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R-matrix of XXZ spin-1chain

R(λ, η) =



a1

a2 b1

a3 b2 b3

c1 a2

c2 a4 b2

a2 b1

c3 c2 a3

c1 a2

a1



, (1)

where the functions are

a1 = sinh(λ + η) sinh(λ + 2η), b2 = eλ sinhλ sinh 2η,

a2 = sinhλ sinh(λ + η), b3 = e2λ sinh η sinh 2η,

a3 = sinhλ sinh(λ− η), c1 = e−λ sinh(λ + η) sinh 2η,

a4 = sinhλ sinh(λ + η) + sinh η sinh 2η, c2 = e−λ sinhλ sinh 2η,

b1 = eλ sinh(λ + η) sinh 2η, c3 = e−2λ sinh η sinh 2η.

The R-matrix satisfies the YB-eq in the space C3 ⊗ C3 ⊗ C3

R12(λ)R13(λ + µ)R23(µ) = R23(µ)R13(λ + µ)R23(λ), (2)

where we use the standard notation of the QISM



Relation with the symmetric form Rt
12(λ, η) = R12(λ, η) by the simi-

larity transformation

R12(λ, η) → Ad exp(αλ(h1 − h2))R12(λ, η), (3)

with α = 1
2 and h = diag(1, 0,−1). The transformed R-matrix obeys

the YB-equation due to the U(1) symmetry

[h1 + h2, R12(λ, η)] = 0. (4)

The R-matrix (1) has a few important properties: regularity, unitarity,

PT- and crossing- symmetries.

R(0, η) = sinh(η) sinh(2η)P , (5)

where P is the permutation matrix of C3 ⊗ C3. The unitarity relation

R12(λ)R21(−λ) = ρ(λ)1, (6)

here R21(λ) = PR12(λ)P . The PT-symmetry

Rt
12(λ) = R21(λ). (7)

The crossing symmetry property

R(λ) = (Q⊗ 1)Rt2(−λ− η) (Q⊗ 1) , (8)

the matrix Q is given by

Q =

 0 0 −e−η

0 1 0

−eη 0 0

 . (9)



The R-matrix in the braid group form

Ř(λ, η) = PR(λ, η), (10)

admits the spectral decomposition

Ř(λ, η) = ρ5(λ, η)P5(η) + ρ3(λ, η)P3(η) + ρ1(λ, η)P1(η), (11)

P5(η) = 1− P3(η)− P1(η), (12)

P3(η) =
1

e2η + e−2η



0

e2η −1

1 ω −1

−1 e−2η

ω ω2 −ω

e2η −1

−1 −ω 1

−1 e−2η

0



, (13)

here ω(eη) = eη − e−η and



P1(η) =
1

e2η + 1 + e−2η



0

0

e2η −eη 1

0

−eη 1 −e−η

0

1 −e−η e−2η

0

0



. (14)

The R-matrix (1) has four degeneration points λ = ±η, and λ = ±2η.

The R-matrix (10) can also be expressed in the following form

Ř(λ, η) =
eη

4

(
e2λ − 1

)
Ř(η)+(sinh η sinh 2η) 1+

e−η

4

(
e−2λ − 1

)
Ř−1(η).

(15)

The constant R-matrix

Ř±1(η) = lim
λ→±∞

(
4 exp(∓(2λ + η))Ř(λ, η)

)
(16)

being a solution of the YB-equation in the braid group form

Ř12Ř23Ř12 = Ř23Ř12Ř23, (17)

has the spectral decomposition (q = e2η)

Ř(η) = qP5(η)−
1

q
P3(η) +

1

q2
P1(η). (18)

Hence, Ř(η) satisfies the cubic equation(
Ř(η)− q1

)(
Ř(η) +

1

q
1

)(
Ř(η)− 1

q2
1

)
= 0. (19)



Its matrix form is

Ř(η) =



e2η

0 1

0 e−2η

1 ω

1 e−ηω

0 1

e−2η e−ηω (1− e−2η)ω

1 ω

e2η



, (20)

here ω(e2η) = e2η − e−2η.

For the purpose of establishing a relation with the Birman-Wenzl-

Murakami algebra, the one dimensional projector P1(η) is related to the

rank one matrix E(η) = µP1(η) with µ = q+1+1/q and q = e2η, which

satisfies

E2(η) = µE(η), (21)

Ř(η)E(η) = E(η)Ř(η) =
1

q2
E(η), (22)

and also

Ř(η)− Ř−1(η) = ω(q) (1− E(η)) , (23)

where ω(q) = q−1/q. From these relations we conclude that Ř, Ř−1 and

E provide a realisation of the Birman-Wenzl-Murakami algebraWN(q, 1/q
2)

in the space H = ⊗N
1 C3.



The projector P5(η) on five dimentional subspace of C3 ⊗ C3 cor-

responds to a symmetrizer on spin 2 irreducible representation of the

quantum algebra Uq(o(3)). It can be used to construct an R-matrix for

higher spin R(2,1)(λ, η) ∈ End(C5 ⊗ C3) by the fusion procedure

R(2,1)(λ, η) ≃ Ř12(2η, η)R13(λ + η, η)R23(λ− η, η). (24)

One can use higher symmetrizers of the BMW-algebraWs(q, 1/q
2) to get

R-matrices R(s,1)(λ, η) ∈ End(C(2s+1) ⊗ C3).



Birman-Wenzl-Murakami algebra WN(q, ν)

The defining relations of the BMW algebra WN(q, ν), for the generators

1, σi , σ
−1
i and ei, i = 1, . . . , N − 1, are recalled for convenience,

σiσi+1σi = σi+1σiσi+1, σiσj = σjσi, for |i− j| > 1, (25)

eiσi = σiei = νei, (26)

eiσ
±1
i−1ei = ν∓1ei, (27)

σi − σ−1
i = ω(q)(1− ei). (28)

It can be shown that the dimension of the BMW-algebra WN(q, ν) is

dimWN(q, ν) = (2N − 1)!!.

Many useful relations follow from the definition above

ei
2 = µei, with µ =

ω − ν + 1/ν

ω
=

(q − ν)(ν + 1/q)

νω
. (29)

Another important consequence of the relations (26,28) is

(σi − q)(σi + q−1)(σi − ν) = 0. (30)

There is the natural inclusion of WM(q, ν) ⊂ WN(q, ν), M < N .

The Yang-Baxterization procedure yields two spectral parameter de-

pendent elements

σ
(±)
i (u) =

1

ω

(
u−1σi − u σ−1

i

)
+

ν ± q±1

uν ± q±1u−1
ei. (31)

These elements satisfy the YB-equation in the braid group form

σ
(±)
i (u)σ

(±)
i+1(uv)σ

(±)
i (v) = σ

(±)
i+1(v)σ

(±)
i (uv)σ

(±)
i+1(u). (32)

Their unitarity relation is

σ
(±)
i (u)σ

(±)
i (u−1) =

(
1− ω−2(u− u−1)2

)
. (33)



In order to see the connection with the previous formulas we set ν = 1/q2

and find that

σ
(−)
i (e−λ) ≃ Ři,i+1(λ, η)

of (15) and

σ
(+)
i (eλ/2) ≃ Ři,i+1(λ, η)

of A
(2)
2 -case.

The irreducible representations of the BMW algebra WN(q, ν) are

more complicated than the irreps of the symmetric group SN or the

Hecke algebra HN(q), although they can be parameterized by the Young

diagrams. The simplest, one-dimensional irreps of WN(q, ν) are defined

by the symmetrizer and antisymmetrizer, respectively. The symmetrizer

of the WN(q, ν) is given by

SN =
1

[N ]q!
σ
(−)
1 (q−1)σ

(−)
2 (q−2) · · ·σ(−)

N−1(q
−(N−1))SN−1, (34)

S1 = 1, S2 =
1

[2]q
σ
(−)
1 (q−1). (35)

We use the standard notation for the q-factorial [n]q! = [n]q[n−1]q · · · [2]q[1]q
and the q-numbers [n]q = (qn − q−n)/(q − q−1). The elements Sn,

n = 1, . . . , N are idempotents, i.e. S2
n = Sn . In addition, the sym-

metrizer SN is also central.

In the realisation on C3 ⊗ C3 of the BMW algebra W2(q, q
−2)

σ1 = Ř(η) = qP5 − q−1P3 + νP1, ν =
1

q2
, (36)

and e1 is proportional to the rank one projector P1

e1 = µP1 = (q + 1 + q−1)P1. (37)



Thus

σ
(−)
1 (q−1) = (q + q−1)P5, (38)

σ±1
1 P5 = q±1P5, (39)

e1P5 = 0. (40)

Similarly, the antisymmetrizer of the WN(q, ν) is given by

AN =
1

[N ]q!
σ
(+)
1 (q)σ

(+)
2 (q2) · · ·σ(+)

N−1(q
N−1)AN−1, (41)

with

A1 = 1, A2 =
1

[2]q
σ
(+)
1 (q). (42)

The elements An, n = 1, . . . , N are idempotents and the antisym-

metrizer AN is also central in WN(q, ν).

σ
(+)
1 (q)σ

(+)
1 (q) = [2]qσ

(+)
1 (q). (43)

It is straightforward to see that

A3 ≃ σ
(+)
1 (q)σ

(+)
2 (q2)σ

(+)
1 (q) = σ

(+)
2 (q)σ

(+)
1 (q2)σ

(+)
2 (q). (44)

In the realisation (36,13)

σ
(+)
1 (q) = [2]qP3, (45)

σ±1
1 P3 = −q∓1P3, (46)

e1P3 = 0. (47)

In addition, in this realisation, the antisymmetrizer A3 has rank one. A

straightforward calculation yields A4 = 0. Consequently all the higher

antisymmetrizers vanish identically for n > 4.



In a general case of WN(q, ν), it can be shown that the following

identities are valid

σ
(−)
i (q)Sn = Snσ

(−)
i (q) = 0, (48)

σ
(+)
i (q−1)An = Anσ

(+)
i (q−1) = 0, (49)

for i = 1, . . . , n − 1 and 1 < n 6 N . The relations (48,25) can also be

written in the following form

σiSn = Snσi = qSn, (50)

eiSn = Snei = 0, (51)

σiAn = Anσi = −1

q
An, (52)

eiAn = Anei = 0, (53)

for i = 1, . . . , n− 1 and 1 < n 6 N . From these identities it is evident

that SN and AN are central in WN(q, ν). Also, using the relations (50-

29), it is straightforward to check that Sn and An are idempotents, i.e.

S2
n = Sn and A2

n = An, n = 1, . . . , N .

The BMW algebra WN(q, q
−2) can be used to describe the multiplet

structure of the spectra of some open quantum spin chains.



Open Spin Chain

According to the QISM the R-matrix R(u, q) can be used to construct

an auxiliary L-operator

L0j(u) = R0j(u, q). (54)

Notice that now we use the multiplicative spectral parameter, which

in the case of the model XXZ1 is given by u = exp(−λ). Then the

monodromy matrix of a spin chain with N sites is the product of L-

matrices in End(V0) whose entries are in End(Vj)

T (u) = L0N(u)L0N−1(u) · · ·L0 1(u), (55)

while the entries of Tab(u) are operators on the whole space of states

H = ⊗N
j=1Vj. As a consequence of the YB-eq one has

R00′

(u

w

)
L0j(u)L0′j(w) = L0′j(w)L0j(u)R00′

(u

w

)
(56)

and

R12

(u

w

)
T1(u)T2(w) = T2(w)T1(u)R12

(u

w

)
. (57)

The transfer matrix

t(u) = tr0T (u), (58)

is the generating function of the integrals of motion with the periodic

boundary condition.



For non-periodic boundary condition one has to use the Sklyanin for-

malism. The monodromy matrix T (u) consists of the two matrices T (u)

(55) and a reflection matrix K−(u) ∈ End(V )

T (u) = T (u)K−(u)T−1(u−1). (59)

Using the unitarity relation (6) (R−1
12 (u

−1) = R21(u)) one gets

T−1(u−1) = R1 0(u)R2 0(u) · · ·RN 0(u). (60)

Taking into account R12(u, η) = P12R21(u, η)P12 one gets

T (u) = ŘN 0(u)ŘN−1N(u) · · · Ř1 2(u)K
−
1 (u)Ř1 2(u)Ř2 3(u) · · · ŘN 0(u).

(61)

The generating function τ (u) of the integrals of motion is (with an extra

reflection matrix K+(u))

τ (u) = tr0
(
K+

0 (u)T (u)
)
. (62)

The reflection matrices K±(u) are solutions to the reflection equation In

particular, the Hamiltonian is given by H = 1
2
d
du ln τ (u)|u=1,

H =

N−1∑
i=1

Ř′
i,i+1(1) +

tr0K
+
0 (1)Ř

′
N 0(1)

tr0K
+
0 (1)

+

+
1

2

(
dK−

1 (1)

du
+

1

tr0K
+
0 (1)

d tr0K
+
0 (1)

du

)
. (63)

The Hamiltonian density hi,i+1 = d
duŘi,i+1(u)|u=1 is a function of the

generators of WN(q, q
−2) on the space H = ⊗N

1 C3. In our case we can

take the constant K-matrices K−(u) = 1 and K+(u) = QtQ.



Asymptotic expansion of T (u) at u → 0 (or at u → ∞) results in

some matrices

T (u) = u−NL−
0NL

−
0,N−1 · · ·L

−
0 1 +O(u−N+1). (64)

Here the constant L-matrices L−
0j are upper triangular matrices which

coincide with the asymptotic limit λ → +∞ (16) of the R-matrices (1),

L−
0j = R−

0j = P0jŘ0j. Hence, the YB-equation for the constant R-matrix

is

R−
i,i+1L

−
0,i+1L

−
0i = L−

0iL
−
0,i+1R

−
i,i+1. (65)

With R−
i,i+1 = Pi,i+1Ři,i+1 and multiplying the previous equation by the

permutation operator Pi,i+1 one gets[
Ři,i+1, L

−
0,i+1L

−
0i

]
= 0. (66)

It is then obvious that ρW (σi) = Ři,i+1, ρW (ei) = µ (P1(η))i,i+1. The

representation ρW of the generators of the BMW algebra WN(q, q
−2) in

the space H = ⊗N
1 C3, commute with the generators T−

ab of the global (or

diagonal) action of the quantum algebra Uq(o(3)) on the space H[
Ři,i+1, T

−] = 0, T− = L−
0NL

−
0,N−1 · · ·L

−
0 1. (67)

This product of L−
0j can be represented as the image of a multiple co-

product map ∆N : Uq(o(3)) → (Uq(o(3)))
⊗N

T− = (id⊗ ρW )(id⊗∆N)L−
0 . (68)

Analogously, the asymptotic expansion of T (u) at u → ∞ yields the

matrix T+ = L+
0NL

+
0N−1 · · ·L

+
01 (cf. (64)).



It is known that in the spaceH as a space of representation of Uq(o(3))

and WN(q, q
−2) these algebras are mutual centralizers.

According to the centralizer property this induces the decomposition

of the representation space H into direct sum of irreps of both algebras,

being a generalisation of the Schur-Weyl duality:

H =

N∑
s=0

Vs ⊗ Us, (69)

where Vs is the (2s+1)-dimensional irreducible representation of Uq(o(3))

while Us is corresponding irrep of WN(q, q
−2). The dimension of an irrep

of WN(q, q
−2) is equal to the multiplicity m of the corresponding irrep

of centralizer algebra Uq(o(3)), and vice versa

m(Vs) = dimUs, m(Us) = dimVs. (70)

The dimension of the irrep Vs of Uq(o(3)) and the number n of the

inequivalent irreps in the decomposition (69) are well known. It follows

from the decomposition of the tensor product of the spin 1 representations

of o(3): dimVs = 2s + 1,

nN = N + 1, mN(Vs) =
∑

j=s,s±1

mN−1(Vj), s ̸= 0, N − 1, N, (71)

together with mN(V0) = mN−1(V1), mN(VN−1) = 1 + mN−1(VN−2) =

N − 1 and mN(VN) = 1. However, the number and the dimensions

of representations Us of WN(q, q
−2) can be obtained from its Bratteli

diagram.



For N = 2, 3 the number of existing irreducible representations of

WN(q, q
−2) and those entering into the decomposition of the space of

states are the same 3, 4, respectively, while for N > 4 there are more ir-

reps ofWN than of Uq(o(3)), for example n4(W ) = 8 while n4(Uq(o(3))) =

5.

The decomposition (69) permits to determine the structure of the mul-

tiplets of the Hamiltonian, which is an element of the BMW algebra

WN(q, q
−2)

H =

N−1∑
i=1

hi,i+1, hi,i+1 =
d

dλ
Ř(λ, η)|λ=0 = f (Ři) ∈ WN(q, q

−2). (72)



According to the QISM, the R-matrices being regular at λ = 0, define

the local Hamiltonian density for two sites of the chains. For the XXZ1-

model one gets

hXXZ =
d

dλ
Ř(λ, η)|λ=0 ≃ qŘ(η)− Ř−1(η)

= (q − 1)

(
(q + 1 +

1

q
)(P5 − P1) + P3

)
. (73)

In the A
(2)
2 -case

hA =
d

dλ
Ř(λ, η)|λ=0 ≃ qŘ(η)+

1

q2
Ř−1(η) = (q2+

1

q3
)P5+(1+

1

q
)(P1−P3).

(74)

The Hamiltonian of the open spin chain with N-sites is then given by

H =

N−1∑
i=1

hi,i+1. (75)

As an example let us consider the case of N = 3 sites when the algebra

W3(q, 1/q
2) is realised in C3 ⊗ C3 ⊗ C3

H = h12 + h23. (76)

It follows

HXXZS3 = 2(q + 1 +
1

q
)S3, (77)

HXXZA3 = 2A3 (78)

and similarly for the HA (74)

HAS3 = 2(q2 +
1

q3
)S3, (79)

HAA3 = −2(1 +
1

q
)A3. (80)



In the case N = 3 there are four irreps of W3: two one-dimensional ir-

reps generated by S3 and A3, respectively, the three-dimensional irrep d3

(corresponding to the one-box Young diagram) and the two-dimensional

irrep d2 (corresponding to the three-box Young diagram with two rows).

Thus the Hamiltonian being restricted to invariant subspaces can have

up to seven distinct eigenvalues. Their multiplicities are obtained from

the correspondence between the irreps of W3 and the irreps of Uq(o(3)):

U(S3) ∼ V3, U(A3) ∼ V0 U(d3) ∼ V1 U(d2) ∼ V2. (81)

The degeneracies of energy values are (j = 1, 2, 3; k = 1, 2)

m(ϵ(S3)) = 7, m(ϵ(A3)) = 1, m(ϵj(d3)) = 3, m(ϵk(d2)) = 5. (82)

The exact values of the energy are obtained by direct calculations.



For the XXZ-model of spin 1 the corresponding expressions are

ϵ(S3) = 2(q + 1 +
1

q
), ϵ(A3) = 2,

ϵ1(d3) = 1, ϵ2,3(d3) =

(
1

2
±
√

1

2
+ 2(q + 3 +

1

q
)

)
,

ϵ1(d2) = (q + 1 +
1

q
), ϵ2(d2) = (q + 3 +

1

q
).

In the A
(2)
2 -case the corresponding expressions are

ϵ(S3) = 2(q2 +
1

q3
), ϵ(A3) = −2(1 +

1

q
),

ϵ1(d3) = (q2 +
1

q3
),

ϵ2,3(d3) =
1

2

(
(q2 +

1

q3
)±

√
q4 + 8q2 − 8q +

34

q
− 8

q3
+

8

q4
+

1

q6

)
,

ϵ1(d2) = (1 +
1

q
)(q2 − 1 +

1

q2
),

ϵ2(d2) = (1 +
1

q
)(q2 − 2q + 1− 2

q
+

1

q2
).


