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The pursuit of finiteness

A

classical AdS strings
QISM ¢

A

TBA

S-matrix

perturb. gauge theory

- L

TBA approach: Assumes integrability at finite A, L.

e AtL > 1, factorizability of the S-matrix ~~ Fix 2-body
S-matrix using Yangian symmetry (universal R-matrix?)

e Zamolodchikov's TBA trick ~» Ground state energy Eg(L).
Claim: Excited states described by solutions of Y -system
(boundary & analyticity conditions?).
[Bombardelli-Tateo-Fioravanti, Frolov-Arutyunov,
Gromov-Kazakov-Kozak-Vieira '09]

Need to prove integrability V(A,L) ~» QISM.



Quantum Inverse Scattering Method

Starting point for QISM:
Rip(u,v)LI(u)L3(v) = L3(V)LL(U)Rzz(u, V),
LI(u)LZ(v) = LJ(v)LI(u), ¥Yn#m.

Defining monodromy M (u) == L} (u)...L3(u), we have

T(u) == try M4(u), ‘[T(u),T(v)] =0, VU,V.‘

Classical limit and CISM: Letting Ryp = 1 + Aryp + O(h?) and
1= L7 +O(h) we find | {L],L3'} = [r12, L]L3]o"™.
Continuum limit: n

L" = P éxp Jortdol(o) ©

yields | {Lq., Lo} = [ri2, L1 + L2]dsor | ~» Lie bialgebra structure.




Integrable Hamiltonian systems

Consider n-dim Hamiltonian system: (P;{-,-}),h € C(P).
Definition
w € C(P) is an integral of motion if

e {u,h} =0,

e du#0.
Definition (Integrable system)
(P,{-,-},h) isintegrable if 3y, ..., un € C(P) s.t.

e {uj,h}=0, i=1,...,n,

e duyg A...Adun #0,

° {Miaﬂj} =0, i,j=1,...,n.
Tasks for proving integrability:
(i) Identify the integrals of motion ;.
(if) Show their involution {;, ¢4} = 0.



Lax pair
Idea:[Lax] Obtain integrals p; from eigenvalues of a matrix L.

~» Reduces task (i) to spectral theory.

Suppose we can find L € Maty N [C(P)] whose evolution is
‘isospectral’, namely

L= {L,h} = [M,L],
where M € Maty ,n[C(P)]. Then also {L,h} = [M, L], and
{rUh}=0, VjeN
Hence spectrum of L provides integrals of motion of h.

So problem is reduced to finding such an L.



Dual of a Lie algebra
Let g be a Lie algebra. Dual g* is a Poisson manifold:

Lie bracketong ~» Poisson bracket on g*.

Kostant-Kirillov bracket (KK-bracket):
Letf € C(g*) and L € g*, then (df)_ € (g*)* ~ g. So define

{f,9}(L) = (L, [(df)., (dg).])-
Lax equation: X € g ~ (g*)* defines X : L — (L, X). Then

d

a<L7X> = {)27 h}(L) = (L, [X7 (dh)L]> = (ad*(dh)L L, X).

Identifying g* ~ g we have ad* ~ ad, and hence

L=ad*(dh).-L| < L=[M,L], M:=(dh).




Setbacks

Any h € C(g*) generates a Lax equation! Unlikely to provide
a framework for describing non-trivial integrable systems.

Moreover,

Proposition

Spectral invariant functions f € C(g*), i.e. ad*-invariant
functions, are Casimirs of the Kostant-Kirillov bracket.

In other words, the natural candidates trLi for integrable
Hamiltonians all generate trivial flows under KK-bracket.

Resolution: Introduce a second Poisson bracket on g*.
e Spectral invariants still characterised by KK-bracket, but
e Flows will be generated w.r.t. a different R-bracket.



Dual of a Lie di-algebra
Let g be a Lie algebra. Given R € End g, introduce
[X,Y]r = 3([RX, Y] + [X,RY]).

Anti-symmetry of [, ]r follows from that of [-, ].
Sufficient condition for [-, -]r to satisfy Jacobi identity is

[RX,RY] — R([RX,Y] + [X,RY]) = —[X,Y], ¥X,Y €g.

This is the modified classical Yang-Baxter equation (mMCYBE)
and its solutions are classical R-matrices.

(g,[,-],[-,-]r) is a Lie dialgebra. Its dual g* has two PBs

{f,9}(L) = (L, [(df)L, (dg).]),
{f.9}r(L) = (L, [(df)L, (dg)L]r)-



Constructing integrable systems

Theorem (Semenov-Tian-Shansky)
(i) Casimirs of KK-bracket are in involution w.r.t. R-bracket.
(ii) The flow generated by a Casimir h via R-bracket reads
L=ad*M-L, M =R(dh)..

This is the generalised Lax equation. When g* ~ g, it
takes the form of the standard Lax equation.

Upshot: Allows construction of integrable systems on the dual
(g%, {-, - }r) Of a Lie dialgebra (g, R).

Lax matrix: Describing a specific model with phase-space
(P,{-,-}) requires a Poisson map

L: (Pv {'7 }) - (g*a {'> '}R),
i.e. {L*f,L*g} = L*{f,g}r forany f,g € C(g*).




Lie bialgebras vs Lie dialgebras

5r(X):[X,r] R=r=—r*

Lie bialgebras

(8,9)

Lie dialgebras
(g:R)

Lie dialgebra: R € End g defines a second bracket on g,
[x,¥lr = 3([RX,y] + [x,Ry]).

Lie bialgebra: 6* : g* A g* — g* defines bracket on g*.

In coboundary case 6; : (&, &) — [¢.¢] = 3([r&. €] — [€, 7).



Classical Yang-Baxter equation

Only restriction on the R-matrix is that it satisfies the mCYBE
[RX,RY] —R([RX,Y] +[X,RY]) = —[X,Y], VX.,Y €g.

In tensor notation this reads

[Ri2, Ria] + [Ru2, Raa] + [Raz, Ris] = —&123,

where &(X,Y,Z) = ([X,Y],Z).

For the r-matrix of a Lie bialgebra, r + r* is ad-invariant.
Imposing this further condition on R-matrix we obtain

[Ri2, Ria] + [Ru2, Raa] + [Ry3, Ras] = —&123,

which is the usual MCYBE for R = r.



Zero curvature equation

The generalised Lax equation applies to any Lie (di)algebra g,
L=ad*M-L.

So far we've used it to discuss only the Lax equation L = [M, L].

By choosing g appropriately it is possible to cover also the
zero-curvature equation

0-L£ — 0, = [, £].
Indeed, just need to find g such that
ad*M - £ = [, £] + 9, M.

Given by central extension & of current algebra C>°(S1, §).



Centrally extended current algebras

Let g be a ‘little’ Lie algebra with inner product (-, -).
Consider & = C>(S*, §) with non-deg., inv., bilinear product

(@)= [ dofx(). D). xYee.

Central extension: defined by the 2-cocycle
w(x.) = [ do(x(0).:9(). xee.
Sl

As a vector space & = & ¢ C, equipped with the Lie bracket

[(%,a), (9, b)] = (%, D], w(X,D))-
Extend also the product as (%, a), (9),b))) = (X,92)) + ab.

Lemma
If (§,R) is a Lie dialgebra, then so is (&, R), where

R(X(0).c) = (R(X(0)).c), for (X(c),c) € &.



Coadjoint action

Define the coadjoint action of & on &* as

(ad*(Mm,c) - (¥, 2), (Y, b)) == —((%,2),[(M, ), (Y, b)])).

R.h.s. is independent of ¢, so center of & acts trivially.
Coadjoint action of & on &* reads

ad*™Mm- (x,a) = (ad™M - X +aod,M,0).
Since a € C is invariant, we restrict attention to
& =6¢"p{l} c " aC.

Coadjoint action of & on &* ~ &* ~ & is therefore

lad™om - (x,1) = ([, X] + 9,9,0). |




Constructing 2-d integrable field theories

The dual &* of the Lie dialgebra (&, [-, ], [, ]r) has two PBs:
1) Kostant-Kirillov bracket: {f,g}(£) = ((£, [df, dg])).

2) R-bracket: | ${f,g}r(£) = (£, [df,dg]r)).

Theorem

(i) Casimirs of KK-bracket are in involution w.r.t. R-bracket.

(i) The flow generated by a Casimir h via R-bracket takes the
form of a zero-curvature equation,

0L — 0,M=[M, L], M :=R(dh)e.
The Poisson manifold (&*, {-, -}r ) therefore provides a very
general setting for describing 2-d integrable field theories.

Different models correspond to different coadjoint orbits in &*.



r /s-matrix formalism

Let us write out the bracket {f,g}r for linear functions,
Fo(£1) (&%), 9:(&1)~(£2),

where X =X -6,,, 9 =Y - 65, and X, Y € §.
We then have, in the standard tensor notation

{‘817 £g}R = [R]__z, Sl](sglgz — [Rﬁ, Sg]églaz + (Rl_Z + Rﬁ)égm.
This is the standard r /s-matrix algebra if we identify
r=3R-R"), s=-3(R+R").

ultralocal models (s = 0) ~ described by Lie bialgebra.
non-ultralocal models (s # 0) ~ described by Lie dialgebra.



Z4-graded Lie superalgebra

Consider o-models on semi-symmetric spaces [Zarembo '10]:
(D —  super(AdSy x Yio_n) = G/H

Ingredients: Let § = g5 @ g7 be a Lie superalgebra.
Z4-grading: Given by automorphism Q : § — §, s.t. Q% = 1.
* §=§0® 1D g2 D §a, where Q(gn) = i"gn.
° [@n,@m} - g(n-ﬁ-m) mod 41 ﬁZn C ﬁf)v §2n+1 C ﬁi-
Inner product: Non-deg., inv., bilinear form (-,-) : § x § — C.
e (dn,m) = O unless n + m = 0 mod 4.
Grassmann envelope: g = (I' ® §); is an ordinary Lie algebra.
e g inherits corresponding properties from §.
e G :=expgandH := exp go (Using [go, go] C go)-



Z4-graded supercoset o-models
Want o-model for maps ¥ = R x S* — G/H. So let
g:¥ -G, A=-—g ldge Qi g)
and impose
e Global left G-action: under g — Ug, U € G, have A — A.

e Local right H-action: under g — gh, h: ¥ — H have
A — h—1Ah — h—1dh, hence

AR23) = 1aA023)  where AM € gy,

Possible Lagrangians (matter part of GS and PS s-strings):

Los = —3(AP AxAR)) — 1AW A AB)Y 1 (A dA — A?),
Lps := —3((A = AD) A x(A - AO)))
+ 1AD A AB)Y (A dA — A?).



Hamiltonian formalism
Phase-space P parametrised by (A(10’1’2’3), ﬂ(10’1’2’3)) with
{A(0), 1 (0)kps. = CL*o(0 — o).

Constraints: {®” ~ 0}
GS: first class 7. ~ C(9) ~ 0, (partly) second class C(*:3) ~ 0.
PS: first class 7. := 7, + 3(cM,c®)) ~ ¢ ~ 0.

Extended Hamiltonian: H = ", pa®”*

Has = p+ T+ p-T_ — (u®,cW) — (1M, c®) — (), ),
conformal tr. K—symmetry coset
Mps = pp1y + p-T_ — (a9, ).

conformal tr. coset




Hamiltonian Lax matrix

Look for Lax matrix £ as a linear combination of (A(li), I'I(li)), s.t.
{€,Po} = 0, + [, £],

for some M1, where Py is energy.
A careful Hamiltonian analysis of both GS and PS yields

_ LAy (p0) =301 L ,-10(3)
Sos = Lopr(2) + 5= (1 z)(c +z73¢W 4271 )

_ 1 4\ ~(0)
ps = L\p's'(z)‘ghosts:o + 2\/X(1 z ) e

Surprisingly we find the same result £c5 = £ps =: £. Explicitly,

4 4 4
e 1-— z4 N . .
=1 =1 =1




Twisted loop algebra
Consider loop algebra Lg := g[z,z~1] with decomposition

Lg=Lg+ Lg-,
where
e Lg, = g[z] consists of formal Taylor series in z,
o Lg_:=2z"1g[z71], polys in z~1 without const. term.

Zg-twist: Notice Q(£(z)) = £(iz). Soextend Q2 : g — g as
Q:Lg— Lg, QX)(z)=QX(-iz)).

The twisted loop algebra is £g2 := {X € Lg|Q(X) = X].
In particular £g®? = Lg% + Lg% and

£ e C>®(St, £gY).



Twisted inner product

Lax matrix can be rewritten as

L =4¢(z 122( “) 4 2(viny)& )

| 1624
where Q’)(Z) — (1 — 24)2'

Introduce a twist in the standard inner product on L£g*:

dz du
(XY)s = § 0@ X@.Y @) = § 55 X@).Y @)
The Zhukovsky variable u plays a central role in AAS/CFT,
1+2z°4
=2——.
1-2z4
Recall (gn-z",gm-z™) = (gn, gm)2"™™ = 0if n+m = 0 (mod 4).



Smooth dual

‘little” Lie algebra:
§ = Lg" with bilinear product (-,-),.

Current algebra: & = C*°(S1, §) inherits twisted inner product,

(@) = [ da(x(@). D).

Let &, = C>(St, §,) and &1 = C>(S', §7) where
§_ = ©nog(n) - 2",

Dn>08(n) * z",
8- = @n<ogn) - 2"-

§+ =
i = ®n>08(n) - z",

o

With respect to (-, -)), we have &* ~ ¢~ &+ and so

£ecer.




Standard R-matrix

With respect to the decomposition g = g, + g_, let
R:=mn —m_,
where 74 : § — g, are projections. It satisfies mCYBE,
[RX,RY] = R([RX,Y]+[X,RY]) = —[X,Y],  V¥X,Y €4§,

so that
X,Y]r := 3([RX, Y] + [X,RY]),
defines a second Lie bracket on § = Lg* (dialgebra).

Remark: Due to the twist in the inner product, R is not skew:

R*=—ptoRop, (z)=9¢(z)z "



r /s-matrices

Tensor kernels: Given O : g — §, define 012 € g ® § by

(OX)1 = (O12, X2)s2-
Projection kernels are

_w (a M (m ) 1
Te12 = ) ~] Ci $(z2)",

where C1p = C(Oo) + ng '+ C(Zz) + Cgl) is tensor Casimir.
Recall thatr = (R — R*) and s = —3(R + R*), or explicitly
r = V.p. 24124 [Zf ,ziz jC(4—n) é(z1) "L + st P 4—1C(J‘ 4-j) ,(22)71],
S = i [ZJ ozt 1A o(z:) - 0 2z el Ve(z) .

These are exactly the r /s-matrices of superstring [Magro '08].



Conclusions & outlook

Integrable structure of ADS/CFT at A > 1is given by a Lie
dialgebra, with standard R-matrix but twisted inner product.

Although loop algebra £g is written in the z-variable, the
Zhukovsky map z — u enters naturally in inner product:

(X ¥)s = § g X(2).Y @)

i
where (X(z),Y (z)) is a formal Laurent series in u.

Other Zmy-gradings are also known to give rise to actions
admitting a Lax connection [Young '05]. In this case twist
and Zhukovsky map should be

4mz™ 1+2zM

= — = 2

“(2) (1—2zm)2’ ! 1—2zm
Generalise to include ghosts and compare GS to PS?

How to quantize Lie dialgebas?




Integrable structures in AAS/CFT

\ Lie bialgebra (r + r*=t) )

E
M 3

5

g

4

Yangian (r* = r—1) /
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