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From Matthias Staudacher’s talk:

Gauge Theory Meets String Theory

The asymptotic Bethe ansatz yields an integral equation for an interpola-
ting scaling function f(g) at arbitrary values of g. [ Beisert, Eden, Staudacher ‘06 |

At weak coupling this equation was (numerically) tested up to
four |00p Order in ga Uge theory: [ Bern, Czakon, Dixon, Kosower, Smirnov, ‘06; Cachazo, Spradlin, Volovich ‘06 ].

f(g) — 892 g4 + 88 4 6 — 16 (630 6 + 4((3)2) 98 +

A ﬁVG—'OOp test i1s under WaY [ Bourjaily, Henn, Spradiin, work in progress |.

At strong coupling the scaling function agrees with string theo-
ry to the three known orders | cusse, Kiebanov, Polyakov 021, [ Frolov, Tseytiin ‘02],
[ Roiban, Tirziu, Tseytlin ‘07; Roiban, Tseytiin '07] @S Was analytically shown by | sasso. korchemsky, Kotasski ‘07

3 log 2
flo)=4g — 82 _ K 1_

— The AdS/CFT correspondence appears to be exactly true !




The issue: the anomalous dimension of high twist operators Tr[D” 7]
in the scaling limit S, J — oo J/In S — fixed

ABA vs. direct worldsheet calculations



The issue: the anomalous dimension of high twist operators Tr[D* Z”]
in the scaling limit S, J — oo J/In S — fixed

AdS dual is a generalization of the GKP string Frolov, Tseytlin

* homogeneous in the scaling limit == generalized scaling function

T (E——S)__ 1
VA InS f(\/7 )= +7f1() sz(f)—F...

= fN) + (0N + a1 (M) Inl +go(N)(Inf)* +...)
/— wJ + 04 (qo(N) + (W) Inl+ (N (In0)? + ... ) + O)
\/XIDS —I—EQZ \/Xl)n . (cn(mO)™ +dp(Inf)" " +...) + O
(3 % O(6) renorm. group
fa(l) = =K + £#(8(In£)* — 61Inl 4 q,,) + O(£*) Alday, Maldacens
3 7

4o string? _5 In2 + Z — 2K RR, Tseytlin
Highly successful Asymptotic Bethe Ansatz Beisert, Staudacher
* equation for universal scaling function Freyhult, Rej, Staudacher
Aoy = —§ In2 + E Gromov; Basso, Korchemsky; Volin
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Outline

e Quantum corrections in the semiclassical approximation
e Strings in AdS light-cone gauge

* Open and closed string classical solutions with winding
for high twist operators in the scaling limit

* Quantum corrections to their energies
1 loop; equivalence of 2 approaches
2 loops; comparison with ABA

 Resummation of leading logarithms
e On finite size corrections

 Summary and a question



Quantum corrections to conserved charges

Options:
1. (a) For a given classical solution evaluate:
(E) = = | D® E[®]e " /D(I)QZ Je5®]
Is of
/<Taﬁ / SO M v
a density

(b) Eliminate the parameters of the classical solution between

E=(F) Qi=(Q;) (Ii;)=0

Essentially partition function with delta function constraint

2. Extract (F), (Q;) from partition function with chemical potentials

7 — o= BE(r.hi) _ Tr[e_ﬂﬁm] Haq = Hoq + KE — Z hiQi
[Haq, B) = 0 = [Haa, Q] @'
Perturbation theory + ground state + Virasoro: V (k. hs, VA) = 0



Equivalence?
+1200
For garden-variety sigma models: / di[dhsle” " Fe™ 2" Z], hy]

integral over chemical potentials yields delta function constraints for
(E), (Q;) and Virasoro

Standard approach:

10X 1 0%
(B) =——=—  (Q;) = —I_Eahz'

8 Ok
2

1. and 2. are equivalent if the integral over chemical potentials
can be treated in a saddle-point approximation

& eliminate ~, h; repeating 1.(b)

® Care is needed for finite size systems



Information independent of worldsheet details:

F(E O;. fA) — 0



For (high) twist operators: Tr[D” Z”]

E-S5

* 3 chemical potentials: ~, w, v
* scaling limit leading to generalized scaling function:

E~S5S<InS — k=w chemical potential for £ — S

* Virasoro constraint : kK = k(v)
From “grand potential” X(v) :

dX(v)  dr(v)
= AE=5) =)

Yi(v) = (Haa) + r(v)(E = 5) = v{J)

TTr[Hgde_ﬁﬁM] may first be nonzero at 2 loops

[ AR(V 117 \ U
=(E-5) = - _l/dd(y ) _ )] |(B(v) = (Haa)) — ydil(/ )}
7=y = [T )] @) - ) P ) B




A conclusion:
In general, “grand potential” > and the expectation value of the
2-d Hamiltonian ( H,;) are needed to determine the quantum

corrections to conserved charges.

Which 2-d Hamiltonian Ho;?



A conclusion:
In general, “grand potential” > and the expectation value of the
2-d Hamiltonian ( H,;) are needed to determine the quantum

corrections to conserved charges.

Which 2-d Hamiltonian Hy4?

A it is the worldsheet Hamiltonian before reparametrization gauge
fixing, which is set to zero by a Virasoro constraint.

» Technical simplification: (Haq) =0



A conclusion:

III

In general, “grand potential” > and the expectation value of the
2-d Hamiltonian ( H,;) are needed to determine the quantum
corrections to conserved charges.

Which 2-d Hamiltonian Hy4?

A it is the worldsheet Hamiltonian before reparametrization gauge
fixing, which is set to zero by a Virasoro constraint.
» Technical simplification: (Hagq) =0

guaranteed to all orders if Virasoro constraint is solved Hyy; = 0

==  (some) light-cone gauge



Which 2-d Hamiltonian Hy,4?

A it is the worldsheet Hamiltonian before reparametrization gauge
fixing, which is set to zero by a Virasoro constraint.

» Technical simplification: (Haq) = 0

guaranteed to all orders if Virasoro constraint is solved Hyy; = 0

== (some) light-cone gauge

®» H>5, is not the light-cone Hamiltonian H;. = — P~

L=0i P+ i™P +i&,P"'— Hoy

| =

L=i;P"—(—P" ) =P — Hy,



Close relation between folded string and minimal surface with a cusp
Kruczenski, Tirziu, RR, Tseytlin; Alday, Maldacena

T=—itr X{=-iX, X)b=-iXs

and discrete SO(2,4) in planes (0,5) and (1,2) and SO(2) rotations
and projection to local coordinates

A Expect the same for the string with .S and J

A Use light-cone gauge natural to local coordinates

Further technical simplifications Giombi, Ricci, RR, Tseytlin, Vergu



. . ~ ~ R K N v
Classical Virasoro: ~ =1+ 2 k= P 5 — m

* Generalized scaling function i.t.o. the free parameter of the solution

VA InS dv
I S PP oy dF (D)
E:ﬁlns—w’:(u) (1+27) -
e Eliminate v: f =1y + . f; + . fo +
F1(€)
fo = /1402 f
0 + £, 1 N
o 1, AT (0)\2
£, — 1+€2[]—“2(£)+§( — Al V1 BT H
R 1 on3/2 (A2
B \/1+z2+2(1 &) <d€)

 Similar expressions if additional parameters are present



The AdSs; x S° Green-Schwarz string
in AdS light-cone gauge

Metsaev, Tseytlin, Thorn

Unique 2-derivative action with kK — symmetry based on the coset
PSU(2,2|4)/50(4,1) x SO(5)

L= /STI’ [L(—l) N\ *L(_l) + L(—z) N\ L(z)} Metsaev, Tseytlin

: : : 1 0
Bosonic group element for Poincare coordinates: gads = ( )

x z1
1 1
ds® = — (detdz™ + da*dx + dz"dzM) = — (dx™dx,, + dz?) + du™ du™
2 z
ot = a3+ 20 r,x* =zt +iz? uMuM =1

Gauge fixing: K, diffeomorphisms, consistency

rrel =0, ot =phr, =gg*’ = diag(* >

Our purpose: further Wick rotation



... and solve the Virasoro constraint

1 2
I = T/dT/dUEE, T—R:

N~

= — — Metsaev, Tseytlin, Thorn
2 2ma’ 27T

Lp =i+ (M + iz_QZNmpMNijnj)Q +1(6°0; + n'n; — h.c.) — 272 (n?)?
Y@+ M M) 4 21[ 200t p 207 — iz ) + h.c.]

. p+ =1

. pM off-diag components of 6-d Dirac matrices

* Non-polynomial; perturbation theory requires bosonic background

* Quartic in fermions

* Power-counting renormalizable (|z] =0 = [z] [0] =1/2 = [n])

* Need regularization preserving classical (local) symmetries

* cancellation of power-like divergences requires careful analysis
of path integral measure and k-symmetry ghosts



The light-cone state dual to Tr[D” Z”]

1 1
o s2 /2 2 .2 /2
L=z + i + z7p° + Pk
(a) direct construction (b) map from global coordinates
Model after the cusp r Ui traint)
rom Virasoro constrain
5 = Z x+ — T / Kruczenski
\ o’ B Giombi, Ricci, RR, Tseytlin, Vergu
Separated variable solution with ¢ # 0 winding ~_
=~ T _ N 1% m
2= Vi — rt =1 rT =—(k—Dem) — go——ln7+ Ino
o 7 20 2K 2
m

=1=-0v;+m 0 g ey g 2R Giombi, Ricci, RR, Tseytlin, Vergu

VA

* 2d coord. transf. to conformal gauge Fo = 2—(1 + m?)
T

* Interpretation of parameters: from comparison w/ closed string
(an additional parameter compared to the usual (SJ) string)



ds®> = — cosh®p dt? + dp? + sinh?p d6? + dp?

(S,)) string and flat space closed string solution w/ winding suggest:

L =KT Y = VT +mo p = p(o) 9:w7'+
bending in AdS5

. _ p'? — k2 cosh? p + w?sinh? p +sinh? p 92 + 12+ m? =0
Virasoro constraints: o
I w sinh” p ¥ +vm =20

Same equation as forS; = 59 in AdS5 Tirziu, Tseytlin

* solution: elliptic; periodicity condition: relations btw parameters
* glue several arcs to cover complete range of

* change in topology: string no longer folded (“rounded spiky string”)



t = KT © =vT +mo p=p(o) 0 =wr+9(o)

Scaling limit: (1) relax periodicity condition
) k=w—00, Mmv—o00, p=kr>—1v>—m*— o0

!

cosh p = +/1 + 72 cosh(uo) tan ¥ = ~ coth(uo) o v
ol

Piece together n arcs to have a closed string

Parameters vs. energy, spin and momentum

" d d
Eo = Qnm/ 29 cosh? 0 S = 2n/<;/ %9 sinh? 0 J =v
0 2 0 2T

nK 2rp n
—S= TP —pu~—1InS
Eo—S =k S ~ 3 —(1 e p~ o In

Eo— S \/ln S +v2 4+ m?



Eo— S \/ln S +v2 4+ m?

Also recovered from ABA in presence of nontrivial winding Kruczenski, Tirziu



The equivalence

* Embedding coordinates

Xo +1X5 = cosh p e't X1 +1X9 =sinhp el? X3 =X4,=0

: Y
* boost in (02) and (15) plans w/ parameter: tanh(2v) =
l 20 = =
YoVs — Y1 Vs = ;—m YZ4Y2 V2 -Y2=1
R

v, —1iv, WU—pu, K-—K, %/%t—>—im', ls — po

lY0—>Y0, Yi =Y, Y>—iYs, Y5 —iYs
5

A

VoM

A

YoYo —Y1Y5 =

Y Y +YS Y =1
» Interested in dependence on closed string param’s or .S and J

A Solution is still homogeneous, even in the presence of m = 1w
Xo+ X3 =coshrsinfe*?, Xs+ X4 =coshr cosBe™ , X;+iXy =sinhret?



L

Fluctuation action:

SN S
= |(‘3t:1: + §m:r

3 . B . 1. i s \2
+(A(RDM ~ (@R BRI + Sk (RHM + g™ i (R2) )

Al (oo - o

i 04@0f — 5055 + 7 @t — 50 (01

1 1 1 .
+ Ok (0,0F ——aﬂP(Pﬂs PNENO + Tk (007 — < 0kp(pTP pP)H)) l) - ~—2(772)2]

2 z
21 T 1, . ~ L1~ 1 5, 1
+ [ U (RZ) (339 - 50399(,0H5P6])lu9 - 591 T Ul(asl’ - 533)
- ~ a N 1 a o~ n 1~ 1 ~ [0 o~k 1 ~ %k
+ il ) (R2)M (00, — 50s(p0 1) 0w — SO+ < W(0e7" — 57 ))]

R - rotation in (56) plane due to non-trivial ¥

Next steps:
find partition function;
finite size effects in this approach?



» Essential feature of the fluctuation actionfor 2 = 0 = w

guadratic fluctuation operator is diagonal

( 0 p2+i?1+,:32) 0 014 \
R R m 0 0 0 01x4
AVFEODFwWw z&emix ke = |7 0 s mm o,
0 0 gt B 014
\ 04x1 04x1 04x1 04x1 @1(4;2472))
2
A 1-loop free energy: F, = 47r/ (2m)? (Indet K — Indet Kp)
v
- ~ 2 ~ ~ A ~ ~ 4
det Kp = [p*+ 1(1+#%)]" (p* + &%p§ + pi — 200 pop1) [p* + 3(0* + ©?)]
i 452 — D2 + 32 2 . . 4
det Kp = (p2 + 16 ) + i(VPO — wp1)2]

» Equivalent to sum of fluctuation energies



1-loop free energy: Giombi, Ricci, RR, Tseytlin, Vergu

Fi(o,0) = =14+ 9%+ /(1 +22)(1 — w?) — (9% + ©?) In(0? + 9?) + 2(1 + 2% In(1 + 7?)

— 2492 — @) In [V2+ 02 —02(\/1+ 02 + V1 — @?)]

 w = 0 reproduces know results Frolov, Tirziu, Tseytlin

w # 0 same symmetries as the classical solution

Ve w K& /dtd3<—>/<;2/dtds

1-loop generalized scaling function:
1
f; = F1(l, —im
VI 2 ! )




What about the direct evaluation of (¥ — S)1 and (J)1?

' = \2/; “ [V ' ) <2l> O — D"y — 4ig0p — 0:(p™°p%) 507 — 30 (p™Cp

1 nontrivial contributions due to existence of a tadpole for @

E-S= g—ffds [f%f%(?<52+ 2[2)]

Direct evaluation of the graphs ~—O O yields:

3.7:1 (0, w
ov }

(E—8); = —1ns []—"1(& o)

1 — w?

T [ﬁflw,w) (14 5% — )

dv

Comforting that it is same as partition function approach

1 — w?

L dF (D, w)]



A 2-loop free energy: three types of diagramatic contributions

< OO0 OO

Both forJ = Oand forJ # 0

* All fields and interaction terms enter these diagrams
e for J = 0 quadratic terms are 2d Lorentz invariant; expand in J
* Regularization:

* Dimensional regularization is not an option

* Algebraic manipulations in two dimensions

 2d conformal invariance should take care of logarithmic divergences

* Consistent with flat space limit



* Regularization: stay ind = 2

* The calculation: reduce to scalar integrals through manipulations
valid either at the level of integrand or only under
the integral sign, e.g.
- no external lines:

1 1
p‘fpg — 5P - pad™P 4 5P1 X pae®P

- two external lines with momentum ¢:

o ( plq P2 o (D1 <qq)2()1022 - Q>> 508 <p1 Ly P -qc)]gpz - Q)) P

* All divergent integrals are 1-loop bubbles; express all of them
i.t.0. a single one, e.g. I|1]

21 d2p 1 21 — lam
I[m]_/(%)z —— Im?| - I]1] = ——1

* Propagator for 0-momentum éi (Pp) =



2-loop free energy to fourth order: Giombi, Ricci, RR, Tseytlin, Vergu

Fo(D, %) = —K + % [(9 — 2K —61n2)0% + (9 + 2K — 6In2)d? — 4(52 + 0?) In(9? + @?),
: ;

e [(126K — 449 4+ 72(17 — 9In2) In 2)9* + 6(18K — 55 + 72In 2(—1 + 31n 2)) *b*

76
+ (126K — 1025 + 72(17 — 91n2) In 2)d* — 48In(92 + b2) ((—17 +18In2)7"
+6

(11 — 610 2)0%0? + (—17 + 181n 2)d? + 6(92 — 0?)2 In(P2 + w2))]+0(ﬁ6, )

2-loop generalized scaling function to fourth order at zero winding:

1 1, ¢ AT, (0)\2
fo = 14 - () —\1+02 —2
9 *1_'_62{.7:2()4—2( T—I—ﬁfl() + 77 )}
fo = —K «— Same as gp2 from ABA
+ £2 (81n2€—61n€
7 9 11 3 233
1 —6In"¢— =1 In2nf¢—=-In*2+ —In2+ —K — — 6
+€<6n€ 6n€+3n n/ g o +8n+32 TG + O(£°)

Also reproduces ABA results of Gromov



Some comments:

* framework of higher-loop calculations is consistent with ABA
nontrivial relation between worldsheet Z with chemical potentials
and anomalous dimensions £/

* AdS-Ic calculations are technically simpler than in other gauges
* nontrivial cancelations between graphs of different topology
* leading logarithms in £ not generated by 1Pl 2-loop graphs

* leading logarithms in £ generated by non-1PI 2-loop graphs
generalizes to higher loops

* Extension to include w is straightforward

Is it possible to access leading logarithms to all orders?



All-loop resummation of leading logarithms: Giombi, Ricci, RR, Tseytlin, Vergu

1. in free energy: leading logs from maximally disconnected graphs
2. the only field with tadpole is ¢ Q

3. logs arise from fields with mass ©

- compute 1-loop effective action for @ l\l
- integrate out ¢ at the classical level .,

* Only S°fields yield logarithms:

1 1
L = 1 cosh(2¢) + e2¢(8ty)2 + 6_2¢(5’sy)2 + — 2Py

* Integrate them out: 5
A\ ¢
Serf(d) = \2/—_ cosh(2¢) — C P22
s

2T
* The leading-logarithm free energy to all orders:

9 also In v
F = 14+ —F with dependence of the
\/X 1-loop free energy




Eliminate ©; restrict to leading logarithms

szog[lz] _ T E-S5 Y ey . _Ad]:(ﬁ)
Oufit}= — WJiI—:—;E— f(g) - \/CX lrlé; T 1 _% v L7?<L/) v (i£> }
o oy dF (V)
2 2 (4+3f2)LOg[f]2 EELL:V}"(V)—(I—I—VQ) .
Out[12)= (1 +,2)3/2 \/XIIIS dV
442 (8+12¢*+5¢*) Log[/]?
Out[13]= (1 +’2)5/2

2¢% (64 + 144 ¢ + 120 ¢* + 35 /°) Log[/]*

Out[14]= 7/2
(1+(’2)

4¢% (128 + 384 4% + 480 /* + 280 /% + 63 /%) Log [/]°
(1+¢’2’)9/2

Out[15]=

1

- (1 +{,2)11/2

4¢% (512 + 1920 % + 3200 #* + 2800 ¢° + 1260 ¢° + 231 /*°) Log[/]°



Eliminate v; restrict to leading logarithms

gz
f(ﬁ) \/X) yleading log \/1 T In /2

1 4 \F
* agreement with ABA Gromov
1
e pole at In (% = —3 A is probably an artifact of LL truncation

* subleading logs are in principle accessible



Can this approach be used in finite volume?

A test: compare the two possible approaches at 1-loopat J = 0

* 1-loop universal scaling function:

1 572 B 31n2 5%
— = |-3In2— +0(n"%9)| B, =— InS — O(ln? S
=7 121n% S ( )| B S = o TOMTS)
- Non-wrapping finite size correction from ABA Schafer-Nameki, Zamaklar
- Exact 1-loop worldsheet calculation Beccaria, Dunne, Forini, Pawellek, Tseytlin

Captured in partition function approach by simply discretizing space-like momentum
on a worldsheet of length L =41n S

® Scale of masses of fluctuations becomes relevant: use closed string scale

Fi =

/ dw 27 Zln (w? + (2mn/L)? + 2) (w? + (27rn/L)2)\ (w? + (2mn/L)* + 4)
(2m)? L = (w? + (2mn +1)

Leadingln S (continuum) limit: 2—7T Z — /dp 572
L B 2
n 121n° S



Equivalent with the evaluation of (E — 5)1?
£-8= /ds [/4: + 2k + R(2¢% + \5:\2)}
1-loop expectation value on worldsheet of length L = 41In S

<E—S>1 =&+ &

I e o I e s
o=t X V| e
2

+(2

0. @)

dw 27 4 4
oo [ et s + |
e 2wy e

n=—oo

Extract leading finite size correction:

31n2
T

E, = In S O(n~2S)

Same as from partition function



... yet curiously different from vanishing NLIE result  Fioravanti, Grinza, Rossi

What about higher loops?

* Tempted to expect that the leading 1/1n2 S correction to the
universal scaling function at 2-loops may be obtained by simply
discretizing space-like momenta

* only integrals containing at least one massless field contribute



Summary

. @: ABA and worldsheet agree at 2-loops for high twist
* Consistent approach to higher-loop comp’si.t.o. 2d free energy

» AdS light-cone gauge leads to important technical simplifications

- a curious feature is the existence of 2d tadpoles; treated perturbatively

* Discussed states with winding; (N)NLO ABA results to be determined
 Leading logarithms can be resummed to all orders; same as ABA

* Free energy approach appears to capture leading finite size correction
at 1-loop; expect the same holds at 2-loops; only massless contrib’s



A question:
Thermodynamic Bethe Ansatz:
e LER) — ZIL R] = Zmirvor[R, L] = e LR/ (B)

With chemical potentials:
Eo(R) > Eo(R, hz)

]

“Ground state” energy extracted as “grand potential” of the ws theory

However, we used a different relation: just eliminate h;between

d¥> dr
dh; ~ dn, D) @) B =slE) - Z hi(Qi) —fEX=InZ

s there a contradiction? Not visible directly at 1-loop, as there (E)
is given in terms of the grand potential



