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Main questions for a CFT

Find the spectrum of conformal weights
≡ eigenvalues of the dilatation operator
≡ (anomalous) dimensions of operators

〈O(0)O(x)〉 =
1

|x |2∆

Find the OPE coefficients Cijk defined through

〈Oi (x1)Oj (x2)Ok (x3)〉 =
Cijk

|x1 − x2|∆i +∆j−∆k |x1 − x3|∆i +∆k−∆j |x2 − x3|∆j +∆k−∆i

Once ∆i and Cijk are known, all higher point correlation functions are, in
principle, determined explicitly.
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How to find anomalous dimensions using AdS/CFT?

Anomalous dimensions
of operators

≡ Energies of corresponding
string states in AdS5 × S5

One computes directly energies of string states

Use the similarity transformation

iD = L ◦ 1

2
(P0 + K0) ◦ L−1

to identify the energies with anomalous dimensions

Use integrability... −→ lots of information...

But on the gauge theory side there is also an alternative (and equivalent) way
using 2-point correlation functions

〈O(0)O(x)〉 =
1

|x |2∆

It is natural to expect that on the string side of the correspondence this other
way should also be possible
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How to find anomalous dimensions using AdS/CFT?

Having methods for computing correlation functions is interesting as for the
OPE coefficients we do not have an alternative but to compute directly a
3-point correlation function

〈Oi (x1)Oj (x2)Ok (x3)〉

This is well understood only for operators dual to supergravity fields
(≡ massless string states) – there one uses Green’s functions of the
corresponding fields

But the corresponding operators are protected by supersymmetry and all have
vanishing anomalous dimensions!
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Goal

Ultimate goal: Develop methods for computing correlation
functions of operators corresponding to massive string states

This is certainly very difficult for generic string states

We will consider classical string states — spinning strings in AdS5 × S5

For these states, correlation functions should be accessible by a classical
computation

In this work we concentrated mainly on 2-point functions, for which we know
the result

〈O(0)O(x)〉 =
1

|x |2∆

where ∆ should be exactly equal to the energy of the corresponding classical
string state
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Classical spinning strings

The string action in AdS5 × S5 has the form

Sstring =

√
λ

4π

∫
d2σ (Polyakov action)

At strong coupling the classical approximation becomes good, especially with
nonzero angular momenta (of order

√
λ).

The solution looks generically like a rotating string in the center of
AdS5 × S5 — very far from the boundary

On the gauge theory side this string configuration corresponds to a ‘long’
operator composed of very many fields

The energy is a function of the angular momentae

E = ∆ =
√
λF (Ji , . . .)

The corresponding two point correlation function should be equal to

〈O(0)O(x)〉 =
const.

|x |2∆
∼ e−2

√
λ·F (Ji ,...)·log |x|

so should be accessible by a classical string computation...
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Two point correlation functions

In the AdS/CFT correspondence the prescription for two point functions
involves essentially the Green’s function of the corresponding field

We expect to have, for each spinning string solution and any two arbitrary
points on the boundary, a new classical string solution which should
determine the two point correlation function giving the same anomalous
dimension

Proceed first to the analog of an ordinary point particle exchange...
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A point particle example — flat space

The Green’s function G (x , y) for a particle of mass m can be found by
evaluating the (Polyakov) integral∫

[de][dxµ] exp

(
−1

2

∫ 1

0

(e−1ẋ2 + em2)dt

)
with the boundary conditions xµ(0) = xµ, xµ(1) = yµ

Setting e to a constant, this becomes∫ ∞
0

ds

∫
[dxµ](measure) exp

(
−1

2

∫ s

0

(
ẋ2 + m2

)
dt

)
Evaluate by saddle point:
i) use xµ(t) = (yµ − xµ)t/s + xµ giving

SP =
1

2

(
|x − y |2

s
+ m2s

)
ii) perform the saddle point w.r.t. the modular parameter s

G (x , y) ∼ e−m|x−y |

The standard scalar G (x , y) can be obtained by evaluating the path integral
exactly [Cohen, Moore, Nelson, Polchinski]
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ẋ2 + m2

)
dt

)
Evaluate by saddle point:
i) use xµ(t) = (yµ − xµ)t/s + xµ giving

SP =
1

2

(
|x − y |2

s
+ m2s

)
ii) perform the saddle point w.r.t. the modular parameter s

G (x , y) ∼ e−m|x−y |

The standard scalar G (x , y) can be obtained by evaluating the path integral
exactly [Cohen, Moore, Nelson, Polchinski]

Romuald A. Janik (Kraków) Correlation functions and classical strings IGST 2010, Stockholm 9 / 28



A point particle example — flat space

The Green’s function G (x , y) for a particle of mass m can be found by
evaluating the (Polyakov) integral∫

[de][dxµ] exp

(
−1

2

∫ 1

0

(e−1ẋ2 + em2)dt

)
with the boundary conditions xµ(0) = xµ, xµ(1) = yµ

Setting e to a constant, this becomes∫ ∞
0

ds

∫
[dxµ](measure) exp

(
−1

2

∫ s

0

(
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A point particle example — AdS5

We use the Poincare coordinates of AdS5

ds2
AdSE

5
=

dx2 + dz2

z2

The Polyakov action becomes

SP =
1

2

∫ s
2

− s
2

dτ

{
ẋ2 + ż2

z2
+ m2

AdS

}
We impose the boundary conditions x(−s/2) = 0, x(s/2) = x and
z(±s/2) = ε

The solutions of the equations of motions are

x(τ) = R tanhκτ + x0 z(τ) = R
1

coshκτ

Plugging it into the action yields

SP =
1

2

(
κ2 + m2

AdS

)
s =

1

2

(
4

s2
log2 x

ε
+ m2

AdS

)
s
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ẋ2 + ż2
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A point particle example — AdS5

Extremizing w.r.t. the modular parameter gives

G (0, x) = e−SP = e−2mAdS log x
ε =

(
|x |
ε

)−2mAdS

We recovered the standard relation between particle masses in AdS and
operator dimensions in the large mass limit ∆ = mAdS + corrections.

Interesting subtleties in Minkowski signature...

For spacelike separations, the answer is (not unexpectedly) as above

For timelike separations, there is no real solution to the equations of motion.
One has to use a complex solution which is essential to get again a real
exponent, as expected in a CFT

Proceed to the case of strings...
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String cylinder amplitude — flat space

The string analog of the preceeding setup is a cylinder amplitude

A calculation in flat space in Euclidean signature (with pointlike boundary
conditions) was performed by Cohen, Moore, Nelson, Polchinski∫ ∞

0

ds

s13
e4πs

∏
(1− e−4πns)−24︸ ︷︷ ︸

fluctuation determinant

· e−
(∆x)2

4πs︸ ︷︷ ︸
e−SP (∆x)

This expression can be directly rewritten in terms of Green’s functions of the
intermediate string states∫ ∞

0

ds

s13

∞∑
N=0

dNe−4πsm2
N e−

(∆x)2

4πs =
∞∑

N=0

dN

∫
d26p

(2π)26

e ip∆x

p2 + 4m2
N

We would like to know how to perform such a calculation in order to directly
extract the contribution (Green’s function) corresponding to a classical
rotating string
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String cylinder amplitude — puzzles

A typical flat space rotating string looks like

x1 + ix2 = a1 sin n1σe in1τ x3 + ix4 = a2 sin n2(σ + σ0)e in2τ

First attempt — proceed in Euclidean signature

Problem: It is not a solution of Euclidean equations of motion!

The string masses in∫ ∞
0

ds

s13
e4πs

∏
(1− e−4πns)−24︸ ︷︷ ︸

fluctuation determinant

· e−
(∆x)2

4πs︸ ︷︷ ︸
e−SP (∆x)

came from fluctuation modes – eigenfunctions of the Laplace operator – and
not solutions of equations of motion

This route is closed for generalization to AdS5 × S5. There the string action
is highly nonlinear and macroscopic spinning strings cannot be considered as
small fluctuations!
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not solutions of equations of motion

This route is closed for generalization to AdS5 × S5. There the string action
is highly nonlinear and macroscopic spinning strings cannot be considered as
small fluctuations!
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String cylinder amplitude — puzzles

Second attempt — proceed in Minkowski signature

Now it is a solution of equations of motion...

But we would get an incorrect result — the mass is determined by the string
energy and not its classical action!

How to reconcile this with the standard path integral treatment???

Essentially the same apparent problem appears in ordinary quantum mechanics..

A state with definite energy evolves in time with the phase factor e−iET . For
a classical state E ∼ Eclass with Eclass being the energy of the classical
trajectory

However the contribution of the same classical trajectory to the path integral
is given by the action

e iSclass [xi ,xf ,T ]

???
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Semiclassical propagator revisited

We have to implement convolution with an initial semi-classical (WKB)
wavefunction∫

dxi Ψ(xi ) · e iSclass [xi ,xf ,T ] =

∫
dxi e i

R xi p(x)dx · e iSclass [xi ,xf ,T ]

Evaluate the xi integral by saddle point

p(xi ) +
∂Sclass [xi , xf ,T ]

∂xi
= p(xi )− p = 0

which means that the trajectory in the WKB wavefunction and the
propagator coincide

Rewrite

exp

{
i

∫ xi

p(x) dx

}
· exp {iSclass [xi , xf ,T ]}

as

exp {iSclass [xi , xf ,T ]} · exp

{
−i

∫ xf

xi

p(x) dx

}
· exp

{
i

∫ xf

p(x) dx

}
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Semiclassical propagator revisited

exp {iSclass [xi , xf ,T ]} · exp

{
−i

∫ xf

xi

p(x) dx

}
· exp

{
i

∫ xf

p(x) dx

}

The last term is just the WKB wavefunction Ψ(xf ), while the first two terms
combine to the standard energy phase

Sclass [xi , xf ,T ]−
∫ xf

xi

p(x)dx =

∫ T

0

(L− pẋ) dt = −EclassT

We will have to include similar projectors on classical wavefunctions when
evaluating the cylinder amplitude for the string

One further subtlety: we should subtract off the zero mode which enters the
arguments of the Green’s function...
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Prescription for the Green’s function of a classical string state

Compute the cylinder amplitude with modular parameter s by finding a
suitable solution of the classical equations of motion

Implement projection on the wavefunction by the additional factor

exp(iSclass [in, out, s]) · exp

(
−i

∫
dσdτ (π − π0) · (ẋ − ẋ0)

)
where π0 and ẋ0 are the zero mode parts of the canonical momentum and
velocity i.e.

π0(τ) ≡ 1

2π

∫ 2π

0

dσ π(τ, σ) ẋ0(τ) ≡ 1

2π

∫ 2π

0

dσ ẋ(τ, σ)

Finally, extremize w.r.t. the modular parameter s
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)
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Rotating string in S5

Example: circular rotating string in S5

ψ = σ φ1 = φ2 = ωτ and τAdS =
√

1 + ω2τ

where j1 = j2 ≡ j = ω/2. The energy is EAdS =
√
λ
√

1 + ω2 =
√
λ
√

1 + 4j2

The Polyakov action takes the form

SP = −
√
λ

4π

∫ s
2

− s
2

dτ

∫ 2π

0

dσ

{
− ẋ2 + ż2

z2
+ S5 part

}
The classical solution for x(τ), z(τ) will be as for the point particle described
earlier with the S5 part as above...

Evaluating the action and implementing the wavefunction projectors yields

exp

i

√
λ

2

κ2 + (ω2 − 1)︸ ︷︷ ︸
S5 action

 s

 −→ exp

i

√
λ

2

κ2 − (ω2 + 1)︸ ︷︷ ︸
S5 energy

 s
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− ẋ2 + ż2
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Rotating string in S5

Substituting the value of κ we get

exp

{
i

√
λ

2

(
4

s2
log2 x

ε
− (ω2 + 1)

)
s

}

Finally extremizing w.r.t. the modular parameter gives the correct two point
function

〈O(0)O(x)〉 =
1

|x |2
√
λ
√

1+4j2

For strings rotating in S5 it is clear that one always gets the correct answer
(after finishing the paper, we learned that in this case a very similar construction

was done by [Tsuji])

More subtleties appear when strings also rotate in AdS5...
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Rotating strings in AdS5

Here we face a couple of difficulties...

The rotation of the string interferes with the bending of the string necessary
for the classical solution to approach two given points on the boundary

It is not trivial to find such solutions...

We found a sequence of transformations for generating any such solution
starting from the original rotating string
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Rotating strings in AdS5

Original spinning string in the center of AdS5

In global (‘embedding’)
coordinates:

Y0 ∝ sinκt

Yi = . . .

Y5 ∝ cosκt
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Rotating strings in AdS5

A spinning string emanating from the boundary and propagating into the bulk

Substitute:

Y0 ↔ iY4 κ→ iκ

this exchanges

iD ↔ 1

2
(P0 + K0)

As a result

z = eκt
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Rotating strings in AdS5

A spinning string approaching two given points on the boundary

Perform a special conformal
transformation

xµ → xµ + bµ(x2 + z2)

1 + 2xb + b2(x2 + z2)

z → z

1 + 2xb + b2(x2 + z2)
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Rotating strings in AdS5

Since the string motion is in the same space as the arguments of the
correlation function, one has to decouple the zero mode
recall

exp(iSclass [in, out, s]) · exp

(
−i

∫
dσdτ (π − π0) · (ẋ − ẋ0)

)
However in curved spacetime this notion is ambiguous and depends on the
coordinate system!

We found that one natural choice exists which is compatible with the so(2, 4)
symmetry of AdS5:

−Y 2
0 + Y 2

1 + Y 2
2 + Y 2

3 + Y 2
4 − Y 2

5 = −1

We use the YA coordinates to define the zero modes as so(2, 4) acts on them
linearly

With these choices, we found for a couple of examples that one recovers the
correct two point correlation functions

Romuald A. Janik (Kraków) Correlation functions and classical strings IGST 2010, Stockholm 24 / 28



Rotating strings in AdS5

Since the string motion is in the same space as the arguments of the
correlation function, one has to decouple the zero mode
recall

exp(iSclass [in, out, s]) · exp

(
−i

∫
dσdτ (π − π0) · (ẋ − ẋ0)
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Three point correlation functions

The main point of the two point correlation function computation was to
define how does the string solution look like close to the operator insertion
point

Formulation of a three point correlation function:

a classical solution with the topology of a punctured sphere
the asymptotics close to each puncture can be read off from the two point
correlation function computation
Alternatively — use classical vertex operators of Buchbinder, Tseytlin to
define the states...
Moreover one has to deal with the wavefunction projectors

Still a very difficult (but interesting) problem... work in progress
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Three point correlation functions

In this work we have just showed how the standard spacetime dependence of
a three point correlation function

〈Oi (x1)Oj (x2)Ok (x3)〉 =
Cijk

|x1 − x2|∆i +∆j−∆k |x1 − x3|∆i +∆k−∆j |x2 − x3|∆j +∆k−∆i

emerges from our setup (under some assumptions)

One has to first extremize w.r.t. the modular parameters si

Then perform the saddle point w.r.t. (x , z). This cannot be done in a closed
form...

But one may use conformal transformations to get the full dependence on the
positions of the operator insertion points x1, x2, x3
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Summary

We have found how to directly reproduce two point correlation functions of
operators dual to classical spinning string state using a classical string
computations

The key ingredients were
i) a projection onto the wavefunction
ii) a subtraction of zero modes in a way which respects so(2, 4) symmetry

We have found how the spacetime dependence of a three point function
arises from such a computation (under quite drastic simplifying assumptions!)
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Outlook

Numerous open problems

Issues of the existence of a solution relevant for the three point function with
given external operators

Interrelations with the integrability of the classical string in AdS5 × S5

Superselection sectors?

Analog of the algebraic curve construction of spinning strings??

More generally — investigate integrable quantum field theories on various
Riemann surfaces:

Cylinder — the spectrum
Disc (or plane) — Wilson loops/scattering amplitudes
Punctured sphere — Correlation functions
Higher genus — 1/N corrections (?)
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Interrelations with the integrability of the classical string in AdS5 × S5

Superselection sectors?

Analog of the algebraic curve construction of spinning strings??

More generally — investigate integrable quantum field theories on various
Riemann surfaces:

Cylinder — the spectrum
Disc (or plane) — Wilson loops/scattering amplitudes
Punctured sphere — Correlation functions
Higher genus — 1/N corrections (?)
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