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Zur Theorie der Metalle.

I. Eigenwerte und Eigenfunktionen der linearen Atomkette.
Von H. Bethe in Rom.

(Eingegangen am 17. Juni 1931.)

Es wird eine Methode angegeben, um die Eigenfunktionen nullter und Eigen-
werfe erster Niaherung (im Sinne des Approximationsverfahrens von London
und Heitler) fiir ein ,,eindimensionales Metall zu berechnen, bestehend aus
einer linearen Kette von sehr vielen Atomen, von denen jedes auler ab-
geschlossenen Schalen ein s-Flektron mit Spin besitzt. Neben den ,,Spinwellen“
von Bloch treten Higenfunktionen auf, bei denen die nach einer Richtung
weisenden Spins mdglichst an dicht benachbarten Atomen zu sitzen suchen;
diese diirften fiir die Theorie des Ferromagnetismus von Wichtigkeit sein.

§ 1. In der Theorie der Metalle hat man sich bis vor einiger Zeit darauf
beschrinkt, die Bewegung der einzelnen Leitungselektronen im Potential-
feld der Metallatome zu untersuchen (Sommerfeld, Bloch). Von der
Wechselwirkung der Elektronen untereinander wurde abgesehen, wenigstens
soweit sie nicht summarisch in dem auf die Elektronen wirkenden Potential
untergebracht werden kann. Dieses Verfanren war fiir die Probleme der
metallischen Leitfihigkeit (mit Ausnahme der Supraleitung) sehr fruchtbar,
lieB aber em tieferes Eindringen etwa in das Problem des Ferromagnetismus
nicht zu!) und machfe z. B. die Berechnung der Kohiisionskrifte im Metall
zu einem ganz hofinungslosen Unternehmen: Die fiir die Storungsenergie
erster Naherung mabBgebenden Austauschkrifte zwischen den Leitungs-
elektronen sind von gleicher Grofienoddnung wie die Nullpunktsenergie des




Bethes Ansatz of 1931




The Asymptotic All-Loop AdS/CFT Bethe Equations

) Beisert, Staudacher ‘05,06
K9 u2k—u2-—iK3u —ug i+ 3% | |
H ; »J 2,k 3,072
_ . ; 1
j=1 Y2,k T %2, T j=14%2,k — 43,5 — 2

ik

Y

K , K +
Fuzk —u2jt g T T3k T4

7 —
j=1 Y3,k ~ Y2, 72 j=1%3k — ¥y j

B4 g g gt K3 wy g m w3, KO wy s
H ” ) — 7._7:0' (:C4,k:7m4,j) H _+_, H _+: )
j;1 4,k 4,j j=1 $4,k: - x3,j j=1 x4,k: — x5,j
J#k

K , K +
SRl N R I B )

7 -
j=1 %5,k ~U6,j — 2 j=1%5k ~ ¥4 j




Gauge Theory Meets String Theory
The asymptotic Bethe ansatz yields an integral equation for an interpola-
ting scaling function f(g) at arbitrary values of g. [ Beisert, Eden, Staudacher 06 |

At weak coupling this equation was (numerically) tested up to
fOUF |OOp Ol’del’ |n ga Uge theOry [ Bern, Czakon, Dixon, Kosower, Smirnov, ‘06; Cachazo, Spradlin, Volovich ‘06 ].

w2t + 88 tg0 — 16 (76 +4¢(3)Y) * £ ...

A five—loop test is under WaY [ Bourjaily, Henn, Spradlin, work in progress |.

At strong coupling the scaling function agrees with string theo-
ry to the three known orders | cubser, Kiebanov, Polyakov 02], [ Frolov, Tseytlin 021,
[ Roiban, Tirziu, Tseytlin ‘07; Roiban, Tseytlin '07] S WAS analytically shown by [ Basso, Korchemsky, Kotariski ‘07 ]

— The AdS/CFT correspondence appears to be exactly true !




Planar AdS/CFT Appears to be Exactly True

e Therefore, independently of all attempts to use string theory as a
“theory of everything”, it has thus been established that string theory
can be a "theory of something”: A 4D Yang-Mills theory.

e Turning this around, it has therefore also been established that theories

with no apparent trace of gravity (i.e. Yang-Mills theories) can in a
hidden way contain quantum gravity.

e Planar Feynman diagrams of a 4D Yang-Mills theory can really be
summed to all orders, and analytically continued to strong coupling.




Liischer Corrections and Thermodynamic Bethe Ansatz

[ Lischer ‘86; A.B. Zamolodchikov ‘90 ]

[ Ambjgrn, Janik, Kristjansen '06; Arutyunov, Frolov, ‘07, ‘08; Bajnok, Janik ‘08 ]

AAWA
— | | ]
WAV,

In the TBA, one “turns around” the world sheet cylinder of the string
o-model, and considers scattering in the cross channel. This takes into
account virtual field-theoretic corrections.




All-loop TBA equations, Y-System

GFOU nd State TBA [ Bombardelli, Fioravanti, Tateo ‘09, Arutyunov, Frolov ‘09, Gromov, Kazakov, Kozak, Vieira ‘09 ]

BOld C|a|m ExaCt SpeCtrum Of planar N — 4. [ Gromov, Kazakov, Kozak, Vieira ‘09 ]
Infinite system of integral equations for “Y-functions” living on a lattice:

Supposed to take into account infinitely many virtual corrections!

Is the Y-system correct? If so, why? In integrable models, it frequently
much easier to guess the exact solution than to prove and understand it!
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Predictions from the All-Loop TBA and the Y-System

Konishi state

[ Gromov, Kazakov, Vieira ‘09 |

e A numerical plot for Konishi was obtained. Very recently largely

confirmed. [ roiev 0] Structure of the expansion not quite clear though.
o |t fits very well weak coupling. Analytical results up to five loops.

e |t predicts the strong coupling behavior 2 AT+ 27T+ ...
Currently there is a discrepancy with string theory: 2 AT+ TAT4. ...
| roiban, Tseyttin '00] ANalytical approach as in the BES case direly needed.
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Weak Coupling Challenges for AdS/CFT Integrability

e |t is very important to explore the predictions of integrability for short
operators in N' = 4 gauge theory to much higher orders.

® Ana|ytIC I’eSU|t fOI’ KO”'Sh' Up tO 5 |OOpS [ Bajnok, Hegedus, Janik, tukowski ‘09 |

v =12¢2 — 48 g% + 336 90 — 96 (26 — 6 ¢(3) + 15¢(5)) ¢° + +96 (158+72 C(3) — 54 ¢(3)2 — 90¢(5) + 315 4(7)) +o.
e The dots are NOT boring!

e Results from mathematical Feynman graph theory and algebraic geo-
metry indicate that at some order multiple zeta functions are expected.
6 |OOpS |n ¢4—theOI’y [ Bloch, Broadhurst, Brown, Kreimer ] 8 |OOpS? DOUb|e—Wl’applng7

e A non-Tate graph appears in planar ¢*-theory at 9 l0ops. | sroun, schnetz 0]
Leads to functions not expressible as (multi)-zeta functions!




Solvable Structures in the (Planar) AdS/CFT System

e Spectral Problem
e High Energy Scattering (BFKL)
e Gluon Amplitudes

e Wilson Loops

These are all related! (E.g. recall the universal scaling function.)

e Recently much progress with N' = 4 gluon amplitudes.

e Exciting hints at Yangian structures in planar N/ = 4 amplitudes.

[ Drummond, Henn, Plefka ‘09; Drummond, Ferro ‘10; Beisert, Henn, McLoughlin, Plefka ‘10 ]
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What are we Solving?

e However, it remains utterly unclear what system we are “diagonalizing”.

e Why is planar AdS/CFT integrable? What is its full quantum Yangian?

= Back to the drawing board!




Q-Operators

e One of the most powerful methods to solve quantum integrable models
involves Baxter's Q-operator.

e The eigenvalues of the Q-operator appear as boundary values of the
Y-system.

e The XXX spin chain appears as the one-loop approximation of the
su(2) sector of N = 4 gauge theory.

® In Contl’aSt tO the 5u(1, 1) ~ 5[(2) SeCtOI’ [ Derkachov, Korchemsky, Manashov | the
Q-operator was not known for the compact case.




Bethes Ansatz of 1931, Revisited

As we shall see, there are still new things to be discovered here. In fact ...

The Q-operator of the XXX chain has never been properly constructed.




“Wick Rotation”

| will use throughout

This will make most formulas look much more beautiful. Bethe equations:

ﬁ Zk—Zj—|-1
e 2 — 25 — 1
J#k

It is well known, that these can be turned into a TQ-equation.




TQ-Equation for Eigenvalues

The Bethe equations are equivalent to the solutions of the equation

T(2)Q(z) = (z+1)" Qlz—1) + (2 = 1) Q(z + 1),

If we make the ansatz

M
T

What about the second solution of this equation? [ Pronko, Stroganov ‘98 |

L—-M+1

Piz)~ ] (z—2).

k=1

T'(z) is the eigenvalue of the transfer matrix. What about Q(z), P(z)?
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The Transfer Matrix as a Trace

The transfer matrix is constructed from the Lax operator

z+ S S
ae =757 )

by building a monodromy matrix and taking a trace
T(Z) = Tr ,CL(Z) . £L_1(Z) el £2(Z) . £1( )

The transfer matrix generates the Hamiltonian of the Heisenberg chain:

d
H = 2L—2510gT(z)




TQ-Equation for Operators ?

Since T'(z) is the eigenvalue of an operator T(z), we should have

T()Q()=(2+4"Qz- 1)+ (-1 Q(z +1).

e What is the operator Q(z)?

e Can it be constructed as the trace of a suitable monodromy?

e If so, what is the Lax operator generating it?

In principle the answer should be in Baxter's work on the XYZ chain. In
practise, it remained obscure until now.

I m porta nt h | ntS | n €a I’| |er WOI’k by [ Bazhanov, Lukyanov, Zamolodchikov ] d nd

[ Boos, Jimbo, Miwa, Smirnov, Takeyama ]|.




L-Operators as Solutions of the Yang-Baxter Equation

Consider the Yang-Baxter equation:

R(z—y) (La(z)®1) (19La(y)) = (10@La(y)) (La(z)®1) R(z—y),

where R(z) is the rational 4 x 4 R-matrix
R(z) : C?@C? - C?w(C?, R(z) =2+ P,

and P is the permutation operator. The L-operator L4(z) is a

2 X 2 matrix, acting in the quantum space of a single spin-5

L= (00 o)

whereas its matrix elements act in an auxiliary space A.

20



Type | Solution of the Yang-Baxter Equation

Let us make the ansatz

z+ A B
Lal2) ( C 2+ D ) '
From the YBE, the algebra of the A, B,C, D leads to sl(2).

To be precise,

3
Z—|—33 J- ) k ~k
o~ T a3 :z]H—QZS I
( J Z— 1

I =31 +432 and J3 generate s[(2) and act on the auxiliary space A :

| = +3*, 3N,37] =23,




Type |l Solution of the Yang-Baxter Equation

Let us now make a different ansatz:
z+ A B or A B
C D C z+4+D )
Now the algebra of the A, B, C, D leads to the harmonic oscillator algebra!
To be precise, one finds that L 4(2) is either

_I_

1 aqq
a,s 2+ al ao —+ 1
21 21 421 T 35

with two sets of mutually commuting oscillators acting on A :

A, a) =1, a5, a5, = 1.




First Factorization
The type | and type Il solutions of the YBE must be related. The reason
is that Ly(22) L1(21) is also a solution of, after some redefinitions, type I!

The precise statement is that with

ZZZl‘;ZQ and ]+%:

Z1 — k2

one finds

- 1
L2(Z2> . Ll(zl) — 6331312 ( a2_1 (1)

where the sl(2) generators are realized in Holstein-Primakoff form as

~+ . + — — ~3 + —
‘Jj o (2] _a12al2) 19, *Jj = J — &19a19.




Second Factorization

Likewise, there is a similar expression for the opposite order

+ .- 1 .+ +
Z1 — 7075 — = A 1 a
Ll(zl) . Lz(zz) _ 1 12 212 2 12 g +21 B ,
1 dy) 22 T Ay 89 T3

~3 - +
212221 TJ; ( 21 ) e 12221

—ajo

gt

; 0 1

where the s[(2) algebra is now realized with aZ,

In a more compact form

eaii_232_1 £]12(Z) : Bg_l e_aTZaz_l — L1(21) . LQ(ZQ) .




Taking Traces, |

Let us built monodromies from either side of our factorization formula:
al al, jp— j —ala,
e?21212 [521 .£12(Z)6 21912 — LQ(ZQ) : Ll(zl)-

Take the tensor product ® of all 2 x 2 matrices acting on the L local
quantum spaces. Here - denotes 2 X 2 matrix multiplication.

alian, g— . [ B . [ —ajja;, _
e 12 By o1 - L 19(2) ® ® By 51 - £ 19(2) €77 21%12 =

= Lpo(z2) - Lp1(21)® -+ ® Ly a(22) - L1,1(21).

Take the trace over the F31 X Fi9 double-oscillator space:

= Tro1 (Lp2(22) ® --- ® L1,2(22)) Tri2 (Lp1(21) ® -+ - @ Ly,1(21)) -

25



Taking Traces, |l

The traces are actually infinite, so we put a regulator inside the trace:

e “/5(321 21+a12 12
The insertion of this operator does not spoil the cyclicity argument!

Lro ( “ioaye 21B] 5 @ @ 31_21)

X Tr12 ( Z¢a12a12£L 12( ) ® el

= Troy (6_i¢agla2_1LL,2(22) SJRIIN0%¢ L1,2(22)>

X 'Irq19 (e_igba;rQal_QLL,l(Zl) ORI Ll,l(zl)) °




Taking Traces, |l
Dividing the last equation by

Tr}"21 X F12 (6 1(az121212010) ) )

we may prove in conjunction with

1 R S
Tidatas = 29 8In—e 2,
Trg_—e 2

as well as the formula

_idatal »— _
(6 Z¢a21a2lBL,21®...®Bl,21) :HQLX2L7

a relation we term fundamental operator relation.




Fundamental Operator Relation

1

It reads, with 2 =2z+j+2and 21 =2 —j — 1,

f(o) TT(Z) = Q2(22) Q1(z1), where f(¢) =21 Sing

Here the spin-j transfer matrix (over an infinite s[(2) Verma module) is
i b3 . .
T/ (2:6) = Trawmy(€® - Lp(2) ... @ L)(2)),

The Q-operators are explicitly defined as

—Try9 (€_i¢al+2a1_2 Lpi(z1)®---® L1,1(21)) ,




Commutativity of the Q-Operators

Since we have

f(9) TS (2) = Qa(22) Qu(21), and  f(¢) T (2) = Qu(21) Qa(22),

we have

Q1(z1),Q2(22)] = 0.

The two Q-operators commute!

An intertwiner for each of our two partonic Lax operators exists. Thus,

[Qi(21),Q1(2)] =0, and [Qa(22),Q2(23)] = 0.

Therefore we also have

[T;_(Z) ) Ql,Z(ZI,Z)} — 07 and

= Everything commutes with everything!

29



The Compact Transfer Matrix

The infinite s[(2) Verma module is reducible, and splits into a finite
dimensional part and an infinite dimensional part:

-
N

N A N N
3+

[ Picture from Niklas Beisert's PhD thesis, ‘05 |

This leads to the usual spin-j transfer matrix

T;(z) = T;r(z) - TJ—rj—1(Z) ;

if we put 25 € Z>g. The ¢ — 0 limit exists.




The Compact Transfer Matrix

The infinite s[(2) Verma module is reducible, and splits into a finite
dimensional part and an infinite dimensional part:

3

3'1-

[ Picture (modified) from Niklas Beisert's PhD thesis, ‘05 |

This leads to the usual spin-j transfer matrix
T)(2) = TS () = T, 4 (2).

if we put 25 € Z>g. The ¢ — 0 limit exists.




Transfer Matrix and the Generalized Wronskian

The fundamental relation turns into the generalized Wronskian relation

(@) Tj(2) = Qa(22) Q1(21) — Qa2(21) Qu(22) =

where22:z+j+%and zlzz—j—%.

From our point of view, this is the basis for all other functional relations.

In particular, the TQ-equation is not fundamental, but a derived concept.

A close analogy is Q-operator = quark and transfer matrix = meson.

The Bethe equations also easily follow ...




Bethe Equations

The eigenvalues of our Q-operators take the form

M

Goz) Q=2 [ (- 2
k=1

The Bethe equations then follow from the fundamental relation:

L L

M ~ 1 L—M . ~

_> eiqb Zij—Fl,(Zk—F?) 6_i¢ Zk—Zj—I—l

IIz—z-—l iy — = II 2k — 2 —
j=1 k< kT3 =1 kT A 1
J7k J7k

No “ansatz’ of any kind!




L = 2 Example: Q,(z) Operator

0
0
0

— 53 o 1 1
z 21 cot 3 ,2%#—4)

S11

Take the ¢ — 0 limit:

0 O
00 00
00 00
0 O

These divergences are very natural!




L = 2 Example: Diagonalized Q-(z) Operator

0
0

z —zicot%—

0

1

2sin? &

Take the ¢ — 0 limit:

(

1 0 O
0 co O
0O 0 oo

\0002)

We see that finite eigenvalues correspond to su(2) highest weight states,
while infinite eigenvalues correspond to su(2) descendants!
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Removal of the Twist

As we saw, the divergences of many of the matrix elements of the
Q-operators have a very natural interpretation.

This still leaves us to find finite operators whose eigenvalues are the Baxter
polynomials Q(z) and P(z) of degree, respectively M and L — M + 1.
Here is the answer:

Q. (2) = lim Q1 2(2;¢) Q1 3(20: ).

¢—0

P.,(z) = lim f7'(¢) (Qa(z; ¢) Q1(20; ¢) — Q2(20; ) Q1(2;9))

¢—0

We can show that these operators are su(2) invariant.
However, they are “composite” operators.

36



From s1(2) to sl(n)

Recall that the “usual” rational Lax operator of s[(2) takes the form
z4+ A B
i,

The second way of writing this immediately generalizes to sl(n).

The two “partonic” rational Lax operators of s[(2) took the form

(ZEA g) and I[.a():(é1 z+BD>°

These may also be written in a novel form which lifts to sl(n)!

Li(z) = zepr + Z l,gf) €ij -
1,9




The si(n) Partonic Lax Operators

. k .
SOlV'”g the YBE fOI’ the l( ) one flndS [ Bazhanov, Frassek, tukowski, Meneghelli, MS to appear |

[ 1

¥

__akﬂl

=+

Again, the oscillators a™ satisfy canonical commutation relations and

hy:=>» hp—» hy, with hy :=afa +3.
k>1 1>k




Factorization of the si(n) Partonic Lax Operators

[ Bazhanov, Frassek, tukowski, Meneghelli, MS to appear |

Excitingly, the “usual” Lax operator of sl(n) again factorizes as (¢ < j)

Ll(Zl)Ln(Zn) = Sﬂ(z,)\l,...,)\n_l;{ai ) B({a; ) S_l.

.. T Zn
n

and )\i:Zi_Zi—l—l_lo

A={X,...,; \n_1} are the Dynkin labels of sl(n).
Consistent with s[(2) before, where the Dynkin label is twice the spin j.

As before, we now define n “elementary” Q-operators by

.
2/

N

L — times




Fundamental Functional Operator Equations for si(n)

To achieve convergence, we now need n — 1 angles ® = {¢1,..., ¢, _1}.

In generalization of the sl(2) case one finds

Substraction of the reducible infinite Verma modules leads again to the

transfer matrices for all finite dimensional representations labelled by
A= {)\1, ceey )\n—l}:

(@) Ta(2) = det Qi(z;):

For the trivial representation A = {0, ...,0} this is the Wronskian relation.
Without “ansatz”, it allows to obtain the sl(n) nested Bethe equations.




From the Wronskian to the Nested Bethe Equations

The following hierarchy corresponds to the nested Bethe ansatz levels:

Fundamental Q-operators
) Q(z+3) —i ]
(2) Qr(z + 1) — perm(z, 5, k)

=€y, () To(z) ~ 2"

The functions g(¥)(®) are some (known) functions of the twist angles.

Restricting to eigenvalues, one easily derives the nested Bethe equations.




Factorization of the si(n|m) Partonic Lax Operators
From graded Ya ng-BaXter, we f|nd [ Bazhanov, Frassek, tukowski, Meneghelli, MS to appear |




Conclusions

e A new, simple, and explicit way to construct the Q-operators for
compact su(n) and su(n|m) spin chains.

e Furthermore, leads to a transparent, fast, and entirely algebraic way to
solve the associated models. No “ansatz” of any kind!

e The most intriguing feature of our construction is the appearance
of “non-compact” oscillator representations when fully uncovering the
algebraic structure of the XXX chain.

e | believe this puts spin chains en a par with sigma models, and seems
very suggestive for AdS/CFT.




Remark on Fluxes

e |t is crucial to regulate the Q-operators by fluxes.

e Physically interesting by itself, the flux may be removed from physical
quantities whenever sensible.

e Slightly breaks the su(n|m) symmetry. Recovering it is somewhat
singular.

e Should be an interesting hint for AdS/CFT. We would like to suggest
that the theory is “easier” if fluxes are present.

e In particular, it should prove crucial to study (3-deformed AdS/CFT.
Fmd TBA, Y—system. Four—loop LUscher WOFkS. [ Ahn, Bajnok, Bombardelli, Nepomechie ‘10 ]




Work in Progress

[ Bazhanov, Frassek, tukowski, Meneghelli, MS |

e Our theory has to be extended to more general representations, and
especially the non-compact case.

e Apply methodology to the AdS/CFT integrable system!




