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R-matrix of XXZ spin-1chain
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where the functions are
by = e’ sinh A sinh 27,
bs = €} sinh ) sinh 27,

a; = sinh(A + ) sinh(\ + 27n),
as = sinh Asinh(\ + n),

az = sinh Asinh(\ — ), ¢y = e *sinh(\ + ) sinh 2n,
as = sinh Asinh(\ + 1) 4 sinh nsinh 2n, ¢, = e *sinh Asinh 27,

by = e*sinh(\ + n) sinh 27, c3 = e~} sinh 7 sinh 27).

The R-matrix satisfies the YB-eq in the space C? @ C* @ C3

Rio(A) Rig(A + p) Ros(p) = Ros(p) Ruz(A + p) Ras(A), (2)

where we use the standard notation of the QISM



Relation with the symmetric form Riy(\,n) = Ri2(A,n) by the simi-

larity transformation
R12<)‘7 77) — Ad eXp(&A(hl — hQ))RH()\v 77)7 (3)

with @ = 1 and h = diag(1,0,—1). The transformed R-matrix obeys
the YB-equation due to the U(1) symmetry

[hy + ho, Ria(A\,n)] = 0. (4)

The R-matrix (1) has a few important properties: regularity, unitarity,

PT- and crossing- symmetries.
R(0,n) = sinh(n) sinh(2n)P, (5)
where P is the permutation matrix of C* ® C?. The unitarity relation
Ri2(A)Rar(—=A) = p(M)1, (6)
here Ro1(A) = PRy2(A)P. The PT-symmetry
Ri5(A) = Rar(N). (7)
The crossing symmetry property
RN =(Q@®L)R*(-A—n)(Q®1), (8)
the matrix @) is given by

0 0 —e™"
Q = 0O 1 0 . (9)
—e7 0 0



The R-matrix in the braid group form

~

R(A,n) =PR(\,n),

admits the spectral decomposition

~

R(A,m) = ps(A\,n)P5(n) + p3(X,n)P3(n) + p1(A,n)Pi(n),

Ps(n) =1 — P3(n) — Pi(n),

\

here w(e) = € — e and

(10)

(11)
(12)

(13)



0
e —e'l 1
, 0
P = 1= —e 1 —e (14)
0
1 —e " e 2

0
\ )
The R-matrix (1) has four degeneration points A = 47, and A = £2n.

The R-matrix (10) can also be expressed in the following form
?7 -1

R\, n) = ez (e** — 1) R(n)+(sinh n sinh 2n) IH—% (e —1) R '(n).
(15)
The constant R-matrix
R (n) = Jim (4exp(F(2A+n)R(A,n)) (16)
being a solution of the YB-equation in the braid group form
RisRosR1s = RogRisRos, (17)
has the spectral decomposition (g = €*")
y 1 1
R(n) = abs(n) = _Ps(n) + 5 A(0). (18)

Hence, R(n) satisfies the cubic equation

() — 1) (Ron + 1) (R - 1) =0 9

q q



[ts matrix form is
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here w(e?!) = e — 21,
For the purpose of establishing a relation with the Birman-Wenzl-
Murakami algebra, the one dimensional projector Pi(n) is related to the

rank one matrix £(n) = pPy(n) with g = g+1+1/q and ¢ = €*?, which

satisfies
E%(n) = n&(n), (21)
Rn)E(m) = EmR) = 50, (22)

and also
R(n) — R™'(n) = w(q) (1 — &(n)), (23)

where w(q) = ¢—1/¢. From these relations we conclude that R, R~ and
& provide a realisation of the Birman-Wenzl-Murakami algebra Wy /(q, 1/4¢?)
in the space H = @V C?.



The projector P5(n) on five dimentional subspace of C* @ C? cor-
responds to a symmetrizer on spin 2 irreducible representation of the

quantum algebra U, (0(3)). It can be used to construct an R-matrix for
higher spin R*Y(\, 1) € End(C®> ® C?) by the fusion procedure

RZD(A, ) =~ Ria(2n, 1) Ris(A + n,7m) Ras(A — 1, 7m). (24)

One can use higher symmetrizers of the BMW-algebra W(q, 1/¢%) to get
R-matrices RV (), 1) € End(C*V) @ C3).



Birman-Wenzl-Murakami algebra Wy(q, v)

The defining relations of the BMW algebra Wy (q, v), for the generators

1, 0i,0; Lande;, i =1,..., N — 1, are recalled for convenience,
0i0i+10; = 0i4+10{04+1, 0;05 = 00, for "L - j’ > 1, (25)
€,0;, = 0;€;, = VE€;, (26)
+1 1
e;0; 6=V e, (27)
~1
g —o;, =w(q)(l—e). (28)

It can be shown that the dimension of the BMW-algebra Wy (q, v) is
dim Wx(q,v) = 2N — D)L,
Many useful relations follow from the definition above
w—v+1/v B (q—v)(v+1/q)

e’ = pe;, with pu= : (29)
w vw

Another important consequence of the relations (26,28) is
(0; — q)(oi + ¢ )o; —v) =0. (30)
There is the natural inclusion of Wy (q,v) C Wx(q,v), M < N.

The Yang-Baxterization procedure yields two spectral parameter de-

pendent elements

41
@y L1 vtg
o, (u) » (u g — U o, ) + W+ g

These elements satisfy the YB-equation in the braid group form

=+ + + + + +
o (o) (wv)o ™ (v) = o ()0 (wv)o ) (w). (32)

Their unitarity relation is

oo (wh) = (1 —w(u—u?). (33)



In order to see the connection with the previous formulas we set v = 1/¢?
and find that
ot (e

12

Riii(An)
of (15) and

o) = Ripr(A,n)
of Aéz)—case.

The irreducible representations of the BMW algebra Wiy (q,v) are
more complicated than the irreps of the symmetric group Gy or the
Hecke algebra H v (q), although they can be parameterized by the Young
diagrams. The simplest, one-dimensional irreps of Wy (g, v) are defined

by the symmetrizer and antisymmetrizer, respectively. The symmetrizer

of the Wix(q, v) is given by

1 Y, -y, _ N
Sy =0 g oy g D)o (g NSy, (34)

_ _ L
81—1, Sg—mdl (q ) (35)

We use the standard notation for the g-factorial [n],! = [n],[n—1], - - - [2],[1],
and the g-numbers [n], = (¢" — ¢ ™)/(¢ — ¢~'). The elements S,,,
n = 1,...,N are idempotents, i.e. S? = S, . In addition, the sym-
metrizer Sy is also central.

In the realisation on C* ® C? of the BMW algebra Ws(q, ¢ 2)

1

O'1=R(?7)=QP5—Q_1P3+VP1, V:?,

(36)
and e; is proportional to the rank one projector P,

e1 = pP = (q+1+q )P (37)



Thus

A g =(g+q )P, (38)
o' P = ¢ ' P, (39)
61P5 = 0. (40)

Similarly, the antisymmetrizer of the Wi(q, v) is given by

a [zv11qm§”<q>a§”<q2> oL@ DA, ()

with
A=1, A= ﬁa@(q). (12)
The elements A,, n = 1,..., N are idempotents and the antisym-

metrizer Ay is also central in Wi (q, v).

ot (@)o1 () = 2,01 (a). (43)

In the realisation (36,13)

717 (a) = [2)u P, (45)
0_1j:1P3 = —q$1P3, (46)
€1P3 = (. (47)

In addition, in this realisation, the antisymmetrizer A3 has rank one. A
straightforward calculation yields A4 = 0. Consequently all the higher

antisymmetrizers vanish identically for n > 4.



In a general case of Wy(q,v), it can be shown that the following

identities are valid

o (@)S, = S0t (g) =0, (48)
o g A = Ao (@Y =0, (49)

fori=1,...,n—1and 1 <n < N. The relations (48,25) can also be

written in the followmg form

0,5, = Spoi = qS,, (50)
e;Sy, = Spei = 0, (51)
oAy = Aoy — —éAn, (52)
e, = Ane; =0, (53)
fori=1,...,n—1and 1 <n < N. From these identities it is evident

that Sy and AN are central in Wiy(q, ). Also, using the relations (50-
29), it is straightforward to check that S, and A,, are idempotents; i.e.
S2=8,and A2=A,, n=1,...,N.

The BMW algebra Wi (q, ¢~2) can be used to describe the multiplet

structure of the spectra of some open quantum spin chains.



Open Spin Chain

According to the QISM the R-matrix R(u,q) can be used to construct

an auxiliary L-operator
Loj(u) = Roj(u, q). (54)

Notice that now we use the multiplicative spectral parameter, which
in the case of the model XX Z; is given by u = exp(—A). Then the
monodromy matrix of a spin chain with N sites is the product of L-

matrices in End(Vf) whose entries are in End(V})

T'(u) = Lon(u)Lon-1(u) - - - Lo1(u), (55)

while the entries of Ty,(u) are operators on the whole space of states

H = ®;_,V;. As a consequence of the YB-eq one has

Ro (=) Lo () Loyi(w) = Lo(w)Loj(w)Roy (=) (56)
and
R (%) Ty (w) To(w) = To(w)Ti(u) Ris (%) | (57)
The transfer matrix
t(u) = troT (u), (58)

is the generating function of the integrals of motion with the periodic

boundary condition.



For non-periodic boundary condition one has to use the Sklyanin for-

malism. The monodromy matrix T (u) consists of the two matrices T'(u)
(55) and a reflection matrix K~ (u) € End(V)
T(u) = T(uw) K (u)TH(u™t). (59)

1

Using the unitarity relation (6) (R (u™!) = Ro1(u)) one gets

T Hu™) = Rig(u)Ryo(u) - - Ryo(u). (60)
Taking into account Ris(u,n) = PiaRo1(u, n)Pio one gets

T(U) = RNQ(U)RN_UV(U) cee ng(u)Kf(u)ng(u)Rgg(U) ce RN()(U).
(61)
The generating function 7(u) of the integrals of motion is (with an extra

reflection matrix K (u))
T(u) = trg (K ()T (u)) . (62)

The reflection matrices K= (u) are solutions to the reflection equation In

particular, the Hamiltonian is given by H = %% In7(u)|y=1,

N-1 ~
. tro (1) Ry o (1)
H= L1 0 \"JtN g
; Rz,z—l—l( )+ trOK(;L(D +
1 /dK; (1) 1 dirgK, (1)
- . (63
- 2 ( du - troK; (1)  du (63)

~

%Ri,m—l(uﬂu:l is a function of the

generators of Wy (q,¢?) on the space H = @ C?. In our case we can
take the constant K-matrices K~ (u) =1 and K (u) = Q'Q.

The Hamiltonian density h;;y1 =



Asymptotic expansion of T(u) at u — 0 (or at u — o0) results in

some matrices
T(u)=u " LyyLyy_1 - Loy + O™, (64)

Here the constant L-matrices L, are upper triangular matrices which
coincide with the asymptotic limit A — +o00 (16) of the R-matrices (1),
Ly, = Ry; = Pojfioj. Hence, the YB-equation for the constant R-matrix
is

R Lo Lo = LoiLo i B 41 (65)
With R, = Pz',i—i—lRi,i—l—l and multiplying the previous equation by the

permutation operator P; ;41 one gets
[Riis1, Ly i L] = 0. (66)

It is then obvious that py/(0;) = Riis1, pwi(e:) = p(Pi(n)) The
representation py of the generators of the BMW algebra Wy (g, ¢™?) in

Qi+l

the space H = ®@1'C3, commute with the generators T, of the global (or
diagonal) action of the quantum algebra U, (o(3)) on the space H
[Riie1,T7] =0, T™ =LyyLyy_i- Lo (67)

This product of Ly; can be represented as the image of a multiple co-
product map AN - U,(0(3)) = (Uy(o(3)))*"

T~ = (id®@ pw)(id @ AV) L. (68)

Analogously, the asymptotic expansion of T'(u) at u — oo yields the
matrix T = Lyy Loy -+ Ly (cf. (64)).



It is known that in the space H as a space of representation of U, (0(3))
and Wy (q, ¢ ?) these algebras are mutual centralizers.

According to the centralizer property this induces the decomposition
of the representation space ‘H into direct sum of irreps of both algebras,

being a generalisation of the Schur-Weyl duality:
N
5=0

where Vj is the (2s+1)-dimensional irreducible representation of U, (o(3))
while Uy is corresponding irrep of Wy (q, ¢~2). The dimension of an irrep
of Wy(q,q?) is equal to the multiplicity m of the corresponding irrep

of centralizer algebra U,(o(3)), and vice versa
m(Vsy) =dimU,, m(Uy) = dim V. (70)

The dimension of the irrep Vi of U,(0(3)) and the number n of the
inequivalent irreps in the decomposition (69) are well known. It follows

from the decomposition of the tensor product of the spin 1 representations
of 0(3): dimVy =2s+1,

nv=N+1, my(Vi)= Y mya(Vj), s#0,N—1N, (71)

together with my (V) = my_1(V1), my(Vy_1) = 1+ my_1(Vy_o) =
N — 1 and my(Vy) = 1. However, the number and the dimensions
of representations Uy of Wiy (q,¢™?) can be obtained from its Bratteli

diagram.



For N = 2,3 the number of existing irreducible representations of
Wi (q,q™?) and those entering into the decomposition of the space of
states are the same 3, 4, respectively, while for N > 4 there are more ir-
reps of Wiy than of U, (0(3)), for example ny(W) = 8 while ny(U,(0(3))) =
5.

The decomposition (69) permits to determine the structure of the mul-

tiplets of the Hamiltonian, which is an element of the BMW algebra
WN(Q) q_2)

N-1
d - .
H = Z Riiv1, Diit1 = aR()\y M=o = f(R:) € Wx(g,q?). (72)
im1



According to the QISM, the R-matrices being regular at A = 0, define
the local Hamiltonian density for two sites of the chains. For the X X 7;-

model one gets

d - - .
hxxz = ﬁR(Aa |0 =~ qR(n) — R '(n)
~@-1 (@1 DE-P+R). @)
In the Ag)—case
d I , 1 1
ha= ﬁR(A ) =0 = C]R(U)JF?R (n) = (q +$>P5+(1+5)(P1—P3)-

(74)
The Hamiltonian of the open spin chain with N-sites is then given by

N—-1
H = Z Riii1. (75)
=1

As an example let us consider the case of N = 3 sites when the algebra
Ws(q,1/q¢°) is realised in C* @ C3 @ C?

H = hiy + hos. (76)

It follows
Hxxz83=2(q+1+ )53, (77)
HxxzAs = 2A3 (78)

and similarly for the H4 (74)

H7S; =2(q° + = )33, (79)

Hids = —2(1+ ;)A . (80)



In the case N = 3 there are four irreps of W3: two one-dimensional ir-
reps generated by S3 and Ajs, respectively, the three-dimensional irrep d;
(corresponding to the one-box Young diagram) and the two-dimensional
irrep dy (corresponding to the three-box Young diagram with two rows).
Thus the Hamiltonian being restricted to invariant subspaces can have
up to seven distinct eigenvalues. Their multiplicities are obtained from

the correspondence between the irreps of W3 and the irreps of U, (0(3)):
U(S3) ~ V3, U(A3) ~Vy Ulds) ~ Vi Uldy) ~ Va. (81)

The degeneracies of energy values are (j = 1,2,3; k=1,2)
m(e(Ss)) =7, m(e(As)) = 1, m(e;(ds)) = 3, mler(dz)) =5.  (82)

The exact values of the energy are obtained by direct calculations.



For the XXZ-model of spin 1 the corresponding expressions are

(S =2q+1+ é» e(As) = 2

erlds) = 1, eay(dy) = (% 4 \/% g+ 3+ 3)) ,

q
e1(ds) = (¢ + 1+ é), €o(de) = (¢ + 3+ é)

In the A;Q)—case the corresponding expressions are

1 1
€(S3) = 2(¢° + 5), e(Az) = —2(1+ 5)?
1
er(ds) = (¢* + 5),
1 1 3 8 8 1
ds) == (" + =) £/ +82 —8¢+ — — = + — + —
€2,3(d3) 2((q+q3) \/q+q q+q q3+q4+q6)’
1 1
er(dy) = (1 +=)(¢* — 1+ =),
1(d2) = ( q)( qg) .
1
e(dy) = (1+-)(g° —2g+1— =4 =).
2(ds) = ( q)( . q2)



