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Extremely rich example, with many magical properties

Q1: How general is the gauge/string duality?

All well-understood string duals of 4d gauge theories are rather close cousins of origi-
nal paradigm. Motivated from D3 branes at local singularities in critical string theory.

Some common features:

e Adjoint or bifundamental matter (quivers).
Fundamental flavors can be added in probe approximation Ny < N,

e Susy can be broken but there are always remnants of the “extra” matter
e Anomaly coefficients a = ¢ at large N.. “No-go theorem” (?)
e Dual geometries are 10d

e Radius of curvature R related to coupling A (a modulus),
R ~ A% can be taken arbitrarily large (but A — 0 not always an option)




't Hooft gave a very general heuristic argument for

“Large N field theory = closed string theory with g, ~ 1/N”

So far we understand “well” only a limited class of dualities,
for the theories “in the universality class” of N' =4 SYM

3 many string constructions of field theories with genuinely fewer d.o.f. in the IR
(say pure SU(N), or N =1 SYM).

However if one takes a limit that decouples the unwanted UV d.o.1,
the dual string is described (at best) by a strongly curved sigma model.

Hopetully this is just a technical problem, but progress has so far been limited.
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“Large N field theory = closed string theory with g, ~ 1/N”

So far we understand “well” only a limited class of dualities,
for the theories “in the universality class” of N' =4 SYM

3 many string constructions of field theories with genuinely fewer d.o.f. in the IR
(say pure SU(N), or N =1 SYM).

However if one takes a limit that decouples the unwanted UV d.o.1,
the dual string is described (at best) by a strongly curved sigma model.

Hopetully this is just a technical problem, but progress has so far been limited.

Independent question,
Q2: How general are integrability /solvability of N' =4 SYM?
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Attack “next simplest case”

Ideal case study: N = 2 superconformal QCD,
N =2SYM with N r = 2N, fundamental hypermultiplets

Large N limit a la Veneziano: Ny ~ NN,

a # c

But still an extended superconformal group (SU(2,2|2)) and a tunable gy,

Q1: Which (if any) is the dual string theory?

A = gi,, N, is an exactly marginal coupling, just as in N' = 4 SYM.
Simplification for large A7 a weakly-curved gravity description?

String theory on... AdSs x ...?7 Long-standing open problem

Q2: Integrable structures?



The Veneziano limit and dual strings

Veneziano limit:
N.— 00, Ny — oo with Ny/N.and X = gi,, N, fixed.

't Hooft’s argument for existence of dual closed string theory at large N
can be adapted to the Veneziano limit, if one focuses to flavor singlets.




The Veneziano limit and dual strings

Veneziano limit:
N.— 00, Ny — oo with Ny/N.and X = gi,, N, fixed.

't Hooft’s argument for existence of dual closed string theory at large N
can be adapted to the Veneziano limit, if one focuses to flavor singlets.

Schematically:  adjoint fields ¢, a=1,..., N, color indes

fundamental fields ¢“, 1 =1,..., Ny flavor index

Two kinds of double lines:

>
Adjoint lines (¢ ¢) <

Quark lines (q q) :

Quark lines not suppressed.

Vacuum Feynman diagrams — bi-colored Riemann surfaces ~ N?2729
suggesting a dual closed string theory describing the flavor singlet sector, with g, = 1/N.
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Main novelty: glueball operators  Tr(¢ ... o) (color-trace)

mix at leading order with

flavor-singlet mesons q'¢. .. ¢qg;

Define flavor-contracted combination M", = ¢“.¢',

In flavor-singlet sector, basic building blocks are the single-trace operators

Tr(p" Mg M2 )

Usual large N factorization arguments apply.

e [n the (conjectural) dual string theory, large meson /glueball mixing interpreted as large
backreaction of the “flavor” branes (need to resum open string perturbation theory).
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Back to N = 2 superconformal QCD

From the “top-down”:

e [ingineer it with branes in string theory.

We found some evidence for a non-critical string dual,
with seven “geometric” dimensions, containing both an AdSs and an S factor.

From the “bottom-up” :

e Study the perturbative dilation operator:
integrable spin-chain? asymptotic Bethe ansatz? clues of a dual sigma-model?

In both approaches, very useful to consider more general family of SCFT's,

interpolating between a Z, orbifold of N' =4 and N = 2 SCQCD.

In the rest of this talk, I'll describe the very first step of the bottom-up approach:
one-loop dilation operator in the scalar sector.
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The One-Loop Hamiltonian in the Scalar Sector

We have evaluated the complete one-loop hamiltonian acting on single-trace
operators made of scalars,

Tr [(bkggf MT Mg} (arbitrary permutations thereof)

As usual, large N ensures locality of the hamiltonian.
Nearest neighbor at one-loop, next-to nearest at two loops, ...
(Still true in the Veneziano limit).




Each site of the chain occupied by 6d vector space spanned by ¢, ¢, Qr, QY.

Nearest neighbour Hamiltonian H; ;1 acting on V; ® Vi

PP ¢ QzQ7 Q*Q,
(25‘° 59 4 gpa 26", 69 Nt ges 87 0
Pp Py p/0qr T 97" Gprqr — 20,0, N.Ip'a’ 01
— N / / r N
QT Q. NogPI6%, (207 07, — 67 67 RE 0
QrrQ” 0 0 20K 65,

QT 0 0 0

SUQ2)g indices Z, J, K, L---=1, 2 U(l), indicesm, n--- =1, 2




Elementary operators acting on each site of the chain, transforming “incoming” O ;
to “outgoing” OF k:

Trace operator Kg,g =6 ok

: JL _ JL
Permutation operator P7ic = 01x0

: L L
Identity operator ]Igic = I5lg

alo QQ QQ Q¢

o | 21+ K — 2P
Hy py1 = QQ M%K
QQ 0
Qo 0

The Ny = 0 case has been considered by Di Vecchia and Tanzini
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In the infinite chain, diagonalize H in the one-impurity sector.
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Vacuum Tr(¢").

Excitations are either the elementary ¢ or the composite My, Maj.

In the infinite chain, diagonalize H in the one-impurity sector.

For the SU(2)p triplet, H Mg3s(x)] = 8M3(z), or H| Mg3(p)| = 8M3(p)

The singlets ¢ and M mix:

6(p) = Y B(@)e™, Ma(p) = Y Ma(2)e™

H<q3<p>> 6 (e )R <q5<p>>
My (1—|—eip)\/% 4 Ma

For Ny = 2N, one of the two singlet eigenstates is gapless.

Henceforth Ny = 2N.,.

The eigenstates are

1

T(p) = —5(1+ e ")b(p) + Ma(p),

with eigenvalues

HT(p) = 4sin’(5) T(p).



Protected Operators

From explicit one-loop calculation in the scalar sector, the single-trace operators
with v = 0 are

Scalar Multiplets | SCQCD operators | Protected

Br.0,0)

o It M 3 (‘{T(0,0) n J/

Br V for R=1

o Tro!, with ¢ > 2. ngwm ! .
0,r(0,0)

Cr(0,0)

o Tr7T ¢ with £ >0, where T' = ¢¢ — M;. Co(0,0) v
Dr0,0)

Note that Tr T (A = 2) is the lowest weight state of the N' = 2 stress-tensor multiplet.
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From explicit one-loop calculation in the scalar sector, the single-trace operators
with v = 0 are

Scalar Multiplets | SCQCD operators | Protected

Br.0,0)

o [T ./\/lg gr(o’o) n J/

~

Br V for R=1

o Tro, with ¢ > 2. ngm .
0,7(0,0)

Cr(0,0)

o Tr7T ¢ with £ >0, where T' = ¢¢ — M;. Co(0,0) v
Dr0,0)

Note that Tr T (A = 2) is the lowest weight state of the N' = 2 stress-tensor multiplet.

These operators are superconformal primaries.
In the free theory they are the lowest weight states of (semi-)short multiplets.
In the interacting theory (semi-)short multiplets can a priori combine into long multiplets with ~ # 0.

Protection of Tr¢! easily proved to all orders from superconformal representation theory:
such multiplets never appear in decomposition of long multiplets. poan-osmomn




Protection of Tr M3 and of Tr T’ ¢’ more subtle,

we prove it by computing (essentially) a superconformal index.
Most easily done in interpolating family of SCFTs (coming up soon).

(Situations more intricate than in N' = 4 SYM where the only single-trace protected

multiplets are the 1/2 BPS multiplets.)
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N =2 SCQCD can be viewed as a limit of a family of N/ =2 SCFTs.

In opposite limit the family reduces to a well-known Zs orbifold of N' =4 SYM

Start with ' =4 SYM: X 45, A, A,

A, B SU(4)p indices




An interpolating family of super CFTs

N =2 SCQCD can be viewed as a limit of a family of N/ =2 SCFTs.

In opposite limit the family reduces to a well-known Zs orbifold of N' =4 SYM

0 Xg+1X5 | Xe+1iXg Xg+1Xg
1 — X4 —1X5 0 Xg—1Xg —X7+1Xg
) ) \/§ — X7 —1Xg —Xg+1X9 0 X4 —1X5
A, B SU(4)g indices ~Xs—iXe X7—iXg |-X4+iXs 0

Start with ' =4 SYM: X 45, A, A,

XAB =

Pick SU(2)r x SU(2)g x U(1), subgroup of SU(4)r

SU2)L x U(1);

SU2)p x SU(2)r = SO(4) are 6789 rotations,
T,J ==+ SU(2)p indices, T, J = &+ SU(2), indices

U(1)r = SO(2) 45 rotations.




In R-space, orbifold by Zo C SU(2)y, Zo = {+]sxo}

<X67 X77 X87 X9) — :IZ(X67 X77 X87 X9>

In color space, start with SU(2N,) and declare non-trivial element of orbifold

Fields surviving the projections are:

A% 0
_ pb
ub

0 iy ina
—EIJEij jbj 0
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Two gauge-couplings gy s and gy s can be independently varied

while preserving N/ = 2 superconformal invariance

For gy — 0, recover N' = 2 SCQCD & decoupled SU(N;) vector multiplet

For gyar = 0, global symmetry enhancement SU(N;) x SU(2), — U(Ny = 2N,):
(a,7)=i=1,...N; = 2N,




Two gauge-couplings gy s and gy s can be independently varied

while preserving N/ = 2 superconformal invariance

For gy — 0, recover N' = 2 SCQCD & decoupled SU(N;) vector multiplet

For gyar = 0, global symmetry enhancement SU(N;) x SU(2), — U(Ny = 2N,):
(a,7)=i=1,...N; = 2N,

along the whole marginal deformation

For gy s = 0, interpret as

75
—(— 1+ = | N?
‘ (24 " 24) :




Interpolating theory has vastly more protected “closed” states than N = 2 SCQD:

towers of states with arbitrary high (and equal) SU(2); and SU(2)g spins

For ¢ — 0, they are re-interpreted as multiparticle states of short open strings




Spin chain for interpolating SCFT
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More compactly, using the Zy-projected SU(2N.,) adjoint fields

2(9+ +79-)* —2(9+° — 9-?)

—2(g+% — 9-*) 2(g+ —v9-)° }

where g+ = (g + ¢)/2 and ~ the twist operator.
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where g+ = (g + ¢)/2 and ~ the twist operator.

At the orbifold point ¢ = ¢, same as N = 4 SYM apart from global twist
(Beisert-Roiban)

For g # ¢, bulk Hamiltonian truly different.




More compactly, using the Zo-projected SU(2N,) adjoint fields

Z=(¢9>,
0

[

(9+ +79-)*(2+K - 2P)

(9+ +v9-)*KK

where g+ = (g + ¢)/2 and ~ the twist operator.

At the orbifold point g = ¢, same as N = 4 SYM apart from global twist
(Beisert-Roiban)

For g # ¢, bulk Hamiltonian truly different.

Parity is broken for generic g, but is recovered for § — 0, as seen more clearly in terms
of composite mesonic operators.




Dynamics of the interpolating spin chain

For ¢ # 0, magnons are conventional, “elementary” () or (), with dispersion relation

E(p:x) = 2(1 — k) + 8k (Sin2 g) where kK = ¢/g.

—

Note that @ has a ¢ vacuum to its left and a ¢ vacuum to its right, viceversa for Q




Dynamics of the interpolating spin chain

For ¢ # 0, magnons are conventional, “elementary” () or (), with dispersion relation

E(p:r) =2(1 — k)* + 8k (81112 %) where © = §/g.

—

Note that @ has a ¢ vacuum to its left and a ¢ vacuum to its right, viceversa for Q.

The 2-body S-matrix is defined as usual, for QQ

Z (e'iplscl+'ipzmz + S(pg,pl)e'ip'~’11+'ip1$2) .. -@Q(II)QB- d

r1<<To

(pure reflection)

and similarly for QQ,

Z (e‘ipll‘1+'ip‘zl‘2 + S(pg,pl)eimz“LiplI?) | 4

1< T2

Clearly we have  S(py,pa; g,9) = S(p1,p2: 3. 9) .




FEach magnon is in the spin 1/2 representation of both SU(2); and SU(2)p.

Solving the 2-body problem in the four sectors with different SU(2) quantum numbers,

L®R S(pl,p-;_),h'.)
& _Lq(pltp'zvh-‘ o é)S_l(plvl)Qv h)

1 — 2ke'P2 + el(p1+p2)

1
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3 —1

3 S(plapQwH)




FEach magnon is in the spin 1/2 representation of both SU(2); and SU(2)p.

Solving the 2-body problem in the four sectors with different SU(2) quantum numbers,

L®R S(pl,pg, K.)
& _S(pl_-.P‘Za"i- o é)S_l(plvav h)

1 — 2/{/6@2 + ei(pl‘i‘pQ)

1

1 S(pl’pQ’H _ %) S(plap%’{’) = —
3 —1

3 S(plap27’{)

The magnon S-matrix factorizes into “left” and “right”

SL(pl , P2; I‘C)SR(pl » P25 "‘)
S3w3(p1,p2; K)

S(p1,p2; k) =

SL(p1,p2; K) SU(2)r

S(p1,p2; 6 — =) 1
S(p1,p2; k) 3




The 2-body S-matrix of the interpolating theory reveals a rich spectrum of bound and

anti-bound states:

Pole of the S-matrix

Range of existence

Dispersion relation E(P)

Mg e~ = cos(%)/k

2arccosk < |P| <7

4sin*(5)

T

0 < |P| < 2arccos k

T and My

See equ.(5.26)

4 snf( £
1k~ ( 2

(1—k2)

2 in2 P
5 — 1 —sn” 5)

Mg

0<|P|l<m

4k sin” (%)

No solution

T
=

and M3

See equ.(5.26)

A2 ¢ .
ﬁj(l — 2!"{2 —+ Slll2 %)

The asymptotic wave-functions behave as

-pT1try o
e'P= 2=~ a@2=11) for hound states,
1)1 iPTL2 —g(zg—1) f i-bound
(—1) e 2 or anti-bound states.




0
'
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() scattering channel

s e e ceeee-

QQ) scattering channel




~

Remarkably, for ¢ — 0 the “dimeric” excitations T'(p), T'(p) and M3 of the SCQCD
chain are recovered smoothly for kK — 0 as “infinitely tight” bound states (p — +i00)

Recall the two-magnon energy;,

E =4(1 — k)* + 16K (sin2 g) .

For some bound states of the interpolating theory, as kK — 0 the “zero” in front of the
kinetic energy multiplies the “infinity” arising from the large imaginary momenta.

In the limit & — 0 the elementary @) and () excitations freeze, but their bound states
retain a non-trivial dynamics.
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The YB equation for the 2-body S-matrix obviously holds for g = ¢.
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Yang-Baxter

The YB equation for the 2-body S-matrix obviously holds for g = g.

We find that is is generically violated for g # ¢, showing conclusively that
the interpolating spin-chain is not integrable.

Remarkably, YB holds again for g — 0!

Hint that A =2 SCQCD may be integrable, at least at one loop.

Algebraic structure (to be discussed shortly) gives hope for higher-loops.

Ordinarily, YB is strong evidence, but in our case things may be more subtle.




Smooth limit is reason for optimism.

SU(2)p sector SU(2)y, sector




Outlook: Symmetry

We have focused on the scalar sector, where the S-matrix has
SU(2)p x SU(2)r symmetry.
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In the right sector, same as N' = 4 SYM, but the representation is now reducible
(two copies of the fundamental).

Repeating Beisert’s argument, it appears one can constrain the right S-matrix
to all orders (up to overall phase of course): we find a certain function of x, which is
consistent with the one-loop S-matrix in the scalar sector.




Outlook: Symmetry

We have focused on the scalar sector, where the S-matrix has
SU(2)p x SU(2)r symmetry.

e In the full theory, the S-matrix has symmetry SU(2), x SU(2), x PSU(2|2)r x R.
In the right sector, same as N' = 4 SYM, but the representation is now reducible
(two copies of the fundamental).

Repeating Beisert’s argument, it appears one can constrain the right S-matrix
to all orders (up to overall phase of course): we find a certain function of x, which is
consistent with the one-loop S-matrix in the scalar sector.

e Calculation of the complete one-loop Hamiltonian is also in progress.




Outlook: Integrability?

e Elegant way to conclusely show integrability for the N' = 2 SCQCD chain
would be to find an algebraic Bethe ansatz.
Simplest guess for the R-matrix does not appear to work.

e Numerical checks of integrability are in progress.
Difficult to work at kK =0
(for example it seems hard to find the S-matrix of the dimeric magnons).

Instead, use small k as a regulator.

Write Bethe equations for small k, taking kK — 0 in the final result for the energies.
Then compare with brute force diagonalization of Hgceop.

Similarly, determine the S-matrix of the bound states by fusion for small .

Consistency of the procedure (7) would hinge on smoothness of the k — 0 limit.




Outlook: String Theory

e Dual sigma-model is in principle known for large g, finite Kk = ¢/g.
Start from orbifold sigma-model. Taking ¢ # ¢ amounts to changing the period of
Bnsng through the collapsed cycle of the orbifold.

2-body S-matrix at strong coupling?

Natural to expect integrability only at the two parity-invariant values of B,

corresponding to § = g and g = 0.
(Somewhat similar story in the ABJ model).




Outlook: String Theory

e Dual sigma-model is in principle known for large g, finite Kk = ¢/g.
Start from orbifold sigma-model. Taking ¢ # ¢ amounts to changing the period of
Bnsng through the collapsed cycle of the orbifold.

2-body S-matrix at strong coupling?
Natural to expect integrability only at the two parity-invariant values of B,

corresponding to § = g and g = 0.
(Somewhat similar story in the ABJ model).

e On the string theory side, kK — 0 limit is singular, need to change duality frame.
In our first paper, argued that in the limit one finds a non-critical string background.

Field theory results in qualitative agreement with this picture:
protected states consistent with KK spectrum,
counting of gapless magnons consistent with counting of transverse directions.




Conclusion

N =2 SCQCD is perhaps the simplest theory outside the A" = 4 universality class.

Continuously connected to the N = 4 class by an interpolating N' = 2 SCFT.

Already the simplest calculations reveal a rich dynamics.




