Spin Chains for $\mathcal{N}=2$ Superconformal Theories

 Integrability in the Veneziano Limit?
Leonardo Rastelli

C.N. Yang Institute for Theoretical Physics

Stony Brook

Abhijit Gadde, Elli Pomoni, L.R. arXiv:0912.4918, 1006.0015
and in progress with Gadde, Pedro Liendo, Pomoni and Wenbin Yan

IGST10, Nordita
Stockholm, June 302010

Paradigm: $\mathcal{N}=4 \mathrm{SYM} \leftrightarrow \mathrm{IIB}$ on $A d S_{5} \times S^{5}$
Extremely rich example, with many magical properties

Paradigm: $\mathcal{N}=4$ SYM \leftrightarrow IIB on $A d S_{5} \times S^{5} \quad$ Maldeena
Extremely rich example, with many magical properties

Q1: How general is the gauge/string duality?

All well-understood string duals of 4 d gauge theories are rather close cousins of original paradigm. Motivated from $D 3$ branes at local singularities in critical string theory.

Paradigm: $\mathcal{N}=4$ SYM \leftrightarrow IIB on $A d S_{5} \times S^{5} \quad$ Maldeena
Extremely rich example, with many magical properties

Q1: How general is the gauge/string duality?

All well-understood string duals of 4 d gauge theories are rather close cousins of original paradigm. Motivated from $D 3$ branes at local singularities in critical string theory.
Some common features:

- Adjoint or bifundamental matter (quivers).

Fundamental flavors can be added in probe approximation $N_{f} \ll N_{c}$

- Susy can be broken but there are always remnants of the "extra" matter
- Anomaly coefficients $a=c$ at large N_{c}. "No-go theorem" (?)
- Dual geometries are 10d
- Radius of curvature R related to coupling λ (a modulus), $R \sim \lambda^{1 / 4}$, can be taken arbitrarily large (but $\lambda \rightarrow 0$ not always an option)
't Hooft gave a very general heuristic argument for
"Large N field theory $=$ closed string theory with $g_{s} \sim 1 / N "$
So far we understand "well" only a limited class of dualities, for the theories "in the universality class" of $\mathcal{N}=4 \mathrm{SYM}$
\exists many string constructions of field theories with genuinely fewer d.o.f. in the IR (say pure $S U(N)$, or $\mathcal{N}=1 \mathrm{SYM}$).

However if one takes a limit that decouples the unwanted UV d.o.f, the dual string is described (at best) by a strongly curved sigma model.

Hopefully this is just a technical problem, but progress has so far been limited.
't Hooft gave a very general heuristic argument for
"Large N field theory $=$ closed string theory with $g_{s} \sim 1 / N "$
So far we understand "well" only a limited class of dualities,
for the theories "in the universality class" of $\mathcal{N}=4 \mathrm{SYM}$
\exists many string constructions of field theories with genuinely fewer d.o.f. in the IR (say pure $S U(N)$, or $\mathcal{N}=1 \mathrm{SYM}$).

However if one takes a limit that decouples the unwanted UV d.o.f, the dual string is described (at best) by a strongly curved sigma model.

Hopefully this is just a technical problem, but progress has so far been limited.

Independent question, Q2: How general are integrability/solvability of $\mathcal{N}=4$ SYM?

Attack "next simplest case"

Ideal case study: $\mathcal{N}=2$ superconformal QCD , $\mathcal{N}=2$ SYM with $N_{f}=2 N_{c}$ fundamental hypermultiplets

Large N limit à la Veneziano: $N_{f} \sim N_{c}$
$a \neq c$
But still an extended superconformal group $(S U(2,2 \mid 2))$ and a tunable $g_{Y M}$

Attack "next simplest case"

Ideal case study: $\mathcal{N}=2$ superconformal QCD , $\mathcal{N}=2$ SYM with $N_{f}=2 N_{c}$ fundamental hypermultiplets

Large N limit à la Veneziano: $N_{f} \sim N_{c}$
$a \neq c$
But still an extended superconformal group $\left(S U(2,2 \mid 2)\right.$) and a tunable $g_{Y M}$

Q1: Which (if any) is the dual string theory?
$\lambda=g_{Y M}^{2} N_{c}$ is an exactly marginal coupling, just as in $\mathcal{N}=4$ SYM.
Simplification for large λ ? a weakly-curved gravity description?
String theory on... $A d S_{5} \times \ldots$? Long-standing open problem

Attack "next simplest case"

Ideal case study: $\mathcal{N}=2$ superconformal QCD , $\mathcal{N}=2$ SYM with $N_{f}=2 N_{c}$ fundamental hypermultiplets

Large N limit à la Veneziano: $N_{f} \sim N_{c}$
$a \neq c$
But still an extended superconformal group $(S U(2,2 \mid 2))$ and a tunable $g_{Y M}$

Q1: Which (if any) is the dual string theory?
$\lambda=g_{Y M}^{2} N_{c}$ is an exactly marginal coupling, just as in $\mathcal{N}=4$ SYM.
Simplification for large λ ? a weakly-curved gravity description?
String theory on... $A d S_{5} \times \ldots$? Long-standing open problem

Q2: Integrable structures?

The Veneziano limit and dual strings

Veneziano limit:

$N_{c} \rightarrow \infty, N_{f} \rightarrow \infty$ with N_{f} / N_{c} and $\lambda=g_{Y M}^{2} N_{c}$ fixed.
't Hooft's argument for existence of dual closed string theory at large N can be adapted to the Veneziano limit, if one focuses to flavor singlets.

The Veneziano limit and dual strings

Veneziano limit:

$N_{c} \rightarrow \infty, N_{f} \rightarrow \infty$ with N_{f} / N_{c} and $\lambda=g_{Y M}^{2} N_{c}$ fixed.
't Hooft's argument for existence of dual closed string theory at large N can be adapted to the Veneziano limit, if one focuses to flavor singlets.

Schematically: adjoint fields $\phi^{a}{ }_{b} \quad a=1, \ldots, N_{c}$ color indes

$$
\text { fundamental fields } q^{a}{ }_{i} \quad i=1, \ldots, N_{f} \text { flavor index }
$$

Two kinds of double lines:

Adjoint lines

$$
\langle\phi \phi\rangle
$$

Quark lines

$$
\langle q q\rangle
$$

Quark lines not suppressed.

Vacuum Feynman diagrams \rightarrow bi-colored Riemann surfaces $\sim N^{2-2 g}$
suggesting a dual closed string theory describing the flavor singlet sector, with $g_{s}=1 / N$.

Main novelty: glueball operators $\operatorname{Tr}(\phi \ldots \phi)$ (color-trace)
mix at leading order with
flavor-singlet mesons $\quad \bar{q}^{i} \phi \ldots \phi q_{i}$

Define flavor-contracted combination $\mathcal{M}^{a}{ }_{b} \equiv q^{a}{ }_{i} q^{i}{ }_{b}$

Main novelty: glueball operators $\operatorname{Tr}(\phi \ldots \phi)$ (color-trace)
mix at leading order with
flavor-singlet mesons $\quad \bar{q}^{i} \phi \ldots \phi q_{i}$

Define flavor-contracted combination $\mathcal{M}^{a}{ }_{b} \equiv q^{a}{ }_{i} q^{i}{ }_{b}$

In flavor-singlet sector, basic building blocks are the single-trace operators

$$
\operatorname{Tr}\left(\phi^{k_{1}} \mathcal{M}^{l_{1}} \phi^{k_{2}} \mathcal{M}^{l_{2}} \ldots\right)
$$

Usual large N factorization arguments apply.

Main novelty: glueball operators $\operatorname{Tr}(\phi \ldots \phi)$ (color-trace)
mix at leading order with
flavor-singlet mesons $\quad \bar{q}^{i} \phi \ldots \phi q_{i}$

Define flavor-contracted combination $\mathcal{M}^{a}{ }_{b} \equiv q^{a}{ }_{i} q^{i}{ }_{b}$

In flavor-singlet sector, basic building blocks are the single-trace operators

$$
\operatorname{Tr}\left(\phi^{k_{1}} \mathcal{M}^{l_{1}} \phi^{k_{2}} \mathcal{M}^{l_{2}} \ldots\right)
$$

Usual large N factorization arguments apply.

- In the (conjectural) dual string theory, large meson/glueball mixing interpreted as large backreaction of the "flavor" branes (need to resum open string perturbation theory).

Back to $\mathcal{N}=2$ superconformal QCD

From the "top-down":

- Engineer it with branes in string theory.

We found some evidence for a non-critical string dual, with seven "geometric" dimensions, containing both an $A d S_{5}$ and an S^{1} factor.

Back to $\mathcal{N}=2$ superconformal QCD

From the "top-down":

- Engineer it with branes in string theory.

We found some evidence for a non-critical string dual, with seven "geometric" dimensions, containing both an $A d S_{5}$ and an S^{1} factor.

From the "bottom-up":

- Study the perturbative dilation operator:
integrable spin-chain? asymptotic Bethe ansatz? clues of a dual sigma-model?
In both approaches, very useful to consider more general family of SCFTs, interpolating between a \mathbb{Z}_{2} orbifold of $\mathcal{N}=4$ and $\mathcal{N}=2$ SCQCD.

Back to $\mathcal{N}=2$ superconformal QCD

From the "top-down":

- Engineer it with branes in string theory.

We found some evidence for a non-critical string dual, with seven "geometric" dimensions, containing both an $A d S_{5}$ and an S^{1} factor.

From the "bottom-up":

- Study the perturbative dilation operator:
integrable spin-chain? asymptotic Bethe ansatz? clues of a dual sigma-model?
In both approaches, very useful to consider more general family of SCFTs, interpolating between a \mathbb{Z}_{2} orbifold of $\mathcal{N}=4$ and $\mathcal{N}=2$ SCQCD.

In the rest of this talk, I'll describe the very first step of the bottom-up approach: one-loop dilation operator in the scalar sector.

$$
\mathcal{N}=2 \mathbf{S C Q C D}
$$

$$
S U(2)_{R} \text { doublet } Q_{\mathcal{I}}=\left(q, \tilde{q}^{*}\right)
$$

Flavor-contracted "mesonic" operator: $\quad \mathcal{M}^{\mathcal{I}}{ }_{\mathcal{J}}{ }^{b}=Q_{\mathcal{I}}{ }^{a}{ }_{i} \bar{Q}^{\mathcal{J}}{ }^{i}{ }^{i}$

$$
\mathcal{M}_{1} \equiv \mathcal{M}^{\mathcal{I}}{ }_{\mathcal{I}} \quad \text { and } \quad \mathcal{M}_{3} \equiv \mathcal{M}_{\mathcal{K}}^{\mathcal{J}}-\frac{1}{2} \mathcal{M}^{\mathcal{I}}{ }_{\mathcal{I}} \delta_{\mathcal{K}}^{\mathcal{J}}
$$

$$
\mathcal{N}=2 \mathbf{S C Q C D}
$$

$$
S U(2)_{R} \text { doublet } Q_{\mathcal{I}}=\left(q, \tilde{q}^{*}\right)
$$

Flavor-contracted "mesonic" operator: $\quad \mathcal{M}^{\mathcal{I}}{ }_{\mathcal{J}}{ }^{b}=Q_{\mathcal{I}}{ }^{a}{ }_{i} \bar{Q}^{\mathcal{J}}{ }^{i}{ }^{i}$

$$
\mathcal{M}_{1} \equiv \mathcal{M}^{\mathcal{I}}{ }_{\mathcal{I}} \quad \text { and } \quad \mathcal{M}_{3} \equiv \mathcal{M}_{\mathcal{K}}^{\mathcal{J}}-\frac{1}{2} \mathcal{M}^{\mathcal{I}}{ }_{\mathcal{I}} \delta_{\mathcal{K}}^{\mathcal{J}}
$$

The One-Loop Hamiltonian in the Scalar Sector

We have evaluated the complete one-loop hamiltonian acting on single-trace operators made of scalars,

$$
\operatorname{Tr}\left[\phi^{k} \bar{\phi}^{\ell} \mathcal{M}_{1}^{m} \mathcal{M}_{3}^{n}\right] \quad \text { (arbitrary permutations thereof) }
$$

As usual, large N ensures locality of the hamiltonian.
Nearest neighbor at one-loop, next-to nearest at two loops, ...
(Still true in the Veneziano limit).

Each site of the chain occupied by 6 d vector space spanned by $\phi, \bar{\phi}, Q_{\mathcal{I}}, \bar{Q}^{\mathcal{J}}$.

Nearest neighbour Hamiltonian $H_{l, l+1}$ acting on $V_{l} \otimes V_{l+1}$

$$
\phi_{\mathfrak{m}}=(\phi, \bar{\phi})
$$

	$\phi^{p} \phi^{\text {q }}$	$Q_{\mathcal{I}} \bar{Q}^{\mathcal{J}}$	$\bar{Q}^{\mathcal{K}} Q_{\mathcal{L}}$	$Q_{\mathcal{I}} \phi^{\boldsymbol{p}}$
$\phi_{p^{\prime}} \phi_{q^{\prime}}$		$\sqrt{\frac{N_{f}}{N_{c}}} g_{\mathfrak{p}^{\prime} q^{\prime}} \delta_{\mathcal{I}}^{\mathcal{J}}$	0)
$\bar{Q}^{\mathcal{I}^{\prime}} Q_{\mathcal{J}}$	$\sqrt{\frac{N_{f}}{N_{c}} g^{\text {pa }} \delta^{\mathcal{J}^{\prime}}{ }^{\prime}}$	$\left(2 \delta_{\mathcal{I}}^{\mathcal{I}^{\prime}} \delta_{\mathcal{J}^{\prime}}^{\mathcal{J}}-\delta_{\mathcal{I}}^{\mathcal{J}} \delta_{\mathcal{J}^{\prime}}^{\mathcal{I}}\right) \frac{N_{f}}{N_{c}}$	0	0
$Q_{\mathcal{K}^{\prime}} \bar{Q}^{\mathcal{L}^{\prime}}$	0	0	$2 \delta^{\mathcal{K}} \delta^{\mathcal{K}} \mathcal{K}^{\prime}$	0
$\bar{Q}^{\mathcal{I}^{\prime}} \phi_{p^{\prime}}$	0	0	0	$2 \delta_{\frac{I}{\prime}}^{\mathcal{T}^{\prime}} \delta_{\mathfrak{p}^{\prime}}^{p}$

$S U(2)_{R}$ indices $\mathcal{I}, \mathcal{J}, \mathcal{K}, \mathcal{L} \cdots=1,2 \quad U(1)_{r}$ indices $\mathfrak{m}, \mathfrak{n} \cdots=1,2$

$$
g_{\mathfrak{m} \mathfrak{n}}=g^{\mathfrak{m} \mathfrak{n}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
\Gamma^{(1)} \equiv g^{2} H, \quad g^{2} \equiv \frac{\lambda}{8 \pi^{2}}, \quad \lambda \equiv g_{Y M}^{2} N_{c}
$$

Elementary operators acting on each site of the chain, transforming "incoming" $\mathcal{O}^{\mathcal{I}} \mathcal{J}$ to "outgoing" $\mathcal{O}^{\mathcal{L}}$ К:

Trace operator

$$
\mathbb{K}_{\mathcal{I K}}^{\mathcal{J} \mathcal{L}}=\delta_{\mathcal{I}}^{\mathcal{J}} \delta_{\mathcal{K}}^{\mathcal{L}}
$$

Permutation operator $\quad \mathbb{P}_{\mathcal{I K}}^{\mathcal{J}}=\delta_{\mathcal{I K}} \delta^{\mathcal{J} \mathcal{L}}$

Identity operator

$$
\mathbb{I}_{\mathcal{I} \mathcal{K}}^{\mathcal{J}}=\delta_{\mathcal{I}}^{\mathcal{L}} \delta_{\mathcal{K}}^{\mathcal{J}}
$$

$$
H_{k, k+1}=\begin{gathered}
\phi \phi \\
\bar{Q} Q \\
\phi \phi \\
Q \bar{Q} \\
\bar{Q} \phi
\end{gathered}\left(\begin{array}{cccc}
Q \bar{Q} & \bar{Q} Q & Q \phi \\
2 \mathbb{I}+\mathbb{K}-2 \mathbb{P} & \sqrt{\frac{N_{f}}{N}} \mathbb{K} & 0 & 0 \\
\sqrt{\frac{N_{f}}{N}} \mathbb{K} & (2 \mathbb{I}-\mathbb{K}) \frac{N_{f}}{N_{c}} & 0 & 0 \\
0 & 0 & 2 \mathbb{K} & 0 \\
0 & 0 & 0 & 2 \mathbb{I}
\end{array}\right)
$$

The $N_{f}=0$ case has been considered by Di Vecchia and Tanzini

Vacuum $\operatorname{Tr}\left(\phi^{\ell}\right)$.

Excitations are either the elementary $\bar{\phi}$ or the composite $\mathcal{M}_{1}, \mathcal{M}_{3}$.
In the infinite chain, diagonalize H in the one-impurity sector.

Vacuum $\operatorname{Tr}\left(\phi^{\ell}\right)$.

Excitations are either the elementary $\bar{\phi}$ or the composite $\mathcal{M}_{\mathbf{1}}, \mathcal{M}_{\mathbf{3}}$.
In the infinite chain, diagonalize H in the one-impurity sector.

For the $S U(2)_{R}$ triplet, $H\left[\mathcal{M}_{\mathbf{3}}(x)\right]=8 \mathcal{M}_{\mathbf{3}}(x)$, or $H\left[\mathcal{M}_{\mathbf{3}}(p)\right]=8 \mathcal{M}_{\mathbf{3}}(p)$

Vacuum $\operatorname{Tr}\left(\phi^{\ell}\right)$.

Excitations are either the elementary $\bar{\phi}$ or the composite $\mathcal{M}_{1}, \mathcal{M}_{3}$.
In the infinite chain, diagonalize H in the one-impurity sector.

For the $S U(2)_{R}$ triplet, $H\left[\mathcal{M}_{\mathbf{3}}(x)\right]=8 \mathcal{M}_{\mathbf{3}}(x)$, or $H\left[\mathcal{M}_{\mathbf{3}}(p)\right]=8 \mathcal{M}_{\mathbf{3}}(p)$
The singlets $\bar{\phi}$ and \mathcal{M}_{1} mix:

$$
\begin{aligned}
& \bar{\phi}(p) \equiv \sum_{x} \bar{\phi}(x) e^{i p x}, \\
& \mathcal{M}_{\mathbf{1}}(p) \equiv \sum_{x} \mathcal{M}_{\mathbf{1}}(x) e^{i p x} \\
& H\binom{\bar{\phi}(p)}{\mathcal{M}_{\mathbf{1}}}=\left(\begin{array}{cc}
6-e^{i p}-e^{-i p} & \left(1+e^{-i p}\right) \sqrt{\frac{2 N_{f}}{N_{c}}} \\
\left(1+e^{i p}\right) \sqrt{\frac{2 N_{f}}{N_{c}}} & 4
\end{array}\right)\binom{\bar{\phi}(p)}{\mathcal{M}_{\mathbf{1}}}
\end{aligned}
$$

Vacuum $\operatorname{Tr}\left(\phi^{\ell}\right)$.

Excitations are either the elementary $\bar{\phi}$ or the composite $\mathcal{M}_{1}, \mathcal{M}_{3}$.
In the infinite chain, diagonalize H in the one-impurity sector.

For the $S U(2)_{R}$ triplet, $H\left[\mathcal{M}_{\mathbf{3}}(x)\right]=8 \mathcal{M}_{\mathbf{3}}(x)$, or $H\left[\mathcal{M}_{\mathbf{3}}(p)\right]=8 \mathcal{M}_{\mathbf{3}}(p)$
The singlets $\bar{\phi}$ and \mathcal{M}_{1} mix:

$$
\begin{aligned}
& \bar{\phi}(p) \equiv \sum_{x} \bar{\phi}(x) e^{i p x}, \\
& \mathcal{M}_{\mathbf{1}}(p) \equiv \sum_{x} \mathcal{M}_{\mathbf{1}}(x) e^{i p x} \\
& H\binom{\bar{\phi}(p)}{\mathcal{M}_{\mathbf{1}}}=\left(\begin{array}{cc}
6-e^{i p}-e^{-i p} & \left(1+e^{-i p}\right) \sqrt{\frac{2 N_{f}}{N_{c}}} \\
\left(1+e^{i p}\right) \sqrt{\frac{2 N_{f}}{N_{c}}} & 4
\end{array}\right)\binom{\bar{\phi}(p)}{\mathcal{M}_{\mathbf{1}}}
\end{aligned}
$$

For $N_{f}=2 N_{c}$ one of the two singlet eigenstates is gapless.
Henceforth $N_{f} \equiv 2 N_{c}$.
The eigenstates are

$$
T(p) \equiv-\frac{1}{2}\left(1+e^{-i p}\right) \bar{\phi}(p)+\mathcal{M}_{\mathbf{1}}(p), \quad \widetilde{T}(p) \equiv \bar{\phi}(p)+\frac{1}{2}\left(1+e^{i p}\right) \mathcal{M}_{\mathbf{1}}(p)
$$

with eigenvalues

$$
H T(p)=4 \sin ^{2}\left(\frac{p}{2}\right) T(p), \quad H \widetilde{T}(p)=8 \widetilde{T}(p)
$$

Protected Operators

From explicit one-loop calculation in the scalar sector, the single-trace operators with $\gamma=0$ are

- $\operatorname{Tr} \mathcal{M}_{3}$
- $\operatorname{Tr} \phi^{\ell}$, with $\ell \geq 2$.
- $\operatorname{Tr} T \phi^{\ell}$, with $\ell \geq 0$, where $T \equiv \bar{\phi} \phi-\mathcal{M}_{1}$.

Scalar Multiplets	SCQCD operators	Protected
$\mathcal{B}_{R, r(0,0)}$	$\operatorname{Tr}\left[\bar{\phi}^{r} \mathcal{M}_{3}^{R}\right]$	
$\mathcal{E}_{r(0,0)}$	$\operatorname{Tr}\left[\bar{\phi}^{r}\right]$	\checkmark
\mathcal{B}_{R}	$\operatorname{Tr}\left[\mathcal{M}_{3}^{R}\right]$	\checkmark for $R=1$
$\mathcal{C}_{R, r(0,0)}$	$\operatorname{Tr}\left[T \mathcal{M}_{3}^{R} \bar{\phi}^{r}\right]$	
$\mathcal{C}_{0, r(0,0)}$	$\operatorname{Tr}\left[T \bar{\phi}^{r}\right]$	\checkmark
$\hat{\mathcal{C}}_{R(0,0)}$	$\operatorname{Tr}\left[T \mathcal{M}_{3}^{R}\right]$	
$\hat{\mathcal{C}}_{0(0,0)}$	$\operatorname{Tr}[T]$	\checkmark
$\mathcal{D}_{R(0,0)}$	$\operatorname{Tr}\left[\mathcal{M}_{3}^{R} \bar{\phi}\right]$	

Note that $\operatorname{Tr} T(\Delta=2)$ is the lowest weight state of the $\mathcal{N}=2$ stress-tensor multiplet.

Protected Operators

From explicit one-loop calculation in the scalar sector, the single-trace operators with $\gamma=0$ are

- $\operatorname{Tr} \mathcal{M}_{3}$
- $\operatorname{Tr} \phi^{\ell}$, with $\ell \geq 2$.
- $\operatorname{Tr} T \phi^{\ell}$, with $\ell \geq 0$, where $T \equiv \bar{\phi} \phi-\mathcal{M}_{1}$.

Scalar Multiplets	SCQCD operators	Protected
$\mathcal{B}_{R, r(0,0)}$	$\operatorname{Tr}\left[\bar{\phi}^{r} \mathcal{M}_{3}^{R}\right]$	
$\mathcal{E}_{r(0,0)}$	$\operatorname{Tr}\left[\bar{\phi}^{r}\right]$	\checkmark
$\hat{\mathcal{B}}_{R}$	$\operatorname{Tr}\left[\mathcal{M}_{3}^{R}\right]$	\checkmark for $R=1$
$\mathcal{C}_{R, r(0,0)}$	$\operatorname{Tr}\left[T \mathcal{M}_{3}^{R} \bar{\phi}^{r}\right]$	
$\mathcal{C}_{0, r(0,0)}$	$\operatorname{Tr}\left[T \bar{\phi}^{r}\right]$	\checkmark
$\mathcal{\mathcal { C }}_{R(0,0)}$	$\operatorname{Tr}\left[T \mathcal{M}_{3}^{R}\right]$	
$\hat{\mathcal{C}}_{0(0,0)}$	$\operatorname{Tr}[T]$	\checkmark
$\mathcal{D}_{R(0,0)}$	$\operatorname{Tr}\left[\mathcal{M}_{3}^{R} \bar{\phi}\right]$	

Note that $\operatorname{Tr} T(\Delta=2)$ is the lowest weight state of the $\mathcal{N}=2$ stress-tensor multiplet.
These operators are superconformal primaries.
In the free theory they are the lowest weight states of (semi-)short multiplets.
In the interacting theory (semi-)short multiplets can a priori combine into long multiplets with $\gamma \neq 0$.

Protection of $\operatorname{Tr} \phi^{\ell}$ easily proved to all orders from superconformal representation theory: such multiplets never appear in decomposition of long multiplets. Dolan-Osborn

Protection of $\operatorname{Tr} \mathcal{M}_{3}$ and of $\operatorname{Tr} T \phi^{\ell}$ more subtle,
we prove it by computing (essentially) a superconformal index.
Most easily done in interpolating family of SCFTs (coming up soon).
(Situations more intricate than in $\mathcal{N}=4$ SYM where the only single-trace protected multiplets are the $1 / 2$ BPS multiplets.)

An interpolating family of super CFTs

$\mathcal{N}=2$ SCQCD can be viewed as a limit of a family of $\mathcal{N}=2$ SCFTs.

In opposite limit the family reduces to a well-known \mathbb{Z}_{2} orbifold of $\mathcal{N}=4 \mathrm{SYM}$

Start with $\mathcal{N}=4$ SYM: $X_{A B}, \lambda_{\alpha}^{A}, A_{\mu}$
$A, B S U(4)_{R}$ indices

An interpolating family of super CFTs

$\mathcal{N}=2$ SCQCD can be viewed as a limit of a family of $\mathcal{N}=2$ SCFTs.
In opposite limit the family reduces to a well-known \mathbb{Z}_{2} orbifold of $\mathcal{N}=4$ SYM

Start with $\mathcal{N}=4$ SYM: $X_{A B}, \lambda_{\alpha}^{A}, A_{\mu}$

$$
X_{A B}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc|cc}
0 & X_{4}+i X_{5} & X_{7}+i X_{6} & X_{8}+i X_{9} \\
-X_{4}-i X_{5} & 0 & X_{8}-i X_{9} & -X_{7}+i X_{6} \\
\hline-X_{7}-i X_{6}-X_{8}+i X_{9} & 0 & X_{4}-i X_{5} \\
-X_{8}-i X_{9} & X_{7}-i X_{6} & -X_{4}+i X_{5} & 0
\end{array}\right)
$$

Pick $S U(2)_{L} \times S U(2)_{R} \times U(1)_{r}$ subgroup of $S U(4)_{R}$

$$
\mathcal{Z} \equiv \frac{X_{4}+i X_{5}}{\sqrt{2}}, \quad \mathcal{X}_{\mathcal{I} \hat{\mathcal{I}}} \equiv \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
X_{7}+i X_{6} & X_{8}+i X_{9} \\
X_{8}-i X_{9}-X_{7}+i X_{6}
\end{array}\right)
$$

$S U(2)_{L} \times S U(2)_{R} \cong S O(4)$ are 6789 rotations,
$\mathcal{I}, \mathcal{J}= \pm S U(2)_{R}$ indices, $\hat{\mathcal{I}}, \hat{\mathcal{J}}=\hat{ \pm} S U(2)_{L}$ indices

$$
U(1)_{R} \cong S O(2) 45 \text { rotations }
$$

In R-space, orbifold by $\mathbb{Z}_{2} \subset S U(2)_{L}, \mathbb{Z}_{2}=\left\{ \pm \mathbb{I}_{2 \times 2}\right\}$

$$
\left(X_{6}, X_{7}, X_{8}, X_{9}\right) \rightarrow \pm\left(X_{6}, X_{7}, X_{8}, X_{9}\right)
$$

In color space, start with $S U\left(2 N_{c}\right)$ and declare non-trivial element of orbifold

$$
\gamma \equiv\left(\begin{array}{cc}
\mathbb{I}_{N_{c} \times N_{c}} & 0 \\
0 & -\mathbb{I}_{N_{c} \times N_{c}}
\end{array}\right) \quad A_{\mu} \rightarrow \gamma A_{\mu} \gamma, \quad Z_{\mathcal{I J}} \rightarrow \gamma Z_{\mathcal{I} \mathcal{J}} \gamma, \quad \lambda_{\mathcal{I}} \rightarrow \gamma \lambda_{\mathcal{I}} \gamma, \quad \mathcal{X}_{I \hat{I}} \rightarrow-\gamma \mathcal{X}_{\mathcal{I} \hat{I}} \gamma, \quad \lambda_{\hat{I}} \rightarrow-\gamma \lambda_{\hat{I}} \gamma .
$$

Fields surviving the projections are:

$$
\begin{aligned}
& A_{\mu}=\left(\begin{array}{cc}
A_{\mu b}^{a} & 0 \\
0 & \check{A}_{\mu \check{a}}^{\check{a}}
\end{array}\right) \quad Z=\left(\begin{array}{cc}
\phi^{a} & { }_{0} \\
0 & 0 \\
0 & \check{\phi}^{\check{a}} \\
& \\
& \\
&
\end{array}\right) \quad \lambda_{\mathcal{I}}=\left(\begin{array}{cc}
\lambda_{\mathcal{I} b}^{a} & 0 \\
0 & \check{\lambda}_{\mathcal{I} \check{a}}
\end{array}\right)
\end{aligned}
$$

	$S U\left(N_{c}\right)$	$S U\left(N_{\bar{c}}\right)$	$S U(2)_{R}$	$S U(2)_{L}$	$U(1)_{R}$
\mathcal{Q}_{α}^{I}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$	$+1 / 2$
$\mathcal{S}_{\mathcal{I} \alpha}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$	$-1 / 2$
A_{μ}	Adj	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0
\dot{A}_{μ}	$\mathbf{1}$	Adj	$\mathbf{1}$	$\mathbf{1}$	0
ϕ	Adj	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	-1
$\dot{\phi}$	$\mathbf{1}$	Adj	$\mathbf{1}$	$\mathbf{1}$	-1
λ^{I}	Adj	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$	$-1 / 2$
$\dot{\lambda}^{\mathcal{I}}$	$\mathbf{1}$	Adj	$\mathbf{2}$	$\mathbf{1}$	$-1 / 2$
$Q_{\tau \hat{I}}$	\square	$\bar{\square}$	$\mathbf{2}$	$\mathbf{2}$	0
$\psi_{\hat{\mathcal{I}}}$	\square	$\bar{\square}$	$\mathbf{1}$	$\mathbf{2}$	$+1 / 2$
$\psi_{\hat{\mathcal{I}}}$	$\bar{\square}$	\square	$\mathbf{1}$	$\mathbf{2}$	$+1 / 2$

Two gauge-couplings $g_{Y M}$ and $\check{g}_{Y M}$ can be independently varied while preserving $\mathcal{N}=2$ superconformal invariance

For $\check{g}_{Y M} \rightarrow 0$, recover $\mathcal{N}=2 \mathrm{SCQCD} \oplus$ decoupled $S U\left(N_{\check{c}}\right)$ vector multiplet
For $\check{g}_{Y M}=0$, global symmetry enhancement $S U\left(N_{\check{c}}\right) \times S U(2)_{L} \rightarrow U\left(N_{f}=2 N_{c}\right)$: $(\check{a}, \hat{\mathcal{I}}) \equiv i=1, \ldots N_{f}=2 N_{c}$

Two gauge-couplings $g_{Y M}$ and $\check{g}_{Y M}$ can be independently varied
while preserving $\mathcal{N}=2$ superconformal invariance

For $\check{g}_{Y M} \rightarrow 0$, recover $\mathcal{N}=2 \mathrm{SCQCD} \oplus$ decoupled $\operatorname{SU}\left(N_{\check{c}}\right)$ vector multiplet
For $\check{g}_{Y M}=0$, global symmetry enhancement $S U\left(N_{\check{c}}\right) \times S U(2)_{L} \rightarrow U\left(N_{f}=2 N_{c}\right)$: $(\check{a}, \hat{\mathcal{I}}) \equiv i=1, \ldots N_{f}=2 N_{c}$
$c=a=\frac{N_{c}^{2}}{2} \quad$ along the whole marginal deformation

For $\check{g}_{Y M}=0$, interpret as

$$
a=\left(\frac{7}{24}+\frac{5}{24}\right) N_{c}^{2} \quad c=\left(\frac{8}{24}+\frac{4}{24}\right) N_{c}^{2}
$$

Interpolating theory has vastly more protected "closed" states than $\mathcal{N}=2 \mathrm{SCQD}$: towers of states with arbitrary high (and equal) $S U(2)_{L}$ and $S U(2)_{R}$ spins

For $\check{g} \rightarrow 0$, they are re-interpreted as multiparticle states of short open strings

Spin chain for interpolating SCFT

$$
\begin{aligned}
& H_{k, k+1}=
\end{aligned}
$$

$$
\begin{aligned}
& \kappa \equiv \frac{\check{g}}{g}, \quad g^{2} \equiv \frac{g_{Y M}^{2} N}{8 \pi^{2}}, \quad \check{g}^{2} \equiv \frac{\check{g}_{Y M}^{2} N}{8 \pi^{2}}
\end{aligned}
$$

More compactly, using the \mathbb{Z}_{2}-projected $S U\left(2 N_{c}\right)$ adjoint fields

$$
\begin{aligned}
& Z=\left(\begin{array}{cc}
\phi & 0 \\
0 & \check{\phi}
\end{array}\right), \quad \mathcal{X}_{\mathcal{I} \hat{\mathcal{I}}}=\left(\begin{array}{ccc}
0 & Q_{\mathcal{I} \hat{\mathcal{I}}} \\
-\epsilon_{\mathcal{I} \mathcal{J}} \epsilon_{\hat{\mathcal{I}} \hat{\mathcal{J}}} \bar{Q} \hat{\mathcal{J}} \mathcal{J} & 0
\end{array}\right) \\
& g^{2} H=\left(\begin{array}{cccc}
Z Z & \mathcal{X X} & Z \mathcal{X} & \mathcal{X} Z \\
\left(g_{+}+\gamma g_{-}\right)^{2}(2+\mathbb{K}-2 \mathbb{P}) & \left(g_{+}+\gamma g_{-}\right)^{2} \mathbb{K} \hat{\mathbb{K}} & 0 & 0 \\
\left(g_{+}+\gamma g_{-}\right)^{2} \mathbb{K} \hat{\mathbb{K}} & \left(g_{+}+\gamma g_{-}\right)^{2}(2 \hat{\mathbb{K}}-\mathbb{K} \hat{\mathbb{K}}) & 0 & 0 \\
02\left(g_{+}-\gamma g_{-}\right)^{2} \mathbb{K} & & \\
0 & 0 & 2\left(g_{+}+\gamma g_{-}\right)^{2} & -2\left(g_{+}{ }^{2}-g_{-}{ }^{2}\right) \\
0 & 0 & -2\left(g_{+}{ }^{2}-g_{-}{ }^{2}\right) & 2\left(g_{+}-\gamma g_{-}\right)^{2}
\end{array}\right)
\end{aligned}
$$

where $g_{ \pm} \equiv(g \pm \check{g}) / 2$ and γ the twist operator.

More compactly, using the \mathbb{Z}_{2}-projected $S U\left(2 N_{c}\right)$ adjoint fields

$$
\begin{aligned}
& Z=\left(\begin{array}{cc}
\phi & 0 \\
0 & \check{\phi}
\end{array}\right), \quad \mathcal{X}_{\mathcal{I} \hat{\mathcal{I}}}=\left(\begin{array}{ccc}
0 & Q_{\mathcal{I} \hat{\mathcal{I}}} \\
-\epsilon_{\mathcal{I} \mathcal{J}} \epsilon_{\hat{\mathcal{I}} \hat{\mathcal{J}}} \bar{Q} \hat{\mathcal{J} J} & 0
\end{array}\right) \\
& g^{2} H=\left(\begin{array}{cccc}
Z Z & \mathcal{X X} & Z \mathcal{X} & \mathcal{X} Z \\
\left(g_{+}+\gamma g_{-}\right)^{2}(2+\mathbb{K}-2 \mathbb{P}) & \left(g_{+}+\gamma g_{-}\right)^{2} \mathbb{K} \hat{\mathbb{K}} & 0 & 0 \\
\left(g_{+}+\gamma g_{-}\right)^{2} \mathbb{K} \hat{\mathbb{K}} & \left(g_{+}+\gamma g_{-}\right)^{2}(2 \hat{\mathbb{K}}-\mathbb{K} \hat{\mathbb{K}}) & 0 & 0 \\
0+2\left(g_{+}-\gamma g_{-}\right)^{2} \mathbb{K} & & \\
0 & 0 & 2\left(g_{+}+\gamma g_{-}\right)^{2} & -2\left(g_{+}{ }^{2}-g_{-}{ }^{2}\right) \\
0 & 0 & -2\left(g_{+}{ }^{2}-g_{-}{ }^{2}\right) & 2\left(g_{+}-\gamma g_{-}\right)^{2}
\end{array}\right)
\end{aligned}
$$

where $g_{ \pm} \equiv(g \pm \check{g}) / 2$ and γ the twist operator.
At the orbifold point $g=\check{g}$, same as $\mathcal{N}=4$ SYM apart from global twist
(Beisert-Roiban)
For $g \neq \check{g}$, bulk Hamiltonian truly different.

More compactly, using the \mathbb{Z}_{2}-projected $S U\left(2 N_{c}\right)$ adjoint fields

$$
\begin{aligned}
& Z=\left(\begin{array}{cc}
\phi & 0 \\
0 & \check{\phi}
\end{array}\right), \quad \mathcal{X}_{\mathcal{I} \hat{\mathcal{I}}}=\left(\begin{array}{ccc}
0 & Q_{\mathcal{I} \hat{\mathcal{I}}} \\
-\epsilon_{\mathcal{I} \mathcal{J}} \epsilon_{\hat{\mathcal{I}} \hat{\mathcal{J}}} \bar{Q} \hat{\mathcal{J} J} & 0
\end{array}\right) \\
& g^{2} H=\left(\begin{array}{cccc}
Z Z & \mathcal{X X} & Z \mathcal{X} & \mathcal{X} Z \\
\left(g_{+}+\gamma g_{-}\right)^{2}(2+\mathbb{K}-2 \mathbb{P}) & \left(g_{+}+\gamma g_{-}\right)^{2} \mathbb{K} \hat{\mathbb{K}} & 0 & 0 \\
\left(g_{+}+\gamma g_{-}\right)^{2} \mathbb{K} \hat{\mathbb{K}} & \left(g_{+}+\gamma g_{-}\right)^{2}(2 \hat{\mathbb{K}}-\mathbb{K} \hat{\mathbb{K}}) & 0 & 0 \\
0 & +2\left(g_{+}-\gamma g_{-}\right)^{2} \mathbb{K} & & \\
0 & 0 & 2\left(g_{+}+\gamma g_{-}\right)^{2} & -2\left(g_{+}{ }^{2}-g_{-}{ }^{2}\right) \\
0 & 0 & -2\left(g_{+}{ }^{2}-g_{-}{ }^{2}\right) & 2\left(g_{+}-\gamma g_{-}\right)^{2}
\end{array}\right)
\end{aligned}
$$

where $g_{ \pm} \equiv(g \pm \check{g}) / 2$ and γ the twist operator.
At the orbifold point $g=\check{g}$, same as $\mathcal{N}=4$ SYM apart from global twist
(Beisert-Roiban)
For $g \neq \check{g}$, bulk Hamiltonian truly different.
Parity is broken for generic \check{g}, but is recovered for $\check{g} \rightarrow 0$, as seen more clearly in terms of composite mesonic operators.

Dynamics of the interpolating spin chain

For $\check{g} \neq 0$, magnons are conventional, "elementary" Q or \bar{Q}, with dispersion relation

$$
E(p ; \kappa)=2(1-\kappa)^{2}+8 \kappa\left(\sin ^{2} \frac{p}{2}\right) \quad \text { where } \kappa \equiv \check{g} / g
$$

Note that Q has a ϕ vacuum to its left and a $\check{\phi}$ vacuum to its right, viceversa for \bar{Q}.

Dynamics of the interpolating spin chain

For $\check{g} \neq 0$, magnons are conventional, "elementary" Q or \bar{Q}, with dispersion relation
$E(p ; \kappa)=2(1-\kappa)^{2}+8 \kappa\left(\sin ^{2} \frac{p}{2}\right) \quad$ where $\kappa \equiv \check{g} / g$.

Note that Q has a ϕ vacuum to its left and a $\check{\phi}$ vacuum to its right, viceversa for \bar{Q}.

The 2-body S-matrix is defined as usual, for $Q \bar{Q}$
$\sum_{x_{1} \ll x_{2}}\left(e^{i p_{1} x_{1}+i p_{2} x_{2}}+S\left(p_{2}, p_{1}\right) e^{i p_{2} x_{1}+i p_{1} x_{2}}\right)\left|\ldots \phi Q\left(x_{1}\right) \check{\phi} \ldots \check{\phi} \bar{Q}\left(x_{2}\right) \phi \ldots\right\rangle$
(pure reflection)
and similarly for $\bar{Q} Q$,
$\sum_{x_{1} \ll x_{2}}\left(e^{i p_{1} x_{1}+i p_{2} x_{2}}+\check{S}\left(p_{2}, p_{1}\right) e^{i p_{2} x_{1}+i p_{1} x_{2}}\right)\left|\ldots \check{\phi} \bar{Q}\left(x_{1}\right) \phi \ldots \phi Q\left(x_{2}\right) \check{\phi} \ldots\right\rangle$

Clearly we have $S\left(p_{1}, p_{2} ; g, \check{g}\right)=\breve{S}\left(p_{1}, p_{2} ; \check{g}, g\right)$.

Each magnon is in the spin $1 / 2$ representation of both $S U(2)_{L}$ and $S U(2)_{R}$.
Solving the 2-body problem in the four sectors with different $S U(2)$ quantum numbers,

$L \otimes R$	$S\left(p_{1}, p_{2}, \kappa\right)$
$1 \otimes 1$	$-\mathcal{S}\left(p_{1}, p_{2}, \kappa-\frac{1}{\kappa}\right) \mathcal{S}^{-1}\left(p_{1}, p_{2}, \kappa\right)$
$1 \otimes 3$	$\mathcal{S}\left(p_{1}, p_{2}, \kappa-\frac{1}{\kappa}\right)$
$3 \otimes 1$	-1
$3 \otimes 3$	$\mathcal{S}\left(p_{1}, p_{2}, \kappa\right)$

$$
\mathcal{S}\left(p_{1}, p_{2}, \kappa\right) \equiv-\frac{1-2 \kappa e^{i p_{1}}+e^{i\left(p_{1}+p_{2}\right)}}{1-2 \kappa e^{i p_{2}}+e^{i\left(p_{1}+p_{2}\right)}}
$$

Each magnon is in the spin $1 / 2$ representation of both $S U(2)_{L}$ and $S U(2)_{R}$.
Solving the 2-body problem in the four sectors with different $S U(2)$ quantum numbers,

$L \otimes R$	$S\left(p_{1}, p_{2}, \kappa\right)$
$1 \otimes 1$	$-\mathcal{S}\left(p_{1}, p_{2}, \kappa-\frac{1}{\kappa}\right) \mathcal{S}^{-1}\left(p_{1}, p_{2}, \kappa\right)$
$1 \otimes 3$	$\mathcal{S}\left(p_{1}, p_{2}, \kappa-\frac{1}{\kappa}\right)$
$3 \otimes 1$	-1
$3 \otimes 3$	$\mathcal{S}\left(p_{1}, p_{2}, \kappa\right)$

$$
\mathcal{S}\left(p_{1}, p_{2}, \kappa\right) \equiv-\frac{1-2 \kappa e^{i p_{1}}+e^{i\left(p_{1}+p_{2}\right)}}{1-2 \kappa e^{i p_{2}}+e^{i\left(p_{1}+p_{2}\right)}}
$$

The magnon S-matrix factorizes into "left" and "right"

$$
S\left(p_{1}, p_{2} ; \kappa\right)=\frac{S_{L}\left(p_{1}, p_{2} ; \kappa\right) S_{R}\left(p_{1}, p_{2} ; \kappa\right)}{S_{3 \otimes 3}\left(p_{1}, p_{2} ; \kappa\right)}
$$

$S U(2)_{L}$	$S_{L}\left(p_{1}, p_{2} ; \kappa\right)$	$S U(2)_{R}$	$S_{R}\left(p_{1}, p_{2} ; \kappa\right)$
1	$\mathcal{S}\left(p_{1}, p_{2} ; \kappa-\frac{1}{\kappa}\right)$	1	-1
3	$\mathcal{S}\left(p_{1}, p_{2} ; \kappa\right)$	3	$\mathcal{S}\left(p_{1}, p_{2} ; \kappa\right)$

The 2-body S-matrix of the interpolating theory reveals a rich spectrum of bound and anti-bound states:

	Pole of the S-matrix	Range of existence	Dispersion relation $E(P)$
\mathcal{M}_{33}	$e^{-q}=\cos \left(\frac{P}{2}\right) / \kappa$	$2 \arccos \kappa<\|P\|<\pi$	$4 \sin ^{2}\left(\frac{P}{2}\right)$
T	$e^{q}=\cos \left(\frac{P}{2}\right) / \kappa$	$0<\|P\|<2 \arccos \kappa$	$4 \sin ^{2}\left(\frac{P}{2}\right)$
\widetilde{T} and \mathcal{M}_{3}	$e^{-q}=\cos \left(\frac{P}{2}\right) /\left(\kappa-\frac{1}{\kappa}\right)$	See equ. (5.26)	$\frac{4 \kappa^{2}}{\left(1-\kappa^{2}\right)}\left(\frac{2}{\kappa^{2}}-1-\sin ^{2} \frac{P}{2}\right)$
$\tilde{\mathcal{M}}_{33}$	$e^{-q}=\kappa \cos \left(\frac{P}{2}\right)$	$0<\|P\|<\pi$	$4 \kappa^{2} \sin ^{2}\left(\frac{P}{2}\right)$
\tilde{T}	$e^{q}=\kappa \cos \left(\frac{P}{2}\right)$	No solution	
\tilde{T} and $\check{\mathcal{M}}_{3}$	$e^{-q}=\cos \left(\frac{P}{2}\right) /\left(\frac{1}{\kappa}-\kappa\right)$	See equ. (5.26)	$\frac{4 \kappa^{2}}{\left(1-\kappa^{2}\right)}\left(1-2 \kappa^{2}+\sin ^{2} \frac{P}{2}\right)$

The asymptotic wave-functions behave as
$e^{i P \frac{x_{1}+x_{2}}{2}-q\left(x_{2}-x_{1}\right)}$ for bound states,
$(-1)^{x_{2}-x_{1}} e^{i P \frac{x_{1}+x_{2}}{2}-q\left(x_{2}-x_{1}\right)}$ for anti-bound states.

Remarkably, for $\check{g} \rightarrow 0$ the "dimeric" excitations $T(p), \widetilde{T}(p)$ and $\mathcal{M}_{\mathbf{3}}$ of the SCQCD chain are recovered smoothly for $\kappa \rightarrow 0$ as "infinitely tight" bound states ($p \rightarrow \pm i \infty$)

Recall the two-magnon energy,

$$
E=4(1-\kappa)^{2}+16 \kappa\left(\sin ^{2} \frac{p}{2}\right) .
$$

For some bound states of the interpolating theory, as $\kappa \rightarrow 0$ the "zero" in front of the kinetic energy multiplies the "infinity" arising from the large imaginary momenta.

In the limit $\kappa \rightarrow 0$ the elementary Q and \bar{Q} excitations freeze, but their bound states retain a non-trivial dynamics.

Yang-Baxter

The YB equation for the 2-body S-matrix obviously holds for $g=\check{g}$.

Yang-Baxter

The YB equation for the 2-body S-matrix obviously holds for $g=\check{g}$.
We find that is is generically violated for $\check{g} \neq g$, showing conclusively that the interpolating spin-chain is not integrable.

Yang-Baxter

The YB equation for the 2-body S-matrix obviously holds for $g=\check{g}$.
We find that is is generically violated for $\check{g} \neq g$, showing conclusively that the interpolating spin-chain is not integrable.

Remarkably, YB holds again for $\check{g} \rightarrow 0$!
Hint that $\mathcal{N}=2$ SCQCD may be integrable, at least at one loop.
Algebraic structure (to be discussed shortly) gives hope for higher-loops.
Ordinarily, YB is strong evidence, but in our case things may be more subtle.

Smooth limit is reason for optimism.

Outlook: Symmetry

We have focused on the scalar sector, where the S-matrix has $S U(2)_{L} \times S U(2)_{R}$ symmetry.

Outlook: Symmetry

We have focused on the scalar sector, where the S-matrix has $S U(2)_{L} \times S U(2)_{R}$ symmetry.

- In the full theory, the S-matrix has symmetry $S U(2)_{L} \times S U(2)_{\alpha} \times P S U(2 \mid 2)_{R} \times \mathbb{R}$. In the right sector, same as $\mathcal{N}=4 \mathrm{SYM}$, but the representation is now reducible (two copies of the fundamental).

Repeating Beisert's argument, it appears one can constrain the right S-matrix to all orders (up to overall phase of course): we find a certain function of κ, which is consistent with the one-loop S-matrix in the scalar sector.

Outlook: Symmetry

We have focused on the scalar sector, where the S-matrix has $S U(2)_{L} \times S U(2)_{R}$ symmetry.

- In the full theory, the S-matrix has symmetry $S U(2)_{L} \times S U(2)_{\alpha} \times P S U(2 \mid 2)_{R} \times \mathbb{R}$. In the right sector, same as $\mathcal{N}=4 \mathrm{SYM}$, but the representation is now reducible (two copies of the fundamental).

Repeating Beisert's argument, it appears one can constrain the right S-matrix to all orders (up to overall phase of course): we find a certain function of κ, which is consistent with the one-loop S-matrix in the scalar sector.

- Calculation of the complete one-loop Hamiltonian is also in progress.

Outlook: Integrability?

- Elegant way to conclusely show integrability for the $\mathcal{N}=2$ SCQCD chain would be to find an algebraic Bethe ansatz.
Simplest guess for the R-matrix does not appear to work.
- Numerical checks of integrability are in progress.

Difficult to work at $\kappa \equiv 0$
(for example it seems hard to find the S-matrix of the dimeric magnons).

Instead, use small κ as a regulator.

Write Bethe equations for small κ, taking $\kappa \rightarrow 0$ in the final result for the energies.
Then compare with brute force diagonalization of $H_{S C C D}$.

Similarly, determine the S-matrix of the bound states by fusion for small κ.

Consistency of the procedure (?) would hinge on smoothness of the $\kappa \rightarrow 0$ limit.

Outlook: String Theory

- Dual sigma-model is in principle known for large g, finite $\kappa \equiv \check{g} / g$.

Start from orbifold sigma-model. Taking $\check{g} \neq g$ amounts to changing the period of $B_{N S N S}$ through the collapsed cycle of the orbifold.

2-body S-matrix at strong coupling?

Natural to expect integrability only at the two parity-invariant values of B, corresponding to $\check{g}=g$ and $\check{g}=0$.
(Somewhat similar story in the ABJ model).

Outlook: String Theory

- Dual sigma-model is in principle known for large g, finite $\kappa \equiv \check{g} / g$.

Start from orbifold sigma-model. Taking $\check{g} \neq g$ amounts to changing the period of $B_{N S N S}$ through the collapsed cycle of the orbifold.

2-body S-matrix at strong coupling?

Natural to expect integrability only at the two parity-invariant values of B, corresponding to $\check{g}=g$ and $\check{g}=0$.
(Somewhat similar story in the ABJ model).

- On the string theory side, $\kappa \rightarrow 0$ limit is singular, need to change duality frame.

In our first paper, argued that in the limit one finds a non-critical string background.

Field theory results in qualitative agreement with this picture:
protected states consistent with KK spectrum, counting of gapless magnons consistent with counting of transverse directions.

Conclusion

$\mathcal{N}=2$ SCQCD is perhaps the simplest theory outside the $\mathcal{N}=4$ universality class.
Continuously connected to the $\mathcal{N}=4$ class by an interpolating $\mathcal{N}=2$ SCFT.
Already the simplest calculations reveal a rich dynamics.

