{+} x_{j}^{-}}{1-g^{2} / x_{k}^{-} x_{j}^{+}} \exp \left(2 i \theta\left(u_{k}, u_{j}\right)\right) \\
\gamma^{\mathrm{ABA}}(g) & =2 g^{2} \sum_{k=1}^{M}\left(\frac{i}{x_{k}^{+}}-\frac{i}{x_{k}^{-}}\right) .
\end{aligned}
$$

- Finite size corrections given by Lüscher formula

Properties of the anomalous dimension

Anomalous dimension for twist two operators

$$
\Delta(M)=2+M+\gamma(M)
$$

Properties of the anomalous dimension

Anomalous dimension for twist two operators

$$
\Delta(M)=2+M+\gamma(M)
$$

- Rules of the game
- Maximal transcendentality principle
- Reciprocity symmetry

Properties of the anomalous dimension

Anomalous dimension for twist two operators

$$
\Delta(M)=2+M+\gamma(M)
$$

- Rules of the game
- Maximal transcendentality principle
- Reciprocity symmetry
- Tests of the final result
- Analytic continuation to $M=-1+\omega$ vs BFKL equation
- Analytic continuation to $M=-2+\omega$ vs double-logarithmic constraints
- Large M limit vs cusp anomalous dimension

Transcendentality [A. Koiliov.L Limparo. 2023]

Anomalous dimension for twist two operators

$$
\Delta(M)=2+M+\sum_{\ell>0} \gamma_{2 \ell} g^{2 \ell}
$$

Transcendentality [A. Kolitow. Lipmore, 2002]

Anomalous dimension for twist two operators

$$
\Delta(M)=2+M+\sum_{\ell>0} \gamma_{2 \ell} g^{2 \ell}
$$

- Anomalous dimension can be express in terms of the transcendental functions - harmonic sums and ζ-functions

Nested harmonic sums

$$
S_{a}(M)=\sum_{i=1}^{M} \frac{(\operatorname{sgn}(a))^{i}}{i^{|a|}}, S_{a_{1}, \ldots, a_{n}}(M)=\sum_{i=1}^{M} \frac{\left(\operatorname{sgn}\left(a_{1}\right)\right)^{i}}{i^{\left|a_{1}\right|}} S_{a_{2}, \ldots, a_{n}}(i) .
$$

Transcendentality [A. Kolitow. Lipmore, 2002]

Anomalous dimension for twist two operators

$$
\Delta(M)=2+M+\sum_{\ell>0} \gamma_{2 \ell} g^{2 \ell}
$$

- Anomalous dimension can be express in terms of the transcendental functions - harmonic sums and ζ-functions

Nested harmonic sums

$$
S_{a}(M)=\sum_{i=1}^{M} \frac{(\operatorname{sgn}(a))^{i}}{i^{|a|}}, S_{a_{1}, \ldots, a_{n}}(M)=\sum_{i=1}^{M} \frac{\left(\operatorname{sgn}\left(a_{1}\right)\right)^{i}}{i^{\left|a_{1}\right|}} S_{a_{2}, \ldots, a_{n}}(i) .
$$

- Maximal transcendentality principle fixes a finite basis of transcendental functions for every loop order

Reciprocity

Definition of \mathcal{P}-function

$$
\gamma(M)=\mathcal{P}\left(M+\frac{1}{2} \gamma(M)\right)
$$

Reciprocity

Definition of \mathcal{P}-function

$$
\gamma(M)=\mathcal{P}\left(M+\frac{1}{2} \gamma(M)\right)
$$

- Asymptotics of the \mathcal{P}-function

$$
\mathcal{P}(M)=\sum_{\ell>0} \frac{a_{\ell}\left(\log J^{2}\right)}{J^{2 \ell}}, \quad J^{2}=M(M+1) \gg 1
$$

Reciprocity

Definition of \mathcal{P}-function

$$
\gamma(M)=\mathcal{P}\left(M+\frac{1}{2} \gamma(M)\right)
$$

- Asymptotics of the \mathcal{P}-function

$$
\mathcal{P}(M)=\sum_{\ell>0} \frac{a_{\ell}\left(\log J^{2}\right)}{J^{2 \ell}}, \quad J^{2}=M(M+1) \gg 1
$$

- Only binomial sums with positive indices contribute (conjecture)

$$
\mathbb{S}_{i_{1}, \ldots, i_{k}}(N)=(-1)^{N} \sum_{j=1}^{N}(-1)^{j}\binom{N}{j}\binom{N+j}{j} S_{i_{1}, \ldots, i_{k}}(j)
$$

Reciprocity

Definition of \mathcal{P}-function

$$
\gamma(M)=\mathcal{P}\left(M+\frac{1}{2} \gamma(M)\right)
$$

- Asymptotics of the \mathcal{P}-function

$$
\mathcal{P}(M)=\sum_{\ell>0} \frac{a_{\ell}\left(\log J^{2}\right)}{J^{2 \ell}}, \quad J^{2}=M(M+1) \gg 1
$$

- Only binomial sums with positive indices contribute (conjecture)

$$
\mathbb{S}_{i_{1}, \ldots, i_{k}}(N)=(-1)^{N} \sum_{j=1}^{N}(-1)^{j}\binom{N}{j}\binom{N+j}{j} S_{i_{1}, \ldots, i_{k}}(j)
$$

- Anomalous dimension cannot be expressed in terms of the binomial sums

How does it work?

Loop level
 (ℓ

How does it work?

Loop level
 (ℓ

Solve ABA equations and find Lüscher corrections for $M=1,2, \ldots$

How does it work?

Loop level
 (ℓ

Solve ABA equations and find Lüscher corrections for $M=1,2, \ldots$

Find \mathcal{P}-function for $M=1,2, \ldots$

How does it work?

Large M limit

- The leading asymptotics is given by cusp anomalous dimension

$$
\lim _{M \rightarrow \infty} \gamma(g, M)=2 \gamma_{\text {cusp }}(g) \log M+\ldots
$$

Large M limit

- The leading asymptotics is given by cusp anomalous dimension

$$
\lim _{M \rightarrow \infty} \gamma(g, M)=2 \gamma_{\text {cusp }}(g) \log M+\ldots
$$

- Can be found i.e. from BES equation

Large M limit

- The leading asymptotics is given by cusp anomalous dimension

$$
\lim _{M \rightarrow \infty} \gamma(g, M)=2 \gamma_{\text {cusp }}(g) \log M+\ldots
$$

- Can be found i.e. from BES equation
- Cusp anomalous dimension up to five-loop order

$$
\begin{aligned}
2 \gamma_{\text {cusp }}(g)= & 8 g^{2}-\frac{8}{3} \pi^{2} g^{4}+\frac{88}{45} \pi^{4} g^{6}-16\left(\frac{73}{630} \pi^{6}+4 \zeta(3)^{2}\right) g^{8} \\
& +32\left(\frac{887}{14175} \pi^{8}+\frac{4}{3} \pi^{2} \zeta(3)^{2}+40 \zeta(3) \zeta(5)\right) g^{10}+\ldots
\end{aligned}
$$

Analytic continuation

- The harmonic sums can be analytically continued in M in the whole complex space, e.g.
[A. Kotikov, V. Velizhanin, 2005]

$$
S_{1}(M)=\sum_{i=1}^{M} \frac{1}{i}=\psi(M+1)-\psi(1)
$$

Analytic continuation

- The harmonic sums can be analytically continued in M in the whole complex space, e.g.

$$
S_{1}(M)=\sum_{i=1}^{M} \frac{1}{i}=\psi(M+1)-\psi(1)
$$

- The analytic structure of the anomalous dimension for twist-2 operators at the points $M=-1,-2, \ldots$ can be predicted by the methods of high-energy physics!

Analytic continuation

- The harmonic sums can be analytically continued in M in the whole complex space, e.g.

$$
S_{1}(M)=\sum_{i=1}^{M} \frac{1}{i}=\psi(M+1)-\psi(1)
$$

- The analytic structure of the anomalous dimension for twist-2 operators at the points $M=-1,-2, \ldots$ can be predicted by the methods of high-energy physics!
- The BFKL equation describes the leading poles at $M=-1+\omega$

Analytic continuation

- The harmonic sums can be analytically continued in M in the whole complex space, e.g.

$$
S_{1}(M)=\sum_{i=1}^{M} \frac{1}{i}=\psi(M+1)-\psi(1)
$$

- The analytic structure of the anomalous dimension for twist-2 operators at the points $M=-1,-2, \ldots$ can be predicted by the methods of high-energy physics!
- The BFKL equation describes the leading poles at $M=-1+\omega$
- Double-logarhitmic constraints for $M=-2+\omega$

Leading singularities

- The eigenvalue of the BFKL kernel for $\mathcal{N}=4$ is known up to the second order in perturbation theory

$$
\frac{\omega}{-4 g^{2}}=f(\gamma)
$$

Leading singularities

- The eigenvalue of the BFKL kernel for $\mathcal{N}=4$ is known up to the second order in perturbation theory

$$
\frac{\omega}{-4 g^{2}}=f(\gamma)
$$

- The structure of the leading singularities at $M=-1+\omega$ from BFKL

$$
\gamma=2\left(\frac{-4 g^{2}}{\omega}\right)-0\left(\frac{-4 g^{2}}{\omega}\right)^{2}+0\left(\frac{-4 g^{2}}{\omega}\right)^{3}-4 \zeta(3)\left(\frac{-4 g^{2}}{\omega}\right)^{4}+\ldots
$$

Leading singularities

- The eigenvalue of the BFKL kernel for $\mathcal{N}=4$ is known up to the second order in perturbation theory

$$
\frac{\omega}{-4 g^{2}}=f(\gamma)
$$

- The structure of the leading singularities at $M=-1+\omega$ from BFKL

$$
\gamma=2\left(\frac{-4 g^{2}}{\omega}\right)-0\left(\frac{-4 g^{2}}{\omega}\right)^{2}+0\left(\frac{-4 g^{2}}{\omega}\right)^{3}-4 \zeta(3)\left(\frac{-4 g^{2}}{\omega}\right)^{4}+\ldots
$$

- The structure of the leading singularities at $M=-1+\omega$ from ABA

$$
\gamma^{\mathrm{ABA}}=2\left(\frac{-4 g^{2}}{\omega}\right)-0\left(\frac{-4 g^{2}}{\omega}\right)^{2}+0\left(\frac{-4 g^{2}}{\omega}\right)^{3}-2 \frac{\left(-4 g^{2}\right)^{4}}{\omega^{7}}+\ldots
$$

Leading singularities

- The eigenvalue of the BFKL kernel for $\mathcal{N}=4$ is known up to the second order in perturbation theory

$$
\frac{\omega}{-4 g^{2}}=f(\gamma)
$$

- The structure of the leading singularities at $M=-1+\omega$ from BFKL

$$
\gamma=2\left(\frac{-4 g^{2}}{\omega}\right)-0\left(\frac{-4 g^{2}}{\omega}\right)^{2}+0\left(\frac{-4 g^{2}}{\omega}\right)^{3}-4 \zeta(3)\left(\frac{-4 g^{2}}{\omega}\right)^{4}+\ldots
$$

- The structure of the leading singularities at $M=-1+\omega$ from ABA

$$
\gamma^{\mathrm{ABA}}=2\left(\frac{-4 g^{2}}{\omega}\right)-0\left(\frac{-4 g^{2}}{\omega}\right)^{2}+0\left(\frac{-4 g^{2}}{\omega}\right)^{3}-2 \frac{\left(-4 g^{2}\right)^{4}}{\omega^{7}}+\ldots
$$

Four-loop result has to be supplemented with the wrapping corrections!

Wrapping corrections at four loops

- The wrapping correction may be found by evaluating the first Lüscher correction at weak coupling.

[Z. Bajnok, R. Janik, 2008]

Wrapping corrections at four loops

- The wrapping correction may be found by evaluating the first Lüscher correction at weak coupling.
[Z. Bajnok, R. Janik, 2008]
- At four-loop one finds

$$
\begin{align*}
\Delta_{w}= & 128 S_{1}^{2}\left(-5 \zeta(5)-4 S_{-2} \zeta(3)-2 S_{5}+2 S_{-5}+4 S_{4,1}\right. \\
& \left.-4 S_{3,-2}+4 S_{-2,-3}-8 S_{-2,-2,1}\right) \tag{1}
\end{align*}
$$

Wrapping corrections at four loops

- The wrapping correction may be found by evaluating the first Lüscher correction at weak coupling.
- At four-loop one finds
[Z. Bajnok, R. Janik, 2008]
[Z. Bajnok, R. Janik, T. Ł, 2008]

$$
\begin{align*}
\Delta_{w}= & 128 S_{1}^{2}\left(-5 \zeta(5)-4 S_{-2} \zeta(3)-2 S_{5}+2 S_{-5}+4 S_{4,1}\right. \\
& \left.-4 S_{3,-2}+4 S_{-2,-3}-8 S_{-2,-2,1}\right) \tag{1}
\end{align*}
$$

- Upon continuing to $M=-1+\omega$, this wrapping correction combined with the four-loop ABA contribution leads to full agreement with the BFKL prediction!

Wrapping corrections at four loops

- The wrapping correction may be found by evaluating the first Lüscher correction at weak coupling.
- At four-loop one finds
[Z. Bajnok, R. Janik, 2008]
[Z. Bajnok, R. Janik, T. Ł, 2008]

$$
\begin{align*}
\Delta_{w}= & 128 S_{1}^{2}\left(-5 \zeta(5)-4 S_{-2} \zeta(3)-2 S_{5}+2 S_{-5}+4 S_{4,1}\right. \\
& \left.-4 S_{3,-2}+4 S_{-2,-3}-8 S_{-2,-2,1}\right) \tag{1}
\end{align*}
$$

- Upon continuing to $M=-1+\omega$, this wrapping correction combined with the four-loop ABA contribution leads to full agreement with the BFKL prediction!
- Also gives correct asymptotics for large M

Wrapping corrections at four loops

- The wrapping correction may be found by evaluating the first Lüscher correction at weak coupling.
- At four-loop one finds
[Z. Bajnok, R. Janik, 2008]
[Z. Bajnok, R. Janik, T. Ł, 2008]

$$
\begin{align*}
\Delta_{w}= & 128 S_{1}^{2}\left(-5 \zeta(5)-4 S_{-2} \zeta(3)-2 S_{5}+2 S_{-5}+4 S_{4,1}\right. \\
& \left.-4 S_{3,-2}+4 S_{-2,-3}-8 S_{-2,-2,1}\right) \tag{1}
\end{align*}
$$

- Upon continuing to $M=-1+\omega$, this wrapping correction combined with the four-loop ABA contribution leads to full agreement with the BFKL prediction!
- Also gives correct asymptotics for large M

The formula (1) may also be derived from the spectral equations!

Is four-loop order enough to feel satisfied ?

Is four-loop order enough to feel satisfied ?

Not exactly!

Do we need a 5-loop test?

The structure of the TBA equations

- Quantization condition

$$
Y_{1}\left(u_{k}\right)=-1
$$

- Energy formula

$$
E=\sum_{k} \epsilon_{1}\left(u_{k}\right)+\sum_{j} \int_{-\infty}^{\infty} \frac{d u}{2 \pi i} \partial_{u} \epsilon_{j} \log \left(1+Y_{j}\right)
$$

- TBA equations

$$
\log Y_{k}=\sum_{j} K_{k j} \star \log \left(1+Y_{j}\right) \quad \forall_{k}
$$

Do we need a 5-loop test?

- ABA is implemented in TBA equations from the beginning \longrightarrow only wrapping is interesting

Do we need a 5-loop test?

- ABA is implemented in TBA equations from the beginning \longrightarrow only wrapping is interesting
- For four-loop wrapping the ABA quantization is sufficient \longrightarrow the full quantization condition does not need to be solved

Do we need a 5 -loop test?

- ABA is implemented in TBA equations from the beginning \longrightarrow only wrapping is interesting
- For four-loop wrapping the ABA quantization is sufficient \longrightarrow the full quantization condition does not need to be solved
- We do not need to iterate the TBA equations

Do we need a 5-loop test?

- ABA is implemented in TBA equations from the beginning \longrightarrow only wrapping is interesting
- For four-loop wrapping the ABA quantization is sufficient \longrightarrow the full quantization condition does not need to be solved
- We do not need to iterate the TBA equations

The situation is different for five-loop calculations

Do we need a 5-loop test?

- ABA is implemented in TBA equations from the beginning \longrightarrow only wrapping is interesting
- For four-loop wrapping the ABA quantization is sufficient \longrightarrow the full quantization condition does not need to be solved
- We do not need to iterate the TBA equations

The situation is different for five-loop calculations

- The really interesting testing opportunity would thus furnish the five-loop result...
[T. Ł, A. Rej, V. Velizhanin, 2009]

Assumptions we made

- maximal transcendentality principle
- reciprocity

Assumptions we made

- maximal transcendentality principle
- reciprocity
- generalised Lüscher formula
- correct Lüscher formula?
- is the modification of the ABA quantization the proper one?
- is the leading Lüscher formula valid at 5 loops?

Assumptions we made

- maximal transcendentality principle
- reciprocity
- generalised Lüscher formula
- correct Lüscher formula?
- is the modification of the ABA quantization the proper one?
- is the leading Lüscher formula valid at 5 loops?
- μ-terms do not contribute

Assumptions we made

- maximal transcendentality principle
- reciprocity
- generalised Lüscher formula
- correct Lüscher formula?
- is the modification of the ABA quantization the proper one?
- is the leading Lüscher formula valid at 5 loops?
- μ-terms do not contribute
- numerical precision to determine transcendental structure for each M using EZ-Face

Assumptions we made

- maximal transcendentality principle
- reciprocity
- generalised Lüscher formula
- correct Lüscher formula?
- is the modification of the ABA quantization the proper one?
- is the leading Lüscher formula valid at 5 loops?
- μ-terms do not contribute
- numerical precision to determine transcendental structure for each M using EZ-Face
- factorization of S_{1} for the wrapping result

Five-loop ABA

- We are looking for a result with transcendentality degree $=9$.

Five-loop ABA

- We are looking for a result with transcendentality degree $=9$.
- There are 256 different binomial sums with degree 9 .

Five-loop ABA

- We are looking for a result with transcendentality degree $=9$.
- There are 256 different binomial sums with degree 9 .
- Here comes the result:

Five-loop ABA

$$
\begin{aligned}
& \left(20480 S_{-5}-8192 S_{-3} S_{-2}+2048 S_{5}-20480 S_{-4,1}-16384 S_{-3,2}-\frac{28672}{3} S_{-2,3}\right. \\
& \left.+\frac{32768}{3} S_{-3,1,1}+\frac{16384}{3} S_{-2,1,2}+\frac{16384}{3} S_{-2,2,1}\right) S_{1}^{4}+\left(20480 S_{-3}^{2}+4096 S_{3}^{2}+81920 S_{-6}\right. \\
& +S_{-2}\left(30720 S_{-4}+8192 S_{4}\right)+30720 S_{6}-98304 S_{-5,1}-12288 S_{-4,-2}-102400 S_{-4,2} \\
& -8192 S_{-3,-3}-90112 S_{-3,3}+S_{3}\left(24576 S_{-3}-16384 S_{-2,1}\right)-57344 S_{-2,4}+4096 S_{4,2} \\
& +16384 S_{5,1}+122880 S_{-4,1,1}-16384 S_{-3,-2,1}+106496 S_{-3,1,2}+106496 S_{-3,2,1} \\
& -16384 S_{-2,-3,1}-8192 S_{-2,-2,2}+S_{2}\left(-8192 S_{-2}^{2}+49152 S_{-4}+8192 S_{4}-\frac{131072}{3} S_{-3,1}\right. \\
& \left.-\frac{81920}{3} S_{-2,2}+\frac{65536}{3} S_{-2,1,1}\right)+65536 S_{-2,1,3}+65536 S_{-2,2,2}+65536 S_{-2,3,1} \\
& \left.-98304 S_{-3,1,1,1}-49152 S_{-2,1,1,2}-49152 S_{-2,1,2,1}-49152 S_{-2,2,1,1}\right) S_{1}^{3}+\left(\left(12288 S_{-3}\right.\right. \\
& \left.+9216 S_{3}\right) S_{-2}^{2}+\left(53248 S_{-5}+24576 S_{5}-61440 S_{-4,1}-40960 S_{-3,2}-20480 S_{-2,3}\right. \\
& \left.+32768 S_{-3,1,1}+16384 S_{-2,1,2}+16384 S_{-2,2,1}\right) S_{-2}+113664 S_{-7}+3072 S_{7}-163840 S_{-6,1} \\
& -172032 S_{-5,2}-174080 S_{-4,3}-163840 S_{-3,4}+S_{2}^{2}\left(36864 S_{-3}+12288 S_{3}-24576 S_{-2,1}\right) \\
& +\left(-12288 S_{-4}-36864 S_{4}\right) S_{-2,1}-118784 S_{-2,5}+8192 S_{4,3}+8192 S_{5,2}-40960 S_{6,1} \\
& +253952 S_{-5,1,1}+24576 S_{-4,-2,1}+24576 S_{-4,1,-2}+266240 S_{-4,1,2}+266240 S_{-4,2,1} \\
& +16384 S_{-3,-3,1}-8192 S_{-3,-2,2}+16384 S_{-3,1,-3}+249856 S_{-3,1,3}+8192 S_{-3,2,-2} \\
& +258048 S_{-3,2,2}+249856 S_{-3,3,1}-16384 S_{-2,-3,2}-16384 S_{-2,-2,3}+S_{-3}\left(14336 S_{-4}\right. \\
& \left.+43008 S_{4}-49152 S_{-3,1}-24576 S_{-2,2}+32768 S_{-2,1,1}\right)+S_{3}\left(52224 S_{-4}+12288 S_{4}\right. \\
& \left.-57344 S_{-3,1}-40960 S_{-2,2}+49152 S_{-2,1,1}\right)+172032 S_{-2,1,4}+180224 S_{-2,2,3}
\end{aligned}
$$

Five-loop ABA

$$
\begin{aligned}
& +180224 S_{-2,3,2}+172032 S_{-2,4,1}-8192 S_{4,1,2}-8192 S_{4,2,1}-32768 S_{5,1,1} \\
& -368640 S_{-4,1,1,1}+32768 S_{-3,-2,1,1}-344064 S_{-3,1,1,2}-344064 S_{-3,1,2,1}-344064 S_{-3,2,1,1} \\
& +32768 S_{-2,-3,1,1}+16384 S_{-2,-2,1,2}+16384 S_{-2,-2,2,1}+S_{2}\left(92160 S_{-5}+S_{-2}\left(49152 S_{-3}\right.\right. \\
& \left.+24576 S_{3}\right)+30720 S_{5}-122880 S_{-4,1}-12288 S_{-3,-2}-122880 S_{-3,2}-86016 S_{-2,3} \\
& +12288 S_{4,1}+172032 S_{-3,1,1}-24576 S_{-2,-2,1}+122880 S_{-2,1,2}+122880 S_{-2,2,1} \\
& \left.-147456 S_{-2,1,1,1}\right)-221184 S_{-2,1,1,3}-221184 S_{-2,1,2,2}-221184 S_{-2,1,3,1} \\
& -221184 S_{-2,2,1,2}-221184 S_{-2,2,2,1}-221184 S_{-2,3,1,1}+393216 S_{-3,1,1,1,1} \\
& \left.+196608 S_{-2,1,1,1,2}+196608 S_{-2,1,1,2,1}+196608 S_{-2,1,2,1,1}+196608 S_{-2,2,1,1,1}\right) S_{1}^{2} \\
& +\left(2048 S_{2}^{4}+8192 S_{-2} S_{2}^{3}+\left(9216 S_{-2}^{2}+24576 S_{-4}+9216 S_{4}-36864 S_{-3,1}-30720 S_{-2,2}\right.\right. \\
& \left.+49152 S_{-2,1,1}\right) S_{2}^{2}+\left(4096 S_{-2}^{3}+\left(32768 S_{-4}+24576 S_{4}-49152 S_{-3,1}-24576 S_{-2,2}\right.\right. \\
& \left.+32768 S_{-2,1,1}\right) S_{-2}+6144 S_{3}^{2}+53248 S_{-6}+6144 S_{6}-90112 S_{-5,1}-94208 S_{-4,2} \\
& -94208 S_{-3,3}+S_{3}\left(32768 S_{-3}-32768 S_{-2,1}\right)-16384 S_{-3} S_{-2,1}-77824 S_{-2,4}+8192 S_{4,2} \\
& -16384 S_{5,1}+163840 S_{-4,1,1}+16384 S_{-3,-2,1}+16384 S_{-3,1,-2}+172032 S_{-3,1,2} \\
& +172032 S_{-3,2,1}-16384 S_{-2,-2,2}+139264 S_{-2,1,3}+147456 S_{-2,2,2}+139264 S_{-2,3,1}
\end{aligned}
$$

Five-loop ABA

$$
\begin{aligned}
& -16384 S_{4,1,1}-294912 S_{-3,1,1,1}+32768 S_{-2,-2,1,1}-245760 S_{-2,1,1,2}-245760 S_{-2,1,2,1} \\
& \left.-245760 S_{-2,2,1,1}+393216 S_{-2,1,1,1,1}\right) S_{2}+13824 S_{-4}^{2}+4608 S_{4}^{2}+16384 S_{-3,1}^{2} \\
& +14336 S_{-2,2}^{2}+57344 S_{-8}+S_{-2}^{2}\left(3072 S_{-4}+12288 S_{4}\right)+64512 S_{8}-98304 S_{-7,1} \\
& -30720 S_{-6,-2}-98304 S_{-6,2}-16384 S_{-5,-3}-102400 S_{-5,3}-3072 S_{-4,-4}-98304 S_{-4,4} \\
& -98304 S_{-3,5}-92160 S_{-2,6}-15360 S_{4,4}-12288 S_{5,3}+26624 S_{6,2}+36864 S_{7,1} \\
& +163840 S_{-6,1,1}-24576 S_{-5,-2,1}+180224 S_{-5,1,2}+180224 S_{-5,2,1}-24576 S_{-4,-3,1} \\
& -6144 S_{-4,-2,-2}-18432 S_{-4,-2,2}+184320 S_{-4,1,3}+196608 S_{-4,2,2}+184320 S_{-4,3,1} \\
& -8192 S_{-3,-4,1}-4096 S_{-3,-3,-2}-28672 S_{-3,-3,2}-4096 S_{-3,-2,-3}+12288 S_{-3,-2,3} \\
& +180224 S_{-3,1,4}+192512 S_{-3,2,3}+192512 S_{-3,3,2}+176128 S_{-3,4,1}+8192 S_{-2,-5,1} \\
& -22528 S_{-2,-4,2}+4096 S_{-2,-3,3}+30720 S_{-2,-2,4}+S_{-3,1}\left(36864 S_{-2,2}-16384 S_{-2,1,1}\right) \\
& -8192 S_{-2,2} S_{-2,1,1}+S_{-4}\left(-14336 S_{-3,1}-10240 S_{-2,2}+36864 S_{-2,1,1}\right) \\
& +S_{4}\left(30720 S_{-4}-51200 S_{-3,1}-43008 S_{-2,2}+69632 S_{-2,1,1}\right)+139264 S_{-2,1,5} \\
& +S_{-2,1}\left(-4096 S_{-5}-20480 S_{5}+24576 S_{-4,1}+36864 S_{-3,2}+28672 S_{-2,3}-16384 S_{-3,1,1}\right. \\
& \left.-8192 S_{-2,1,2}-8192 S_{-2,2,1}\right)+145408 S_{-2,2,4}+147456 S_{-2,3,3}+143360 S_{-2,4,2} \\
& +131072 S_{-2,5,1}-8192 S_{4,1,3}-8192 S_{4,2,2}-8192 S_{4,3,1}-16384 S_{5,1,2}-16384 S_{5,2,1} \\
& -294912 S_{-5,1,1,1}-319488 S_{-4,1,1,2}-319488 S_{-4,1,2,1}-319488 S_{-4,2,1,1}+49152 S_{-3,-3,1,1} \\
& +8192 S_{-3,-2,-2,1}+16384 S_{-3,-2,1,2}+16384 S_{-3,-2,2,1}-16384 S_{-3,1,1,-3}-311296 S_{-3,1,1,3} \\
& -327680 S_{-3,1,2,2}-311296 S_{-3,1,3,1}-16384 S_{-3,2,-2,1}-327680 S_{-3,2,1,2}-327680 S_{-3,2,2,1} \\
& -311296 S_{-3,3,1,1}+73728 S_{-2,-4,1,1}+8192 S_{-2,-3,-2,1}+40960 S_{-2,-3,1,2}+40960 S_{-2,-3,2,1}
\end{aligned}
$$

Five-loop ABA

$$
\begin{aligned}
& +8192 S_{-2,-2,-3,1}+4096 S_{-2,-2,-2,2}+16384 S_{-2,-2,1,3}+16384 S_{-2,-2,2,2}+16384 S_{-2,-2,3,1} \\
& -24576 S_{-2,1,1,-4}+S_{-3}\left(40960 S_{-5}+16384 S_{5}-28672 S_{-4,1}-22528 S_{-3,2}-22528 S_{-2,3}\right. \\
& +4096 S_{4,1}+49152 S_{-2,1,1}-8192 S_{-2,-2,1}+36864 S_{-2,1,2}+36864 S_{-2,2,1} \\
& \left.-49152 S_{-2,1,1,1}\right)+S_{3}\left(40960 S_{-5}+8192 S_{5}-53248 S_{-4,1}-51200 S_{-3,2}-\frac{112640 S_{-2,3}}{3}\right. \\
& \left.+\frac{212999}{3} S_{-3,1,1}+\frac{143360}{3} S_{-2,1,2}+\frac{143360}{3} S_{-2,2,1}-49152 S_{-2,1,1,1}\right)-221184 S_{-2,1,1,4} \\
& -8192 S_{-2,1,2,-3}-237568 S_{-2,1,2,3}-237568 S_{-2,1,3,2}-221184 S_{-2,1,4,1}-16384 S_{-2,2,-3,1} \\
& -8192 S_{-2,2,-2,2}-8192 S_{-2,2,1,-3}+S_{-2}\left(4096 S_{-3}^{2}+8192 S_{3}^{2}+56320 S_{-6}+25600 S_{6}\right. \\
& -32768 S_{-5,1}-26624 S_{-4,2}-28672 S_{-3,3}+S_{3}\left(20480 S_{-3}-8192 S_{-2,1}\right)-24576 S_{-2,4} \\
& +2048 S_{4,2}+8192 S_{5,1}+36864 S_{-4,1,1}-8192 S_{-3,-2,1}+36864 S_{-3,1,2}+36864 S_{-3,2,1} \\
& -8192 S_{-2,-3,1}-4096 S_{-2,-2,2}+24576 S_{-2,1,3}+24576 S_{-2,2,2}+24576 S_{-2,3,1} \\
& \left.-49152 S_{-3,1,1,1}-24576 S_{-2,1,1,2}-24576 S_{-2,1,2,1}-24576 S_{-2,2,1,1}\right)-237568 S_{-2,2,1,3} \\
& -245760 S_{-2,2,2,2}-237568 S_{-2,2,3,1}-16384 S_{-2,3,-2,1}-237568 S_{-2,3,1,2}-237568 S_{-2,3,2,1} \\
& -221184 S_{-2,4,1,1}+24576 S_{4,1,1,2}+24576 S_{4,1,2,1}+24576 S_{4,2,2,1,1}+98304 S_{5,1,1,1}
\end{aligned}
$$

Five-loop ABA

$$
\begin{aligned}
& +491520 S_{-4,1,1,1,1}-98304 S_{-3,-2,1,1,1}-32768 S_{-3,1,-2,1,1}+491520 S_{-3,1,1,1,2} \\
& +491520 S_{-3,1,1,2,1}+491520 S_{-3,1,2,1,1}+491520 S_{-3,2,1,1,1}-98304 S_{-2,-3,1,1,1} \\
& -49152 S_{-2,-2,1,1,2}-49152 S_{-2,-2,1,2,1}-49152 S_{-2,-2,2,1,1}-32768 S_{-2,1,-3,1,1} \\
& -16384 S_{-2,1,-2,1,2}-16384 S_{-2,1,-2,2,1}+327680 S_{-2,1,1,1,3}+327680 S_{-2,1,1,2,2} \\
& +327680 S_{-2,1,1,3,1}+327680 S_{-2,1,2,1,2}+327680 S_{-2,1,2,2,1}+327680 S_{-2,1,3,1,1} \\
& -16384 S_{-2,2,-2,1,1}+327680 S_{-2,2,1,1,2}+327680 S_{-2,2,1,2,1}+327680 S_{-2,2,2,1,1} \\
& +327680 S_{-2,3,1,1,1}-655360 S_{-3,1,1,1,1,1}-327680 S_{-2,1,1,1,1,2}-327680 S_{-2,1,1,1,2,1} \\
& \left.-327680 S_{-2,1,1,2,1,1}-327680 S_{-2,1,2,1,1,1}-327680 S_{-2,2,1,1,1,1}\right) S_{1}+512 S_{3}^{3}-7168 S_{-9} \\
& +7168 S_{9}-18432 S_{-8,1}-2048 S_{-2,-7}+S_{3}^{2}\left(3072 S_{-3}-2048 S_{-2,1}\right)+S_{2}^{3}\left(1024 S_{-3}\right. \\
& \left.+1024 S_{3}-2048 S_{-2,1}\right)+S_{-2}\left(3072 S_{-3} S_{4}-6144 S_{-2,1} S_{4}+S_{3}\left(3072 S_{-4}+6144 S_{4}\right.\right. \\
& \left.\left.-4096 S_{-3,1}-2048 S_{-2,2}\right)\right)-8192 S_{1,-8}+8192 S_{1,8}-16384 S_{2,-7}+16384 S_{2,7} \\
& -3072 S_{3,-6}+3072 S_{3,6}-13824 S_{4,-5}+4608 S_{4,5}-34816 S_{5,-4}-2048 S_{5,4}-35328 S_{6,-3} \\
& -4608 S_{6,3}+10240 S_{7,-2}+9216 S_{7,2}+16384 S_{8,1}+26624 S_{-7,1,1}-27648 S_{-6,-2,1} \\
& -6144 S_{-6,1,-2}+12288 S_{-6,1,2}+12288 S_{-6,2,1}-18432 S_{-5,-3,1}-2048 S_{-5,-2,-2} \\
& -4096 S_{-5,-2,2}-18432 S_{-5,1,-3}-4096 S_{-5,2,-2}+26624 S_{-4,-4,1}+44032 S_{-4,-3,-2} \\
& +51200 S_{-4,-3,2}+70656 S_{-4,-2,-3}+12288 S_{-4,-2,3}+13312 S_{-4,1,-4}+17408 S_{-4,1,4} \\
& +7168 S_{-4,2,-3}-1024 S_{-4,3,-2}+44032 S_{-4,4,1}-10240 S_{-3,-5,1}+45056 S_{-3,-4,-2} \\
& +51200 S_{-3,-4,2}+157696 S_{-2,-3,-3}+33792 S_{-3,-3,3}+73728 S_{-3,-2,-4}+8192 S_{-3,-2,4}
\end{aligned}
$$

Five-loop ABA

$$
\begin{aligned}
& -8192 S_{-3,1,-5}+61440 S_{-3,1,5}+14336 S_{-3,2,-4}+20480 S_{-3,2,4}-3072 S_{-3,3,-3} \\
& +10240 S_{-3,4,-2}+45056 S_{-3,4,2}+90112 S_{-3,5,1}-13312 S_{-2,-6,1}+1024 S_{-2,-5,-2} \\
& -4096 S_{-2,-5,2}+68608 S_{-2,-4,-3}+12288 S_{-2,-4,3}+70656 S_{-2,-3,-4}+8192 S_{-2,-3,4} \\
& +15360 S_{-2,-2,-5}+7168 S_{-2,-2,5}-7168 S_{-2,1,-6}+21504 S_{-2,1,6}-10240 S_{-7,-2} \\
& -13312 S_{-7,2}+16896 S_{-6,-3}-5632 S_{-6,3}+5120 S_{-5,-4}+1024 S_{-5,4}+3584 S_{-4,-5} \\
& -27136 S_{-4,5}+9216 S_{-3,-6}-23552 S_{-3,6}-4096 S_{-2,2,-5}+28672 S_{-2,2,5} \\
& +1024 S_{-2,3,4}+8192 S_{-2,4,-3}+11264 S_{-2,4,3}+13312 S_{-2,5,-2}+40960 S_{-2,5,2} \\
& +35840 S_{-2,6,1}+40960 S_{1,-7,1}-11264 S_{1,-6,-2}+8192 S_{1,-6,2}-32768 S_{1,-5,-3} \\
& +4096 S_{1,-5,3}+18432 S_{1,-4,-4}+23552 S_{1,-4,4}-10240 S_{1,-3,-5}+71680 S_{1,-3,5} \\
& -11264 S_{1,-2,-6}+25600 S_{1,-2,6}+32768 S_{1,1,-7}-32768 S_{1,1,7}+8192 S_{1,2,-6}-8192 S_{1,2,6} \\
& +4096 S_{1,3,-5}+35840 S_{1,4,-4}-6144 S_{1,4,4}+83968 S_{1,5,-3}+18432 S_{1,5,3}+17408 S_{1,6,-2} \\
& +22528 S_{1,6,2}-32768 S_{1,7,1}+14336 S_{2,-6,1}-20480 S_{2,-5,-2}-8192 S_{2,-5,2} \\
& +22528 S_{2,-4,-3}+1024 S_{2,-4,3}+32768 S_{2,-3,-4}+30720 S_{2,-3,4}-6144 S_{2,-2,-5} \\
& +38912 S_{2,-2,5}+8192 S_{2,1,-6}-8192 S_{2,1,6}-4096 S_{2,2,-5}+16384 S_{2,2,5}-1024 S_{2,3,-4} \\
& -5120 S_{2,3,4}+43008 S_{2,4,-3}+9216 S_{2,4,3}+32768 S_{2,5,-2}+40960 S_{2,5,2}+6144 S_{2,6,1} \\
& +2048 S_{3,-5,1}-3072 S_{3,-4,-2}-3072 S_{3,-4,2}+12288 S_{3,-3,-3}+1024 S_{3,-3,3}+5120 S_{3,-2,-4}
\end{aligned}
$$

Five-loop ABA

$$
\begin{aligned}
& +7168 S_{3,-2,4}+4096 S_{3,1,-5}-1024 S_{3,2,-4}-5120 S_{3,2,4}+3072 S_{3,3,-3}+9216 S_{3,4,-2} \\
& +9216 S_{3,4,2}+8192 S_{3,5,1}+39936 S_{4,-4,1}-6144 S_{4,-3,-2}+31744 S_{4,-3,2}-6144 S_{4,-2,-3} \\
& +15360 S_{4,-2,3}+32768 S_{4,1,-4}-6144 S_{4,1,4}+36864 S_{4,2,-3}+9216 S_{4,2,3}+8192 S_{4,3,-2} \\
& +9216 S_{4,3,2}-6144 S_{4,4,1}+86016 S_{5,-3,1}+8192 S_{5,-2,-2}+36864 S_{5,-2,2}+81920 S_{5,1,-3} \\
& +18432 S_{5,1,3}+32768 S_{5,2,-2}+40960 S_{5,2,2}+18432 S_{5,3,1}+50176 S_{6,-2,1}+20480 S_{6,1,-2} \\
& +22528 S_{6,1,2}+22528 S_{6,2,1}-18432 S_{7,1,1}-24576 S_{-6,1,1,1}+8192 S_{-5,-2,1,1} \\
& +28672 S_{-5,1,-2,1}+8192 S_{-5,1,1,-2}-102400 S_{-4,-3,1,1}-88064 S_{-4,-2,-2,1} \\
& -53248 S_{-4,-2,1,-2}-59392 S_{-4,-2,1,2}-59392 S_{-4,-2,2,1}-55296 S_{-4,1,-3,1} \\
& -34816 S_{-4,1,-2,-2}-43008 S_{-4,1,-2,2}-14336 S_{-4,1,1,-3}-2048 S_{-4,1,2,-2}-12288 S_{-4,2,-2,1} \\
& -2048 S_{-4,2,1,-2}-102400 S_{-3,-4,1,1}-188416 S_{-3,-3,-2,1}-126976 S_{-3,-3,1,-2} \\
& -155648 S_{-3,-3,1,2}-155648 S_{-3,-3,2,1}-180224 S_{-3,-2,-3,1}-24576 S_{-3,-2,-2,-2} \\
& -90112 S_{-3,-2,-2,2}-155648 S_{-3,-2,1,-3}-36864 S_{-3,-2,1,3}-65536 S_{-3,-2,2,-2} \\
& -81920 S_{-3,-2,2,2}-36864 S_{-3,-2,3,1}-61440 S_{-3,1,-4,1}-102400 S_{-3,1,-3,-2} \\
& -122880 S_{-3,1,-3,2}-159744 S_{-3,1,-2,-3}-30720 S_{-3,1,-2,3}-28672 S_{-3,1,1,-4} \\
& -40960 S_{-3,1,1,4}-12288 S_{-3,1,2,-3}+2048 S_{-3,1,3,-2}-98304 S_{-3,1,4,1}-61440 S_{-3,2,-3,1} \\
& -40960 S_{-3,2,-2,-2}-49152 S_{-3,2,-2,2}-12288 S_{-3,2,1,-3}+4096 S_{-3,3,-2,1}+2048 S_{-3,3,1,-2} \\
& -90112 S_{-3,4,1,1}+8192 S_{-2,-5,1,1}-83968 S_{-2,-4,-2,1}-53248 S_{-2,-4,1,-2}-59392 S_{-2,-4,1,2} \\
& -59392 S_{-2,-4,2,1}-169984 S_{-2,-3,-3,1}-24576 S_{-2,-3,-2,-2}-83968 S_{-2,-3,-2,2} \\
& -151552 S_{-2,-3,1,-3}-36864 S_{-2,-3,1,3}-65536 S_{-2,-3,2,-2}-81920 S_{-2,-3,2,2} \\
& -36864 S_{-2,-3,3,1}-75776 S_{-2,-2,-4,1}-24576 S_{-2,-2,-3,-2}-79872 S_{-2,-2,-3,2}
\end{aligned}
$$

Five-loop ABA

$$
\begin{aligned}
& -24576 S_{-2,-2,-2,-3}-22528 S_{-2,-2,-2,3}-69632 S_{-2,-2,1,-4}-8192 S_{-2,-2,1,4} \\
& -73728 S_{-2,-2,2,-3}-18432 S_{-2,-2,2,3}-16384 S_{-2,-2,3,-2}-18432 S_{-2,-2,3,2} \\
& -8192 S_{-2,-2,4,1}+12288 S_{-2,1,-5,1}-38912 S_{-2,1,-4,-2}-43008 S_{-2,1,-4,2} \\
& -157696 S_{-2,1,-3,-3}-30720 S_{-2,1,-3,3}-71680 S_{-2,1,-2,-4}-8192 S_{-2,1,-2,4} \\
& +8192 S_{-2,1,1,-5}+S_{-4}\left(4608 S_{-5}+1536 S_{5}-9216 S_{-4,1}-9216 S_{-3,2}-9216 S_{-2,3}\right. \\
& \left.+18432 S_{-3,1,1}+18432 S_{-2,1,2}+18432 S_{-2,2,1}-36864 S_{-2,1,1,1}\right)+S_{4}\left(4608 S_{-5}+1536 S_{5}\right. \\
& -9216 S_{-4,1}-9216 S_{-3,2}-9216 S_{-2,3}+18432 S_{-3,1,1}+18432 S_{-2,1,2}+18432 S_{-2,2,1} \\
& \left.-36864 S_{-2,1,1,1}\right)+S_{2}^{2}\left(3072 S_{-5}+1024 S_{5}-6144 S_{-4,1}-6144 S_{-3,2}+S_{-2}\left(2048 S_{-3}\right.\right. \\
& \left.+4096 S_{3}-4096 S_{-2,1}\right)-6144 S_{-2,3}+12288 S_{-3,1,1}+12288 S_{-2,1,2}+12288 S_{-2,2,1} \\
& \left.-24576 S_{-2,1,1,1}\right)+S_{-2,2}\left(-3072 S_{-5}-1024 S_{5}+6144 S_{-4,1}+6144 S_{-3,2}+6144 S_{-2,3}\right. \\
& \left.-12288 S_{-3,1,1}-12288 S_{-2,1,2}-12288 S_{-2,2,1}+24576 S_{-2,1,1,1}\right)+S_{-3,1}\left(-6144 S_{-5}\right. \\
& -2048 S_{5}+12288 S_{-4,1}+12288 S_{-3,2}+12288 S_{-2,3}-24576 S_{-3,1,1}-24576 S_{-2,1,2} \\
& \left.-24576 S_{-2,2,1}+49152 S_{-2,1,1,1}\right)-57344 S_{-2,1,1,5}-8192 S_{-2,1,2,-4}-14336 S_{-2,1,2,4} \\
& +4096 S_{-2,1,3,-3}-12288 S_{-2,1,4,-2}-43008 S_{-2,1,4,2}-90112 S_{-2,1,5,1}-20480 S_{-2,2,-4,1}
\end{aligned}
$$

Five-loop ABA

$$
\begin{aligned}
& -43008 S_{-2,2,-3,-2}-49152 S_{-2,2,-3,2}-79872 S_{-2,2,-2,-3}-12288 S_{-2,2,-2,3} \\
& -8192 S_{-2,2,1,-4}+S_{-3}\left(7680 S_{-6}+2560 S_{6}-12288 S_{-5,1}-12288 S_{-4,2}-12288 S_{-2,3}\right. \\
& -9216 S_{-2,4}+18432 S_{-4,1,1}+18432 S_{-3,1,2}+18432 S_{-3,2,1}+12288 S_{-2,1,3}+12288 S_{-2,2,2} \\
& \left.+12288 S_{-2,3,1}-24576 S_{-3,1,1,1}-12288 S_{-2,1,1,2}-12288 S_{-2,1,2,1}-12288 S_{-2,2,1,1}\right) \\
& +S_{3}\left(2560 S_{-3}^{2}-6144 S_{-2,1} S_{-3}+2048 S_{-2,1}^{2}+7680 S_{-6}+2560 S_{6}-12288 S_{-5,1}\right. \\
& -12288 S_{-4,2}-12288 S_{-3,3}-9216 S_{-2,4}+18432 S_{-4,1,1}+18432 S_{-3,1,2}+18432 S_{-3,2,1} \\
& +12288 S_{-2,1,3}+12288 S_{-2,2,2}+12288 S_{-2,3,1}-24576 S_{-3,1,1,1}-12288 S_{-2,1,1,2} \\
& \left.-12288 S_{-2,1,2,1}-12288 S_{-2,2,1,1}\right)+S_{-2,1}\left(-15360 S_{-6}-5120 S_{6}+24576 S_{-5,1}\right. \\
& +24576 S_{-4,2}+24576 S_{-3,3}+18432 S_{-2,4}-36864 S_{-4,1,1}-36864 S_{-3,1,2} \\
& -36864 S_{-3,2,1}-24576 S_{-2,1,3}-24576 S_{-2,2,2}-24576 S_{-2,3,1}+49152 S_{-3,1,1,1} \\
& \left.+24576 S_{-2,1,1,2}+24576 S_{-2,1,2,1}+24576 S_{-2,2,1,1}\right)-14336 S_{-2,2,1,4} \\
& -51200 S_{-2,2,4,1}+2048 S_{-2,3,-3,1}-2048 S_{-2,3,-2,-2}-2048 S_{-2,3,-2,2}+4096 S_{-2,3,1,-3} \\
& -4096 S_{-2,4,-2,1}-12288 S_{-2,4,1,-2}-38912 S_{-2,4,1,2}-38912 S_{-2,4,2,1} \\
& -81920 S_{-2,5,1,1}-16384 S_{1,-6,1,1}+40960 S_{1,-5,-2,1}+24576 S_{1,-5,1,-2}-83968 S_{1,-4,-3,1} \\
& -51200 S_{1,-4,-2,-2}-59392 S_{1,-4,-2,2}-28672 S_{1,-4,1,-3}+2048 S_{1,-4,1,3}-4096 S_{1,-4,2,-2} \\
& +2048 S_{1,-4,3,1}-96256 S_{1,--3,-4,1}-129024 S_{1,-3,-3,-2}-155648 S_{1,-3,-3,2} \\
& -165888 S_{1,-3,-2,-3}-36864 S_{1,-3,-2,3}-51200 S_{1,-3,1,-4}-59392 S_{1,-3,1,4} \\
& -40960 S_{1,-3,2,-3}+8192 S_{1,-3,3,-2}-96256 S_{1,--3,4,1}+8192 S_{1,-2,-5,1}-51200 S_{1,-2,-4,-2}
\end{aligned}
$$

Five-loop ABA

$$
\begin{aligned}
& -73728 S_{2,-3,1,-3}+4096 S_{2,-3,1,3}-16384 S_{2,-3,2,-2}+4096 S_{2,-3,3,1}-55296 S_{2,-2,-4,1} \\
& -69632 S_{2,-2,-3,-2}-81920 S_{2,-2,-3,2}-86016 S_{2,-2,-2,-3}-18432 S_{2,-2,-2,3} \\
& -30720 S_{2,-2,1,-4}-32768 S_{2,-2,1,4}-28672 S_{2,-2,2,-3}+6144 S_{2,-2,3,-2}-49152 S_{2,-2,4,1} \\
& +16384 S_{2,1,-5,1}-2048 S_{2,1,-4,-2}+4096 S_{2,1,-4,2}-110592 S_{2,1,-3,-3}+4096 S_{2,1,-3,3} \\
& -34816 S_{2,1,-2,-4}-28672 S_{2,1,-2,4}+8192 S_{2,1,1,-5}-32768 S_{2,1,1,5}-36864 S_{2,1,4,-2} \\
& -40960 S_{2,1,4,2}-65536 S_{2,1,5,1}-16384 S_{2,2,-3,-2}-8192 S_{2,2,-3,2}-65536 S_{2,2,-2,-3} \\
& -49152 S_{2,2,4,1}+8192 S_{2,3,-3,1}+10240 S_{2,3,-2,-2}+8192 S_{2,3,-2,2}-49152 S_{2,4,-2,1} \\
& -36864 S_{2,4,1,-2}-40960 S_{2,4,1,2}-40960 S_{2,4,2,1}-81920 S_{2,5,1,1}+6144 S_{3,-4,1,1} \\
& -22528 S_{3,-3,-2,1}-2048 S_{3,-3,1,-2}-4096 S_{3,-3,1,2}-4096 S_{3,-3,2,1}-26624 S_{3,-2,-3,1} \\
& -18432 S_{3,-2,-2,-2}-18432 S_{3,-2,-2,2}-10240 S_{3,-2,1,-3}+2048 S_{3,-2,1,3}-2048 S_{3,-2,2,-2} \\
& +2048 S_{3,-2,3,1}-2048 S_{3,1,-4,1}+10240 S_{3,1,-3,-2}+4096 S_{3,1,-3,2}-14336 S_{3,1,-2,-3} \\
& -4096 S_{3,1,-2,3}+2048 S_{3,1,1,-4}+10240 S_{3,1,1,4}-14336 S_{3,1,4,1}+8192 S_{3,2,-3,1} \\
& +10240 S_{3,2,-2,-2}+8192 S_{3,2,-2,2}-6144 S_{3,3,-2,1}-18432 S_{3,4,1,1}-63488 S_{4,-3,1,1} \\
& +8192 S_{4,-2,-2,1}+4096 S_{4,-2,1,-2}-38912 S_{4,-2,1,2}-38912 S_{4,-2,2,1}-65536 S_{4,1,-3,1} \\
& +8192 S_{4,1,-2,-2}-24576 S_{4,1,-2,2}-73728 S_{4,1,1,-3}-18432 S_{4,1,1,3}-32768 S_{4,1,2,-2} \\
& -40960 S_{4,1,2,2}-18432 S_{4,1,3,1}-40960 S_{4,2,-2,1}-32768 S_{4,2,1,-2}-40960 S_{4,2,1,2} \\
& -40960 S_{4,2,2,1}-18432 S_{4,3,1,1}-73728 S_{5,-2,1,1}-98304 S_{5,1,-2,1}-65536 S_{5,1,1,-2} \\
& -81920 S_{5,1,1,2}-81920 S_{3,1,2,1}-81920 S_{5,2,1,1}-45056 S_{6,1,1,1}+118784 S_{-4,-2,1,1,1}
\end{aligned}
$$

Five-loop ABA

$$
\begin{aligned}
& +86016 S_{-4,1,-2,1,1}+24576 S_{-4,1,1,-2,1}+4096 S_{-4,1,1,1,-2}+311296 S_{-3,-3,1,1,1} \\
& +180224 S_{-3,-2,-2,1,1}+180224 S_{-3,-2,1,-2,1}+13107 S_{-3,-2,1,1,-2}+163840 S_{-3,-2,1,1,2} \\
& +163840 S_{-3,-2,1,2,1}+163840 S_{-3,-2,2,1,1}+245760 S_{-3,1,-3,1,1}+196608 S_{-3,1,-2,-2,1} \\
& +122880 S_{-3,1,-2,1,-2}+147456 S_{-3,1,-2,1,2}+147456 S_{-3,1,-2,2,1}+122880 S_{-3,1,1,-3,1} \\
& +81920 S_{-3,1,1,-2,-2}+98304 S_{-3,1,1,-2,2}+24576 S_{-3,1,1,1,-3}+24576 S_{-3,1,2,-2,1} \\
& +98304 S_{-3,2,-2,1,1}+24576 S_{-3,2,1,-2,1}+118784 S_{-2,-4,1,1,1}+167936 S_{-2,-3,-2,1,1} \\
& +172032 S_{-2,-3,1,-2,1}+131072 S_{-2,-3,1,1,-2}+163840 S_{-2,-3,1,1,2}+163840 S_{-2,-3,1,2,1} \\
& +163840 S_{-2,-3,2,1,1}+159744 S_{-2,-2,-3,1,1}+24576 S_{-2,-2,-2,-2,1} \\
& +24576 S_{-2,-2,-2,1,-2}+77824 S_{-2,-2,-2,1,2}+77824 S_{-2,-2,-2,2,1}+163840 S_{-2,-2,1,-3,1} \\
& +24576 S_{-2,-2,1,-2,-2}+81920 S_{-2,-2,1,-2,2}+147456 S_{-2,-2,1,1,-3}+36864 S_{-2,-2,1,1,3} \\
& +65536 S_{-2,-2,1,2,-2}+81920 S_{-2,-2,1,2,2}+36864 S_{-2,-2,1,3,1}+81920 S_{-2,-2,2,-2,1} \\
& +65536 S_{-2,-2,2,1,-2}+81920 S_{-2,-2,2,1,2}+81920 S_{-2,-2,2,2,1}+36864 S_{-2,-2,3,1,1} \\
& +86016 S_{-2,1,-4,1,1}+192512 S_{-2,1,-2,-2,1}+122880 S_{-2,1,-3,1,-2} \\
& +147456 S_{-2,1,-3,1,2}+147456 S_{-2,1,-3,2,1}+176128 S_{-2,1,-2,-3,1}+24576 S_{-2,1,-2,-2,-2} \\
& +86016 S_{-2,1,-2,-2,2}+155648 S_{-2,1,-2,1,-3}+36864 S_{-2,1,-2,1,3}+65536 S_{-2,1,-2,2,-2}
\end{aligned}
$$

Five-loop ABA

$$
\begin{aligned}
& +81920 S_{-2,1,-2,2,2}+36864 S_{-2,1,-2,3,1}+40960 S_{-2,1,1,-4,1}+86016 S_{-2,1,1,-3,-2} \\
& +98304 S_{-2,1,1,-3,2}+159744 S_{-2,1,1,-2,-3}+24576 S_{-2,1,1,-2,3}+16384 S_{-2,1,1,1,-4} \\
& +28672 S_{-2,1,1,1,4}+102400 S_{-2,1,1,4,1}+32768 S_{-2,1,2,-3,1}+28672 S_{-2,1,2,-2,-2} \\
& +32768 S_{-2,1,2,-2,2}-8192 S_{-2,1,3,-2,1}+86016 S_{-2,1,4,1,1}+98304 S_{-2,2,-3,1,1} \\
& +102400 S_{-2,2,-2,-2,1}+57344 S_{-2,2,-2,1,-2}+65536 S_{-2,2,-2,1,2}+65536 S_{-2,2,-2,2,1} \\
& +32768 S_{-2,2,1,-3,1}+28672 S_{-2,2,1,-2,-2}+32768 S_{-2,2,1,-2,2}+4096 S_{-2,3,-2,1,1} \\
& -8192 S_{-2,3,1,-2,1}+77824 S_{-2,4,1,1,1}+118784 S_{1,-4,-2,1,1}+49152 S_{1,-4,1,-2,1} \\
& +8192 S_{1,-4,1,1,-2}+311296 S_{1,-3,-3,1,1}+192512 S_{1,-3,-2,-2,1}+139264 S_{1,-3,-2,1,-2} \\
& +163840 S_{1,-3,-2,1,2}+163840 S_{1,-3,-2,2,1}+221184 S_{1,-3,1,-3,1}+118784 S_{1,-3,1,-2,-2} \\
& +147456 S_{1,-3,1,-2,2}+81920 S_{1,-3,1,1,-3}+8192 S_{1,-3,1,2,-2}+73728 S_{1,-3,2,-2,1} \\
& +8192 S_{1,-3,2,1,-2}+118784 S_{1,-2,-4,1,1}+184320 S_{1,-2,-3,-2,1}+131072 S_{1,-2,-3,1,-2} \\
& +163840 S_{1,-2,-3,1,2}+163840 S_{1,-2,-3,2,1}+184320 S_{1,-2,-2,-3,1}+24576 S_{1,-2,-2,-2,-2} \\
& +94208 S_{1,-2,-2,-2,2}+155648 S_{1,-2,-2,1,-3}+36864 S_{1,-2,-2,1,3}+65536 S_{1,-2,-2,2,-2} \\
& +81920 S_{1,-2,-2,2,2}+36864 S_{1,-2,-2,3,1}+81920 S_{1,-2,1,-4,1}+118784 S_{1,-2,1,-3,-2} \\
& +147456 S_{1,-2,1,-3,2}+159744 S_{1,-2,1,-2,-3}+36864 S_{1,-2,1,-2,3}+40960 S_{1,-2,1,1,-4} \\
& +53248 S_{1,-2,1,1,4}+24576 S_{1,-2,1,2,-3}-4096 S_{1,-2,1,3,-2}+94208 S_{1,-2,1,4,1} \\
& +90112 S_{1,-2,2,-3,1}+53248 S_{1,-2,2,-2,-2}+65536 S_{1,-2,2,-2,2}+24576 S_{1,-2,2,1,-3} \\
& -4096 S_{1,-2,3,1,-2}+94208 S_{1,-2,4,1,1}-32768 S_{1,1,-5,1,1}+77824 S_{1,1,-4,-2,1} \\
& +12288 S_{1,1,--, 1,-2}+8192 S_{1,1,-4,1,2}+8192 S_{1,1,-4,2,1}+278528 S_{1,1,-3,-3,1} \\
& +139264 S_{1,1,-3,-2,-2}+163840 S_{1,1,-3,-2,2}+147456 S_{1,1,-3,1,-3}-8192 S_{1,1,-3,1,3}
\end{aligned}
$$

Five-loop ABA

$$
\begin{aligned}
& +32768 S_{1,1,-3,2,-2}-8192 S_{1,1,-3,3,1}+110592 S_{1,1,-2,-4,1}+139264 S_{1,1,-2,-3,-2} \\
& +163840 S_{1,1,-2,-3,2}+172032 S_{1,1,-2,-2,-3}+36864 S_{1,1,-2,-2,3}+61440 S_{1,1,-2,1,-4} \\
& +65536 S_{1,1,-2,1,4}+57344 S_{1,1,-2,2,-3}-12288 S_{1,1,-2,3,-2}+98304 S_{1,1,-2,4,1} \\
& -32768 S_{1,1,1,-5,1}+4096 S_{1,1,1,-4,-2}-8192 S_{1,1,1,-4,2}+221184 S_{1,1,1,-3,-3} \\
& -8192 S_{1,1,1,-3,3}+69632 S_{1,1,1,-2,-4}+57344 S_{1,, 1,1,-2,4}-16384 S_{1,1,1,1,-5}+65536 S_{1,1,1,1,5} \\
& +73728 S_{1,1,1,4,-2}+81920 S_{1,1,1,4,2}+131072 S_{1,1,1,5,1}+32768 S_{1,1,2,-3,-2} \\
& +16384 S_{1,1,2,-3,2}+131072 S_{1,1,2,-2,-3}+98304 S_{1,1,2,4,1}-16384 S_{1,1,3,-3,1} \\
& -20480 S_{1,1,3,-2,-2}-16384 S_{1,1,3,-2,2}+98304 S_{1,1,4,-2,1}+73728 S_{1,1,4,1,-2} \\
& +81920 S_{1,1,4,1,2}+81920 S_{1,1,4,2,1}+163840 S_{1,1,5,1,1}-8192 S_{1,2,-4,1,1}+163840 S_{1,2,-3,-2,1} \\
& +57344 S_{1,2,-3,1,-2}+16384 S_{1,2,-3,1,2}+16384 S_{1,2,-3,2,1}+147456 S_{1,2,-2,-3,1} \\
& +73728 S_{1,2,-2,-2,-2}+81920 S_{1,2,-2,-2,2}+90112 S_{1,2,-2,1,-3}-8192 S_{1,2,-2,1,3} \\
& +24576 S_{1,2,-2,2,-2}-8192 S_{1,2,-2,3,1}+32768 S_{1,2,1,-3,-2}+16384 S_{1,2,1,-3,2} \\
& +131072 S_{1,2,1,-2,-3}+98304 S_{1,2,1,4,1}+81920 S_{1,2,4,1,1}-8192 S_{1,3,-2,1,1}+28672 S_{1,3,-2,-2,1} \\
& +8192 S_{1,3,-2,1,2}+8192 S_{1,3,-2,2,1}-16384 S_{1,3,1,-3,1}-20480 S_{1,3,1,-2,-2}-16384 S_{1,3,1,-2,2}
\end{aligned}
$$

Five-loop ABA

$$
\begin{aligned}
& +61440 S_{1,4,-2,1,1}+90112 S_{1,4,1,-2,1}+65536 S_{1,4,1,1,-2}+81920 S_{1,4,1,1,2}+81920 S_{1,4,1,2,1} \\
& +81920 S_{1,4,2,1,1}+163840 S_{1,5,1,1,1}+8192 S_{2,-4,1,1,1}+163840 S_{2,-3,-2,1,1} \\
& +114688 S_{2,-3,1,-2,1}+32768 S_{2,-3,1,1,-2}+163840 S_{2,-2,-3,1,1}+98304 S_{2,-2,-2,-2,1} \\
& +73728 S_{2,-2,-2,1,-2}+81920 S_{2,-2,-2,1,2}+81920 S_{2,-2,-2,2,1}+131072 S_{2,-2,1,-3,1} \\
& +65536 S_{2,-2,1,-2,-2}+81920 S_{2,-2,1,-2,2}+57344 S_{2,-2,1,1,-3}+8192 S_{2,-2,1,2,-2} \\
& +49152 S_{2,-2,2,-2,1}+8192 S_{2,-2,2,1,-2}-8192 S_{2,1,-4,1,1}+163840 S_{2,1,-3,-2,1} \\
& +57344 S_{2,1,-3,1,-2}+16384 S_{2,1,-3,1,2}+16384 S_{2,1,-3,2,1}+147456 S_{2,1,-2,-3,1} \\
& +73728 S_{2,1,-2,-2,-2}+81920 S_{2,1,-2,-2,2}+90112 S_{2,1,-2,1,-3}-8192 S_{2,1,-2,1,3} \\
& +24576 S_{2,1,-2,2,-2}-8192 S_{2,1,-2,3,1}+32768 S_{2,1,1,-3,-2}+16384 S_{2,1,1,-3,2} \\
& +131072 S_{2,1,1,-2,-3}+98304 S_{2,1,1,4,1}+81920 S_{2,1,1,1,1}+16384 S_{2,2,-3,1,1} \\
& +98304 S_{2,2,-2,-2,1}+32768 S_{2,2,-2,1,-2}+16384 S_{2,2,-2,1,2}+16384 S_{2,2,-2,2,1} \\
& -16384 S_{2,3,-2,1,1}+81920 S_{2,4,1,1,1}+8192 S_{3,-3,1,1,1}+36864 S_{3,-2,-2,1,1} \\
& +16384 S_{3,-2,1,-2,1}+4096 S_{3,-2,1,1,-2}-8192 S_{3,1,-3,1,1}+28672 S_{3,1,-2,-2,1} \\
& +8192 S_{3,1,-2,1,2}+8192 S_{3,1,-2,2,1}-16384 S_{3,1,1,-3,1}-20480 S_{3,1,1,-2,-2}-16384 S_{3,1,1,-2,2} \\
& -16384 S_{3,2,-2,1,1}+77824 S_{4,-2,1,1,1}+49152 S_{4,1,-2,1,1}+81920 S_{4,1,1,1,-2,1}+65536 S_{4,1,1,1,-2} \\
& +81920 S_{4,1,1,1,2}+81920 S_{4,1,1,2,1}+81920 S_{4,1,2,1,1}+81920 S_{4,2,1,1,1}+163840 S_{5,1,1,1,1} \\
& -327680 S_{-3,-2,1,1,1,1}-294912 S_{-3,1,-2,1,1,1}-196608 S_{-3,1,1,-2,1,1}-49152 S_{-3,1,1,1,-2,1} \\
& -327680 S_{-2,-3,1,1,1,1}-155648 S_{-2,-2,-2,1,1,1}-163840 S_{-2,-2,1,-2,1,1} \\
& -163840 S_{-2,-2,1,1,-2,1}-131072 S_{-2,-2,1,1,1,-2}-163840 S_{-2,-2,1,1,1,2}-163840 S_{-2,-2,1,1,2,1} \\
& -163840 S_{-2,-2,1,2,1,1}-163840 S_{-2,-2,2,1,1,1}-294912 S_{-2,1,-3,1,1,1}-172032 S_{-2,1,-2,-2,1,1}
\end{aligned}
$$

Five-loop ABA

$$
\begin{aligned}
& -180224 S_{-2,1,-2,1,-2,1}-131072 S_{-2,1,-2,1,1,-2}-163840 S_{-2,1,-2,1,1,2}-163840 S_{-2,1,-2,1,2,1} \\
& -163840 S_{-2,1,-2,2,1,1}-196608 S_{-2,1,1,-3,1,1}-204800 S_{-2,1,1,-2,-2,1}-114688 S_{-2,1,1,-2,1,-2} \\
& -131072 S_{-2,1,1,-2,1,2}-131072 S_{-2,1,1,-2,2,1}-65536 S_{-2,1,1,1,-3,1}-57344 S_{-2,1,1,1,-2,-2} \\
& -65536 S_{-2,1,1,1,-2,2}+S_{2}\left(\left(1024 S_{-3}+4096 S_{3}\right) S_{-2}^{2}+\left(11264 S_{-5}+5120 S_{5}-8192 S_{-4,1}\right.\right. \\
& -6144 S_{-3,2}-8192 S_{-2,3}+2048 S_{4,1}+12288 S_{-3,1,1}-4096 S_{-2,-2,1}+12288 S_{-2,1,2} \\
& \left.+12288 S_{-2,2,1}-24576 S_{-2,1,1,1}\right) S_{-2}+8192 S_{-7}+9216 S_{7}-16384 S_{-6,1}-6144 S_{-5,-2} \\
& -16384 S_{-5,2}-1024 S_{-4,-3}-17408 S_{-4,3}-15360 S_{-3,4}-18432 S_{-2,5}-5120 S_{4,3} \\
& +4096 S_{5,2}+6144 S_{6,1}+32768 S_{-5,1,1}-6144 S_{-4,-2,1}+36864 S_{-4,1,2}+36864 S_{-4,2,1} \\
& -4096 S_{-3,-3,1}-2048 S_{-3,-2,-2}-4096 S_{-3,-2,2}+36864 S_{-3,1,3}+40960 S_{-3,2,2} \\
& +36864 S_{-3,3,1}+2048 S_{-2,-4,1}-8192 S_{-2,-3,2}+10240 S_{-2,-2,3}+S_{-2,1}\left(-4096 S_{-4}\right. \\
& \left.-8192 S_{4}+12288 S_{-3,1}+16384 S_{-2,2}-8192 S_{-2,1,1}\right)+S_{-3}\left(6144 S_{-4}+3072 S_{4}\right. \\
& \left.-6144 S_{-3,1}-4096 S_{-2,2}+12288 S_{-2,1,1}\right)+S_{3}\left(10240 S_{-4}+3072 S_{4}-\frac{47104 S_{-3,1}}{3}\right.
\end{aligned}
$$

Five-loop ABA

$$
\begin{aligned}
& \left.-\frac{40960 S_{-2,2}}{3}+\frac{69632}{3} S_{-2,1,1}\right)+34816 S_{-2,1,4}+36864 S_{-2,2,3}+36864 S_{-2,3,2} \\
& +32768 S_{-2,4,1}-4096 S_{4,1,2}-4096 S_{4,2,1}-73728 S_{-4,1,1,1}-81920 S_{-3,1,1,2} \\
& -81920 S_{-3,1,2,1}-81920 S_{-3,2,1,1}+24576 S_{-2,-3,1,1}+4096 S_{-2,-2,-2,1}+8192 S_{-2,-2,1,2} \\
& +8192 S_{-2,-2,2,1}-8192 S_{-2,1,1,-3}-73728 S_{-2,1,1,3}-81920 S_{-2,1,2,2}-73728 S_{-2,1,3,1} \\
& -8192 S_{-2,2,-2,1}-81920 S_{-2,2,1,2}-81920 S_{-2,2,2,1}-73728 S_{-2,3,1,1}+24576 S_{4,1,1,1} \\
& +163840 S_{-3,1,1,1,1}-49152 S_{-2,-2,1,1,1}-16384 S_{-2,1,-2,1,1}+163840 S_{-2,1,1,1,2} \\
& \left.+163840 S_{-2,1,1,2,1}+163840 S_{-2,1,2,1,1}+163840 S_{-2,2,1,1,1}-327680 S_{-2,1,1,1,1,1}\right) \\
& -65536 S_{-2,1,2,-2,1,1}-131072 S_{-2,2,-2,1,1,1}-65536 S_{-2,2,1,-2,1,1}-327680 S_{1,-3,-2,1,1,1} \\
& -294912 S_{1,-3,1,-2,1,1}-147456 S_{1,-3,1,1,-2,1}-16384 S_{1,-3,1,1,1,-2}-327680 S_{1,-2,-3,1,1,1} \\
& -188416 S_{1,-2,-2,-2,1,1}-180224 S_{1,-2,-2,1,-2,1}-131072 S_{1,-2,-2,1,1,-2} \\
& -163840 S_{1,-2,-2,1,1,2}-163840 S_{1,-2,-2,1,2,1}-163840 S_{1,-2,-2,2,1,1}-294912 S_{1,-2,1,-3,1,1} \\
& -188416 S_{1,-2,1,-2,-2,1}-131072 S_{1,-2,1,-2,1,-2}-163840 S_{1,-2,1,-2,1,2}-163840 S_{1,-2,1,-2,2,1} \\
& -180224 S_{1,-2,1,1,-3,1}-106496 S_{1,-2,1,1,-2,-2}-131072 S_{1,-2,1,1,-2,2}-49152 S_{1,-2,1,1,1,-3} \\
& -49152 S_{1,-2,1,2,-2,1}-131072 S_{1,-2,2,-2,1,1}-49152 S_{1,-2,2,1,-2,1}-16384 S_{1,1,-4,1,1,1} \\
& -327680 S_{1,1,-3,-2,1,1}-229376 S_{1,1,-3,1,-2,1}-65536 S_{1,1,-3,1,1,-2}-327680 S_{1,1,-2,-3,1,1} \\
& -196608 S_{1,1,-2,-2,-2,1}-147456 S_{1,1,-2,-2,1,-2}-163840 S_{1,1,-2,-2,1,2}-163840 S_{1,1,-2,-2,2,1} \\
& -262144 S_{1,1,-2,1,-3,1}-131072 S_{1,1,-2,1,-2,-2}-163840 S_{1,1,-2,1,-2,2}-114688 S_{1,1,-2,1,1,-3}
\end{aligned}
$$

Five-loop ABA

$$
\begin{aligned}
& -16384 S_{1,1,-2,1,2,-2}-98304 S_{1,1,-2,2,-2,1}-16384 S_{1,1,-2,2,1,-2}+16384 S_{1,1,1,-4,1,1} \\
& -327680 S_{1,1,1,-3,-2,1}-114688 S_{1,1,1,-3,1,-2}-32768 S_{1,1,1,-3,1,2}-32768 S_{1,1,1,-3,2,1} \\
& -294912 S_{1,1,1,-2,-3,1}-147456 S_{1,1,1,-2,-2,-2}-163840 S_{1,1,1,-2,-2,2}-180224 S_{1,1,1,-2,1,-3} \\
& +16384 S_{1,1,1,-2,1,3}-49152 S_{1,1,1,-2,2,-2}+16384 S_{1,1,1,-2,3,1}-65536 S_{1,1,1,1,-3,-2} \\
& -32768 S_{1,1,1,1,-3,2}-262144 S_{1,1,1,1,-2,-3}-196608 S_{1,1,1,1,4,1}-163840 S_{1,1,1,4,1,1} \\
& -32768 S_{1,1,2,-3,1,1}-196608 S_{1,1,2,-2,-2,1}-65536 S_{1,1,2,-2,1,-2}-32768 S_{1,1,2,-2,1,2} \\
& -32768 S_{1,1,2,-2,2,1}+32768 S_{1,1,3,-2,1,1}-163840 S_{1,1,4,1,1,1}-32768 S_{1,2,-3,1,1,1} \\
& -163840 S_{1,2,-2,-2,1,1}-131072 S_{1,2,-2,1,-2,1}-49152 S_{1,2,-2,1,1,-2}-32768 S_{1,2,1,-3,1,1} \\
& -196608 S_{1,2,1,-2,-2,1}-65536 S_{1,2,1,-2,1,-2}-32768 S_{1,2,1,-2,1,2}-32768 S_{1,2,1,-2,2,1} \\
& -16384 S_{1,3,-2,1,1,1}+32768 S_{1,3,1,-2,1,1}-163840 S_{1,4,1,1,1,1,1}-163840 S_{2,-2,-2,1,1,1} \\
& -163840 S_{2,-2,1,-2,1,1}-98304 S_{2,-2,1,1,-2,1}-16384 S_{2,-2,1,1,1,-2}-32768 S_{2,1,-3,1,1,1} \\
& -163840 S_{2,1,-2,-2,1,1}-131072 S_{2,1,-2,1,-2,1}-49152 S_{2,1,-2,1,1,-2}-32768 S_{2,1,1,-3,1,1} \\
& -196608 S_{2,1,1,-2,-2,1}-65536 S_{2,1,1,-2,1,-2}-32768 S_{2,1,1,-2,1,2}-32768 S_{2,1,1,-2,2,1} \\
& -32768 S_{2,2,-2,1,1,1}-16384 S_{3,1,-2,1,1,1}+32768 S_{3,1,1,-2,1,1}-163840 S_{4,1,1,1,1,1,1} \\
& +327680 S_{-2,-2,1,1,1,1,1}+327680 S_{-2,1,-2,1,1,1,1}+262144 S_{-2,1,1,-2,1,1,1}
\end{aligned}
$$

Five-loop ABA

$$
\begin{aligned}
& +131072 S_{-2,1,1,1,-2,1,1}+327680 S_{1,-2,-2,1,1,1,1}+327680 S_{1,-2,1,-2,1,1,1} \\
& +262144 S_{1,-2,1,1,-2,1,1}+98304 S_{1,-2,1,1,1,-2,1}+327680 S_{1,1,-2,-2,1,1,1} \\
& +327680 S_{1,1,-2,1,-2,1,1}+196608 S_{1,1,-2,1,1,-2,1}+32768 S_{1,1,-2,1,1,1,-2}+65536 S_{1,1,1,-3,1,1,1} \\
& +327680 S_{1,1,1,-2,-2,1,1}+262144 S_{1,1,1,-2,1,-2,1}+98304 S_{1,1,1,-2,1,1,-2}+65536 S_{1,1,1,1,-3,1,1} \\
& +393216 S_{1,1,1,1,-2,-2,1}+131072 S_{1,1,1,1,-2,1,-2}+65536 S_{1,1,1,1,-2,1,2}+65536 S_{1,1,1,1,-2,2,1} \\
& +65536 S_{1,1,2,-2,1,1,1}+65536 S_{1,2,1,-2,1,1,1}+65536 S_{2,1,1,-2,1,1,1}-131072 S_{1,1,1,1,-2,1,1,1} \\
& +512\left(4 S_{-2,1} S_{-3}-S_{-3}^{2}+S_{3}^{2}-4 S_{-2,1}^{2}+S_{1}^{2}\left(2 S_{-2}^{2}-4 S_{-4}+6 S_{4}+16 S_{-3,1}+12 S_{-2,2}\right.\right. \\
& \left.-16 S_{-2,1,1}\right)+S_{1}\left(-2 S_{-5}-4 S_{-3} S_{2}+4 S_{-2} S_{3}+4 S_{2} S_{3}+6 S_{5}+8 S_{-4,1}-4 S_{-3,-2}\right. \\
& +12 S_{-3,2}+8 S_{-2} S_{-2,1}+8 S_{2} S_{-2,1}+8 S_{-2,3}+4 S_{4,1}-24 S_{-3,1,1}-8 S_{-2,-2,1}-24 S_{-2,1,2} \\
& \left.\left.-24 S_{-2,2,1}+48 S_{-2,1,1,1}\right)\right) \zeta(3) \\
& +2560 S_{1}\left(S_{3}-S_{-3}+2 S_{-2,1}\right) \zeta(5)
\end{aligned}
$$

Five-loop finite-size corrections

- The Lüscher correction at five loops is extremely difficult to handle!

Five-loop finite-size corrections

- The Lüscher correction at five loops is extremely difficult to handle!
- The transcendental structure is much more involved compared to the four-loop case. For $M=2$

$$
\Delta_{w}^{(4)}=-11340+2592 \zeta(3)-5184 \zeta(3)^{2}-11520 \zeta(5)+30240 \zeta(7)
$$

Five-loop finite-size corrections

- The Lüscher correction at five loops is extremely difficult to handle!
- The transcendental structure is much more involved compared to the four-loop case. For $M=2$

$$
\Delta_{w}^{(4)}=-11340+2592 \zeta(3)-5184 \zeta(3)^{2}-11520 \zeta(5)+30240 \zeta(7)
$$

- For any M:

Five-loop wrapping

$$
\begin{aligned}
\Delta_{w}^{(5)}= & 13440 \underline{\zeta(7)} S_{1}^{2}-1536 \underline{\zeta(3)^{2}} S_{1}^{3}+2560 \underline{\zeta(5)} S_{1}\left(3 S_{1}\left(2 S_{-2}+S_{2}\right)-S_{1}^{3}+S_{-3}+S_{3}-2 S_{-2,1}\right) \\
& +1024 \underline{\zeta(3)} S_{1}\left(-2 S_{1}^{3} S_{-2}+2 S_{1}^{2}\left(2 S_{-3}+3 S_{3}\right)+S_{1}\left(4 S_{-2}^{2}+6 S_{2} S_{-2}+3 S_{-4}-S_{4}\right.\right. \\
& \left.\left.-2\left(S_{-3,1}-2 S_{-2,-2}+S_{-2,2}+S_{3,1}-2 S_{-2,1,1}\right)\right)+2 S_{-2}\left(S_{-3}+S_{3}-2 S_{-2,1}\right)\right) \\
& -1024 S_{1}\left((S _ { 1 } (3 S _ { 2 } + 2 S _ { - 2 }) + S _ { - 3 } + S _ { 3 } - 2 S _ { - 2 , 1 } - S _ { 1 } ^ { 3 }) \left(S_{-5}-S_{5}+2 S_{-2,-3}-2 S_{3,-2}\right.\right. \\
& \left.+2 S_{4,1}-4 S_{-2,-2,1}\right)+2 S_{1}^{2}\left(2 S_{-6}-2 S_{6}-S_{-4,-2}+2 S_{-3,-3}+3 S_{-2,-4}+S_{-2,4}\right. \\
& \left.-2 S_{3,-3}-2 S_{4,-2}+S_{4,2}+4 S_{5,1}-4 S_{-3,-2,1}-4 S_{-2,-3,1}-2 S_{-2,-2,-2}-2 S_{-2,-2,2}\right) \\
& +S_{1}\left(5 S_{-7}-5 S_{7}-4 S_{-6,1}+4 S_{-5,-2}-S_{-5,2}+3 S_{-4,-3}+S_{-3,-4}-S_{-3,4}+8 S_{-2,-5}\right. \\
& -6 S_{-2,5}-4 S_{3,-4}+2 S_{3,4}-8 S_{4,-3}+3 S_{4,3}-6 S_{5,-2}+S_{5,2}+6 S_{6,1}+2 S_{-5,1,1} \\
& -6 S_{-4,-2,1}-2 S_{-3,-3,1}+2 S_{-3,-2,-2}-2 S_{-3,1,-3}-8 S_{-2,-4,1}+6 S_{-2,-3,-2}-2 S_{-2,-3,2} \\
& +14 S_{-2,-2,-3}-6 S_{-2,-2,3}-2 S_{-2,1,-4}+2 S_{-2,1,4}-2 S_{-2,2,-3}-4 S_{-2,3,-2}+10 S_{-2,4,1} \\
& +2 S_{3,-3,1}-4 S_{3,-2,-2}+2 S_{3,-2,2}+2 S_{3,1,-3}+2 S_{3,2,-2}+10 S_{4,-2,1}+6 S_{4,1,-2}-2 S_{4,1,2} \\
& -2 S_{4,2,1}-2 S_{5,1,1}+4 S_{-3,1,-2,1}+4 S_{-2,-3,1,1}-20 S_{-2,-2,-2,1}-8 S_{-2,-2,1,-2} \\
& +4 S_{-2,-2,1,2}+4 S_{-2,-2,2,1}+4 S_{-2,1,-3,1}-4 S_{-2,1,-2,-2}+4 S_{-2,1,1,-3}+4 S_{-2,2,-2,1} \\
& \left.\left.-4 S_{3,-2,1,1}-4 S_{3,1,1,-2}+4 S_{4,1,1,1}-8 S_{-2,-2,1,1,1}-8 S_{-2,1,1,-2,1}\right)\right)
\end{aligned}
$$

Checks of our result

- Continuation of full result to $M=-1+\omega$ agrees both with leading order and next to leading order BFKL equation!

Checks of our result

- Continuation of full result to $M=-1+\omega$ agrees both with leading order and next to leading order BFKL equation!
- It also agrees with double-logarithmic constraints when continued to $M=-2+\omega$

Checks of our result

- Continuation of full result to $M=-1+\omega$ agrees both with leading order and next to leading order BFKL equation!
- It also agrees with double-logarithmic constraints when continued to $M=-2+\omega$
- Large M asymptotics matches the cusp anomalous dimension!

Checks of our result

- Continuation of full result to $M=-1+\omega$ agrees both with leading order and next to leading order BFKL equation!
- It also agrees with double-logarithmic constraints when continued to $M=-2+\omega$
- Large M asymptotics matches the cusp anomalous dimension!
- We found correct 5-loop anomalous dimension for twist-2 operators

Checks of our result

- Continuation of full result to $M=-1+\omega$ agrees both with leading order and next to leading order BFKL equation!
- It also agrees with double-logarithmic constraints when continued to $M=-2+\omega$
- Large M asymptotics matches the cusp anomalous dimension!
- We found correct 5-loop anomalous dimension for twist-2 operators

TBA equations reproduce our result

Checks of our result

- Continuation of full result to $M=-1+\omega$ agrees both with leading order and next to leading order BFKL equation!
- It also agrees with double-logarithmic constraints when continued to $M=-2+\omega$
- Large M asymptotics matches the cusp anomalous dimension!
- We found correct 5-loop anomalous dimension for twist-2 operators

TBA equations reproduce our result

- First non-trivial test of the TBA equations!

Conclusions

- The spectral equations for the planar AdS/CFT correspondence, if correct, provide the full solution to the spectral problem!

Conclusions

- The spectral equations for the planar AdS/CFT correspondence, if correct, provide the full solution to the spectral problem!
- The five-loop anomalous dimension of twist-two operators provide the first test at weak-coupling

Conclusions

- The spectral equations for the planar AdS/CFT correspondence, if correct, provide the full solution to the spectral problem!
- The five-loop anomalous dimension of twist-two operators provide the first test at weak-coupling

Perspectives

- Strong coupling tests should be performed - much more difficult

Conclusions

- The spectral equations for the planar AdS/CFT correspondence, if correct, provide the full solution to the spectral problem!
- The five-loop anomalous dimension of twist-two operators provide the first test at weak-coupling

Perspectives

- Strong coupling tests should be performed - much more difficult
- Destri-de Vega type equations

Thank you!

