The classical R-matrix of AdS/CFT

Benoît Vicedo

LPT, ENS \& IPhT, CEA
IGST2010 NORDITA, Stockholm
Tuesday 29-th June, 2010

The pursuit of finiteness

TBA approach: Assumes integrability at finite λ, L.

- At $L \gg 1$, factorizability of the \mathcal{S}-matrix \rightsquigarrow Fix 2-body \mathcal{S}-matrix using Yangian symmetry (universal \mathcal{R}-matrix?)
- Zamolodchikov’s TBA trick \rightsquigarrow Ground state energy $E_{0}(L)$. Claim: Excited states described by solutions of Y-system (boundary \& analyticity conditions?).
[Bombardelli-Tateo-Fioravanti, Frolov-Arutyunov, Gromov-Kazakov-Kozak-Vieira '09]
Need to prove integrability $\forall(\lambda, L) \rightsquigarrow$ QISM.

Quantum Inverse Scattering Method

Starting point for QISM:

$$
\begin{aligned}
R_{\underline{12}}(u, v) \boldsymbol{L}_{\underline{1}}^{n}(u) \underline{L}_{\underline{2}}^{n}(v) & =\boldsymbol{L}_{\underline{2}}^{n}(v) \boldsymbol{L}_{\underline{1}}^{n}(u) R_{\underline{12}}(u, v), \\
\boldsymbol{L}_{\underline{1}}^{n}(u) \boldsymbol{L}_{\underline{2}}^{m}(v) & =\boldsymbol{L}_{\underline{2}}^{m}(v) \underline{L}_{\underline{1}}^{n}(u), \quad \forall n \neq m .
\end{aligned}
$$

Defining monodromy $M_{1}(u):=L_{1}^{N}(u) \ldots L_{1}^{1}(u)$, we have

$$
\boldsymbol{T}(u):=\operatorname{tr}_{1} M_{1}(u), \quad[\boldsymbol{T}(u), \boldsymbol{T}(v)]=0, \forall u, v .
$$

Classical limit and CISM: Letting $R_{12}=1+\hbar r_{12}+O\left(\hbar^{2}\right)$ and $L_{\underline{1}}^{n}=L_{\underline{1}}^{n}+O(\hbar)$ we find $\left\{L_{\underline{1}}^{n}, L_{\underline{2}}^{m}\right\}=\left[r_{\underline{12}}, L_{\underline{1}}^{n} L_{\underline{2}}^{n}\right] \delta^{n m}$.
Continuum limit:

$$
L^{n}=P \overleftarrow{\exp } \int_{\sigma_{n}}^{\sigma_{n+1}} d \sigma L(\sigma)
$$

yields $\left\{L_{\underline{1}}, L_{2}\right\}=\left[r_{12}, L_{\underline{1}}+L_{\underline{2}}\right] \delta_{\sigma \sigma^{\prime}} \rightsquigarrow$ Lie bialgebra structure.

Integrable Hamiltonian systems

Consider n-dim Hamiltonian system: $(\mathcal{P} ;\{\cdot, \cdot\}), h \in C(\mathcal{P})$.

Definition

$\mu \in \mathcal{C}(\mathcal{P})$ is an integral of motion if

- $\{\mu, h\}=0$,
- $d \mu \neq 0$.

Definition (Integrable system)
($\mathcal{P},\{\cdot, \cdot\}, h$) is integrable if $\exists \mu_{1}, \ldots, \mu_{n} \in \boldsymbol{C}(\mathcal{P})$ s.t.

- $\left\{\mu_{i}, h\right\}=0, \quad i=1, \ldots, n$,
- $d \mu_{1} \wedge \ldots \wedge d \mu_{n} \neq 0$,
- $\left\{\mu_{i}, \mu_{j}\right\}=0, \quad i, j=1, \ldots, n$.

Tasks for proving integrability:
(i) Identify the integrals of motion μ_{i}.
(ii) Show their involution $\left\{\mu_{i}, \mu_{j}\right\}=0$.

Lax pair

Idea:[Lax] Obtain integrals μ_{i} from eigenvalues of a matrix L. \rightsquigarrow Reduces task (i) to spectral theory.

Suppose we can find $L \in \operatorname{Mat}_{N \times N}[C(\mathcal{P})]$ whose evolution is 'isospectral', namely

$$
\dot{L}:=\{L, h\}=[M, L],
$$

where $M \in \operatorname{Mat}_{N \times N}[C(\mathcal{P})]$. Then also $\left\{L^{j}, h\right\}=\left[M, L^{j}\right]$, and

$$
\left\{\operatorname{tr} L^{j}, h\right\}=0, \quad \forall j \in \mathbb{N}
$$

Hence spectrum of L provides integrals of motion of h.
So problem is reduced to finding such an L .

Dual of a Lie algebra

Let \mathfrak{g} be a Lie algebra. Dual \mathfrak{g}^{*} is a Poisson manifold:

Lie bracket on $\mathfrak{g} \rightsquigarrow$ Poisson bracket on \mathfrak{g}^{*}.

Kostant-Kirillov bracket (KK-bracket):
Let $f \in C\left(\mathfrak{g}^{*}\right)$ and $L \in \mathfrak{g}^{*}$, then $(d f)_{L} \in\left(\mathfrak{g}^{*}\right)^{*} \simeq \mathfrak{g}$. So define

$$
\{f, g\}(L):=\left\langle L,\left[(d f)_{L},(d g)_{L}\right]\right\rangle .
$$

Lax equation: $X \in \mathfrak{g} \simeq\left(\mathfrak{g}^{*}\right)^{*}$ defines $\hat{X}: L \mapsto\langle L, X\rangle$. Then

$$
\frac{d}{d t}\langle L, X\rangle:=\{\hat{X}, h\}(L)=\left\langle L,\left[X,(d h)_{L}\right]\right\rangle=\left\langle a d^{*}(d h)_{L} \cdot L, X\right\rangle .
$$

Identifying $\mathfrak{g}^{*} \simeq \mathfrak{g}$ we have $a d^{*} \simeq a d$, and hence

$$
\dot{L}=a d^{*}(d h)_{L} \cdot L \Leftrightarrow \dot{L}=[M, L], M:=(d h)_{L} .
$$

Setbacks

Any $h \in C\left(\mathfrak{g}^{*}\right)$ generates a Lax equation! Unlikely to provide a framework for describing non-trivial integrable systems.

Moreover,
Proposition
Spectral invariant functions $f \in C\left(\mathfrak{g}^{*}\right)$, i.e. ad*-invariant functions, are Casimirs of the Kostant-Kirillov bracket. In other words, the natural candidates $\operatorname{tr} L^{j}$ for integrable Hamiltonians all generate trivial flows under KK-bracket.

Resolution: Introduce a second Poisson bracket on \mathfrak{g}^{*}.

- Spectral invariants still characterised by KK-bracket, but
- Flows will be generated w.r.t. a different R-bracket.

Dual of a Lie di-algebra

Let \mathfrak{g} be a Lie algebra. Given $R \in$ End \mathfrak{g}, introduce

$$
[X, Y]_{R}:=\frac{1}{2}([R X, Y]+[X, R Y]) .
$$

Anti-symmetry of $[\cdot, \cdot]_{R}$ follows from that of $[,, \cdot]$. Sufficient condition for $[\cdot, \cdot]_{R}$ to satisfy Jacobi identity is

$$
[R X, R Y]-R([R X, Y]+[X, R Y])=-[X, Y], \quad \forall X, Y \in \mathfrak{g}
$$

This is the modified classical Yang-Baxter equation (mCYBE) and its solutions are classical R-matrices.
$\left(\mathfrak{g},[\cdot, \cdot],[\cdot, \cdot]_{R}\right)$ is a Lie dialgebra. Its dual \mathfrak{g}^{*} has two PBs

$$
\begin{aligned}
\{f, g\}(L) & :=\left\langle L,\left[(d f)_{L},(d g)_{L}\right]\right\rangle, \\
\{f, g\}_{R}(L) & :=\left\langle L,\left[(d f)_{L},(d g)_{L}\right]_{R}\right\rangle .
\end{aligned}
$$

Constructing integrable systems

Theorem (Semenov-Tian-Shansky)

(i) Casimirs of KK-bracket are in involution w.r.t. R-bracket.
(ii) The flow generated by a Casimir h via R-bracket reads

$$
\dot{L}=a d^{*} M \cdot L, \quad M:=R(d h)_{L} .
$$

This is the generalised Lax equation. When $\mathfrak{g}^{*} \simeq \mathfrak{g}$, it takes the form of the standard Lax equation.
Upshot: Allows construction of integrable systems on the dual $\left(\mathfrak{g}^{*},\left\{\left\{_{\cdot} \cdot\right\}_{R}\right)\right.$ of a Lie dialgebra (\mathfrak{g}, R).

Lax matrix: Describing a specific model with phase-space ($\mathcal{P},\{\cdot, \cdot\}$) requires a Poisson map

$$
L:(\mathcal{P},\{\cdot, \cdot\}) \rightarrow\left(\mathfrak{g}^{*},\{\cdot, \cdot\}_{R}\right),
$$

i.e. $\left\{L^{*} f, L^{*} g\right\}=L^{*}\{f, g\}_{R}$ for any $f, g \in C\left(\mathfrak{g}^{*}\right)$.

Lie bialgebras vs Lie dialgebras

(\mathfrak{g}, δ)

$$
\delta_{r}(X)=[X, r] \quad R=r=-r^{*}
$$

Lie dialgebras
(\mathfrak{g}, R)

Lie dialgebra: $R \in$ End \mathfrak{g} defines a second bracket on \mathfrak{g},

$$
[x, y]_{R}=\frac{1}{2}([R x, y]+[x, R y]) .
$$

Lie bialgebra: $\delta^{*}: \mathfrak{g}^{*} \wedge \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*}$ defines bracket on \mathfrak{g}^{*}. In coboundary case $\delta_{r}^{*}:\left(\xi, \xi^{\prime}\right) \mapsto\left[\xi, \xi^{\prime}\right]_{*}=\frac{1}{2}\left(\left[r \xi, \xi^{\prime}\right]-\left[\xi, r^{*} \xi^{\prime}\right]\right)$.

Classical Yang-Baxter equation

Only restriction on the R-matrix is that it satisfies the mCYBE

$$
[R X, R Y]-R([R X, Y]+[X, R Y])=-[X, Y], \quad \forall X, Y \in \mathfrak{g}
$$

In tensor notation this reads

$$
\left[R_{\underline{12}}, R_{\underline{13}}\right]+\left[R_{\underline{12}}, R_{\underline{23}}\right]+\left[R_{\underline{32}}, R_{\underline{13}}\right]=-\hat{\omega}_{\underline{123}},
$$

where $\hat{\omega}(X, Y, Z):=\langle[X, Y], Z\rangle$.
For the r-matrix of a Lie bialgebra, $r+r^{*}$ is ad-invariant. Imposing this further condition on R-matrix we obtain
which is the usual mCYBE for $R=r$.

Zero curvature equation

The generalised Lax equation applies to any Lie (di)algebra \mathfrak{g},

$$
\dot{L}=a d^{*} M \cdot L
$$

So far we've used it to discuss only the Lax equation $\dot{L}=[M, L]$.
By choosing \mathfrak{g} appropriately it is possible to cover also the zero-curvature equation

$$
\partial_{\tau} \mathfrak{L}-\partial_{\sigma} \mathfrak{M}=[\mathfrak{M}, \mathfrak{L}] .
$$

Indeed, just need to find \mathfrak{g} such that

$$
a d^{*} \mathfrak{M} \cdot \mathfrak{L}=[\mathfrak{M}, \mathfrak{L}]+\partial_{\sigma} \mathfrak{M} .
$$

Given by central extension $\hat{\mathfrak{G}}$ of current algebra $C^{\infty}\left(S^{1}, \mathfrak{g}\right)$.

Centrally extended current algebras

Let \mathfrak{g} be a 'little' Lie algebra with inner product ($\cdot, \cdot)$.
Consider $\mathfrak{G}:=C^{\infty}\left(S^{1}, \dot{g}\right)$ with non-deg., inv., bilinear product

$$
((\mathfrak{X}, \mathfrak{Y})):=\int_{S^{1}} d \sigma(\mathfrak{X}(\sigma), \mathfrak{Y}(\sigma)), \quad \mathfrak{X}, \mathfrak{Y} \in \mathfrak{G} .
$$

Central extension: defined by the 2-cocycle

$$
\omega(\mathfrak{X}, \mathfrak{Y}):=\int_{\mathcal{S}^{1}} d \sigma\left(\mathfrak{X}(\sigma), \partial_{\sigma} \mathfrak{Y}(\sigma)\right), \quad \mathfrak{X}, \mathfrak{Y} \in \mathfrak{G} .
$$

As a vector space $\hat{\mathfrak{G}} \equiv \mathfrak{G} \oplus \mathbb{C}$, equipped with the Lie bracket

$$
[(\mathfrak{X}, a),(\mathfrak{Y}, b)]:=([\mathfrak{X}, \mathfrak{Y}], \omega(\mathfrak{X}, \mathfrak{Y})) .
$$

Extend also the product as $(((\mathfrak{X}, a),(\mathfrak{Y}, b))):=((\mathfrak{X}, \mathfrak{Y}))+a b$. Lemma
If $(\stackrel{\mathfrak{g}}{\mathbf{g}}, R)$ is a Lie dialgebra, then so is $(\hat{\mathfrak{G}}, R)$, where

$$
R(\mathcal{X}(\sigma), c):=(R(\mathfrak{X}(\sigma)), c), \quad \text { for }(\mathfrak{X}(\sigma), c) \in \hat{\mathfrak{G}} .
$$

Coadjoint action

Define the coadjoint action of $\hat{\mathfrak{G}}$ on $\hat{\mathfrak{G}}^{*}$ as

$$
\left(\left(a d^{*}(\mathfrak{M}, c) \cdot(\mathfrak{X}, a),(\mathfrak{Y}, b)\right)\right):=-(((\mathfrak{X}, a),[(\mathfrak{M}, c),(\mathfrak{Y}, b)])) .
$$

R.h.s. is independent of c, so center of $\hat{\mathfrak{G}}$ acts trivially. Coadjoint action of \mathfrak{G} on $\hat{\mathfrak{G}}^{*}$ reads

$$
a d^{*} \mathfrak{M} \cdot(\mathfrak{X}, a)=\left(a d^{*} \mathfrak{M} \cdot \mathfrak{X}+a \partial_{\sigma} \mathfrak{M}, 0\right)
$$

Since $a \in \mathbb{C}$ is invariant, we restrict attention to

$$
\hat{\mathfrak{G}}_{1}^{*}:=\mathfrak{G}^{*} \oplus\{1\} \subset \mathfrak{G}^{*} \oplus \mathbb{C} .
$$

Coadjoint action of \mathfrak{G} on $\hat{\mathfrak{G}}_{1}^{*} \simeq \mathfrak{G}^{*} \simeq \mathfrak{G}$ is therefore

$$
\mathrm{ad}^{*} \mathfrak{M} \cdot(\mathfrak{X}, 1)=\left([\mathfrak{M}, \mathfrak{X}]+\partial_{\sigma} \mathfrak{M}, 0\right) .
$$

Constructing 2-d integrable field theories

The dual $\hat{\mathfrak{G}}^{*}$ of the Lie dialgebra ($\hat{\mathfrak{G}},[\cdot, \cdot],[\cdot, \cdot]_{R}$) has two PBs:

1) Kostant-Kirillov bracket: $\{f, g\}(\mathfrak{L}):=((\mathfrak{L},[d f, d g]))$.
2) R-bracket: $\frac{1}{2}\{f, g\}_{R}(\mathfrak{L}):=\left(\left(\mathfrak{L},[d f, d g]_{R}\right)\right)$.

Theorem
(i) Casimirs of KK-bracket are in involution w.r.t. R-bracket.
(ii) The flow generated by a Casimir h via R-bracket takes the form of a zero-curvature equation,

$$
\partial_{\tau} \mathfrak{L}-\partial_{\sigma} \mathfrak{M}=[\mathfrak{M}, \mathfrak{L}], \quad \mathfrak{M}:=R(d h)_{\mathfrak{L}} .
$$

The Poisson manifold ($\hat{\mathfrak{G}}^{*},\{\cdot, \cdot\}_{R}$) therefore provides a very general setting for describing 2 -d integrable field theories.
Different models correspond to different coadjoint orbits in $\hat{\mathfrak{G}}^{*}$.

r / s-matrix formalism

Let us write out the bracket $\{f, g\}_{R}$ for linear functions,

$$
f:(\mathfrak{L}, 1) \mapsto((\mathfrak{L}, \mathfrak{X})), \quad g:(\mathfrak{L}, 1) \mapsto((\mathfrak{L}, \mathfrak{Y}))
$$

where $\mathfrak{X}:=X \cdot \delta_{\sigma_{1}}, \mathfrak{Y}:=Y \cdot \delta_{\sigma_{2}}$ and $X, Y \in \mathfrak{g}$. We then have, in the standard tensor notation

$$
\left\{\mathfrak{L}_{\underline{1}}, \mathfrak{L}_{\underline{\mathbf{2}}}\right\}_{R}=\left[R_{\underline{\mathbf{1 2}}}, \mathfrak{L}_{\underline{1}}\right] \delta_{\sigma_{1} \sigma_{2}}-\left[R_{\underline{\mathbf{1} 2}}^{*}, \mathfrak{L}_{\underline{\mathbf{2}}}\right] \delta_{\sigma_{1} \sigma_{2}}+\left(R_{\underline{\mathbf{1 2}}}+R_{\underline{\mathbf{1} 2}}^{*}\right) \delta_{\sigma_{1} \sigma_{2}}^{\prime} .
$$

This is the standard r / s-matrix algebra if we identify

$$
r:=\frac{1}{2}\left(R-R^{*}\right), \quad s:=-\frac{1}{2}\left(R+R^{*}\right)
$$

ultralocal models $(s=0) \rightsquigarrow$ described by Lie bialgebra. non-ultralocal models $(s \neq 0) \rightsquigarrow$ described by Lie dialgebra.

\mathbb{Z}_{4}-graded Lie superalgebra

Consider σ-models on semi-symmetric spaces [Zarembo '10]:

$$
0 \quad \longrightarrow \quad \operatorname{super}\left(A d S_{n} \times Y_{10-n}\right) \equiv G / H
$$

Ingredients: Let $\mathfrak{g}=\mathfrak{g}_{\overline{0}} \oplus \mathfrak{g}_{\overline{1}}$ be a Lie superalgebra.
\mathbb{Z}_{4}-grading: Given by automorphism $\Omega: \mathfrak{g} \rightarrow \mathfrak{g}$, s.t. $\Omega^{4}=1$.

- $\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \mathfrak{g}_{3}$, where $\Omega\left(\mathfrak{g}_{n}\right)=i^{n} \mathfrak{g}_{n}$.
- $\left[\mathfrak{g}_{n}, \mathfrak{g}_{m}\right\} \subset \mathfrak{g}_{(n+m) \bmod 4}, \quad \dot{\mathfrak{g}}_{2 n} \subset \dot{\mathfrak{g}}_{0}, \quad \mathfrak{g}_{2 n+1} \subset \mathfrak{g}_{1}$.

Inner product: Non-deg., inv., bilinear form $\langle\cdot, \cdot\rangle: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{C}$.

- $\left\langle\mathfrak{g}_{n}, \mathfrak{g}_{m}\right\rangle=0$ unless $n+m=0 \bmod 4$.

Grassmann envelope: $\mathfrak{g}=(\Gamma \otimes \mathfrak{g})_{\overline{0}}$ is an ordinary Lie algebra.

- \mathfrak{g} inherits corresponding properties from \mathfrak{g}.
- $G:=\exp \mathfrak{g}$ and $H:=\exp \mathfrak{g}_{0}$ (using $\left[\mathfrak{g}_{0}, \mathfrak{g}_{0}\right] \subset \mathfrak{g}_{0}$).

\mathbb{Z}_{4}-graded supercoset σ-models

Want σ-model for maps $\Sigma=\mathbb{R} \times S^{1} \rightarrow G / H$. So let

$$
g: \Sigma \rightarrow G, \quad A=-g^{-1} d g \in \Omega^{1}(\Sigma, \mathfrak{g})
$$

and impose

- Global left G-action: under $g \mapsto U g, U \in G$, have $A \mapsto A$.
- Local right H-action: under $g \mapsto g h, h: \Sigma \rightarrow H$ have $A \mapsto h^{-1} A h-h^{-1} d h$, hence

$$
A^{(1,2,3)} \mapsto h^{-1} A^{(1,2,3)} h, \quad \text { where } \quad A^{(n)} \in \mathfrak{g}_{n}
$$

Possible Lagrangians (matter part of GS and PS s-strings):

$$
\begin{aligned}
\mathcal{L}_{\mathrm{GS}}: & =-\frac{1}{2}\left\langle A^{(2)} \wedge * A^{(2)}\right\rangle \\
\mathcal{L}_{\mathrm{PS}}: & -\frac{1}{2}\left\langle A^{(1)} \wedge A^{(3)}\right\rangle+\left\langle\Lambda, d A-A^{2}\right\rangle, \\
& +\frac{1}{2}\left\langle\left(A^{(1)} \wedge A^{(0)}\right) \wedge *\left(A-A^{(0)}\right)\right\rangle \\
& =\left\langle\Lambda, d A-A^{2}\right\rangle .
\end{aligned}
$$

Hamiltonian formalism

Phase-space \mathcal{P} parametrised by $\left(A_{1}^{(0,1,2,3)}, \Pi_{1}^{(0,1,2,3)}\right)$ with

$$
\left\{A_{1 \underline{11}}^{(i)}(\sigma), \Pi_{1 \underline{12}}^{(4-i)}\left(\sigma^{\prime}\right)\right\}_{\text {P.B. }}=C_{\underline{12}}^{(i 4-i)} \delta\left(\sigma-\sigma^{\prime}\right) .
$$

Constraints: $\left\{\phi^{A} \approx 0\right\}$
GS: first class $\mathcal{T}_{ \pm} \approx \mathcal{C}^{(0)} \approx 0$, (partly) second class $\mathcal{C}^{(1,3)} \approx 0$.
PS: first class $\hat{\mathcal{T}}_{ \pm}:=\mathcal{T}_{ \pm}+\frac{1}{2}\left\langle\mathcal{C}^{(1)}, \mathcal{C}^{(3)}\right\rangle \approx \mathcal{C}^{(0)} \approx 0$.
Extended Hamiltonian: $\mathcal{H}=\sum_{A} \rho_{A} \phi^{A}$

$$
\begin{aligned}
& \mathcal{H}_{\mathrm{GS}}=\underbrace{\rho_{+} \mathcal{T}_{+}+\rho_{-} \mathcal{T}_{-}}_{\text {conformal tr. }}-\underbrace{\left\langle\mu^{(3)}, \mathcal{C}^{(1)}\right\rangle-\left\langle\mu^{(1)}, \mathcal{C}^{(3)}\right\rangle}_{\kappa \text {-symmetry }}-\underbrace{\left\langle\mu^{(0)}, \mathcal{C}^{(0)}\right\rangle}_{\text {coset }}, \\
& \mathcal{H}_{\mathrm{PS}}=\underbrace{\hat{\rho}_{+} \hat{\mathcal{T}}_{+}+\hat{\rho}_{-} \hat{\mathcal{T}}_{-}}_{\text {conformal tr. }}-\underbrace{\left\langle\hat{\mu}^{(0)}, \mathcal{C}^{(0)}\right\rangle}_{\text {coset }} .
\end{aligned}
$$

Hamiltonian Lax matrix

Look for Lax matrix \mathfrak{L} as a linear combination of $\left(A_{1}^{(i)}, \Pi_{1}^{(i)}\right)$, s.t.

$$
\left\{\mathfrak{L}, P_{0}\right\}=\partial_{\sigma} \mathfrak{M}+[\mathfrak{M}, \mathfrak{L}],
$$

for some \mathfrak{M}, where P_{0} is energy.
A careful Hamiltonian analysis of both GS and PS yields

$$
\begin{aligned}
& \mathfrak{L}_{\mathrm{GS}}=\mathfrak{L}_{\mathrm{BPR}}(z)+\frac{1}{2 \sqrt{\lambda}}\left(1-z^{4}\right)\left(\mathcal{C}^{(0)}+z^{-3} \mathcal{C}^{(1)}+z^{-1} \mathcal{C}^{(3)}\right), \\
& \mathfrak{L}_{\mathrm{PS}}=\left.\mathfrak{L}_{\text {p.s. }}(z)\right|_{\text {ghosts }=0}+\frac{1}{2 \sqrt{\lambda}}\left(1-z^{4}\right) \mathcal{C}^{(0)} .
\end{aligned}
$$

Surprisingly we find the same result $\mathfrak{L}_{\mathrm{GS}}=\mathfrak{L}_{\mathrm{PS}}=: \mathfrak{L}$. Explicitly,

$$
\mathfrak{L}(z)=\sum_{j=1}^{4} z^{j} A_{1}^{(j)}+\frac{1-z^{4}}{4 z^{4}}\left(\sum_{j=1}^{4} j z^{j} A_{1}^{(j)}+2 \sum_{j=1}^{4} z^{j}\left(\nabla_{1} \Pi_{1}\right)^{(j)}\right) .
$$

Twisted loop algebra

Consider loop algebra $\mathcal{L g}:=\mathfrak{g} \llbracket z, z^{-1} \rrbracket$ with decomposition

$$
\mathcal{L} \mathfrak{g}=\mathcal{L} \mathfrak{g}_{+}+\dot{\mathcal{L}} \mathfrak{g}_{-},
$$

where

- $\mathcal{L} \mathfrak{g}_{+}:=\mathfrak{g} \llbracket z \rrbracket$ consists of formal Taylor series in z,
- $\mathcal{L} \mathfrak{g}_{-}:=z^{-1} \mathfrak{g}\left[z^{-1}\right]$, polys in z^{-1} without const. term.
\mathbb{Z}_{4}-twist: Notice $\Omega(\mathfrak{L}(z))=\mathfrak{L}(i z)$. So extend $\Omega: \mathfrak{g} \rightarrow \mathfrak{g}$ as

$$
\hat{\Omega}: \mathcal{L} \mathfrak{g} \rightarrow \mathcal{L} \mathfrak{g}, \quad \hat{\Omega}(X)(z)=\Omega(X(-i z))
$$

The twisted loop algebra is $\mathcal{L} \mathfrak{g}^{\Omega}:=\{X \in \mathcal{L} \mathfrak{g} \mid \hat{\Omega}(X)=X\}$. In particular $\mathcal{L g}^{\Omega}=\mathcal{L} \mathfrak{g}_{+}^{\Omega}+\mathcal{L} \mathfrak{g}_{-}^{\Omega}$ and

$$
\mathfrak{L} \in C^{\infty}\left(S^{1}, \mathcal{L g}^{\Omega}\right)
$$

Twisted inner product

Lax matrix can be rewritten as

$$
\mathfrak{L}=4 \phi(z)^{-1} \sum_{k=1}^{\infty} z^{k}\left(k A_{1}^{(k)}+2\left(\nabla_{1} \Pi_{1}\right)^{(k)}\right)
$$

where

$$
\phi(z):=\frac{16 z^{4}}{\left(1-z^{4}\right)^{2}}
$$

Introduce a twist in the standard inner product on $\mathcal{L g}^{\Omega}$:

$$
(X, Y)_{\phi}:=\oint \frac{d z}{2 \pi i z} \phi(z)\langle X(z), Y(z)\rangle=\oint \frac{d u}{2 \pi i}\langle X(z), Y(z)\rangle
$$

The Zhukovsky variable u plays a central role in AdS/CFT,

$$
u=2 \frac{1+z^{4}}{1-z^{4}}
$$

Recall $\left\langle\mathfrak{g}_{n} \cdot z^{n}, \mathfrak{g}_{m} \cdot z^{m}\right\rangle=\left\langle\mathfrak{g}_{n}, \mathfrak{g}_{m}\right\rangle z^{n+m}=0$ if $n+m \neq 0(\bmod 4)$.

Smooth dual

'little’ Lie algebra:

$$
\mathfrak{g}:=\mathcal{L g} \mathfrak{g}^{\Omega} \text { with bilinear product }(\cdot, \cdot)_{\phi} .
$$

Current algebra: $\mathfrak{G}=C^{\infty}\left(S^{1}, \stackrel{\mathfrak{g}}{ }\right)$ inherits twisted inner product,

$$
((\mathfrak{X}, \mathfrak{Y}))_{\phi}:=\int_{\mathcal{S}^{1}} d \sigma(\mathfrak{X}(\sigma), \mathfrak{Y}(\sigma))_{\phi} .
$$

Let $\mathfrak{G}_{ \pm}:=C^{\infty}\left(S^{1}, \dot{g}_{ \pm}\right)$and $\mathfrak{G}_{ \pm}^{\perp}:=C^{\infty}\left(S^{1}, \stackrel{\mathfrak{g}}{ \pm}_{\perp}^{\perp}\right)$ where

$$
\begin{array}{ll}
\stackrel{\grave{g}}{+}=\oplus_{n \geq 0} \mathfrak{g}_{(n)} \cdot z^{n}, & \stackrel{\grave{g}}{-}=\oplus_{n<0 \mathfrak{g}_{(n)}} \cdot z^{n}, \\
\stackrel{\mathfrak{g}}{+}_{\perp}=\oplus_{n>0} \mathfrak{g}_{(n)} \cdot z^{n}, & \stackrel{\mathfrak{g}}{-}_{\perp}=\oplus_{n \leq 0 \mathfrak{g}_{(n)}} \cdot z^{n} .
\end{array}
$$

With respect to $((\cdot, \cdot))_{\phi}$ we have $\mathfrak{G}_{-}^{*} \simeq \phi^{-1} \mathfrak{G}_{+}^{\perp}$ and so

$$
\mathfrak{L} \in \mathfrak{G}_{-}^{*} .
$$

Standard R-matrix

With respect to the decomposition $\grave{\mathfrak{g}}=\stackrel{\mathfrak{g}}{+}^{+} \dot{\mathfrak{g}}_{-}$, let

$$
R:=\pi_{+}-\pi_{-},
$$

where $\pi_{ \pm}: \grave{\mathfrak{g}} \rightarrow \mathfrak{g}_{ \pm}$are projections. It satisfies mCYBE,

$$
[R X, R Y]-R([R X, Y]+[X, R Y])=-[X, Y], \quad \forall X, Y \in \mathfrak{g}
$$

so that

$$
[X, Y]_{R}:=\frac{1}{2}([R X, Y]+[X, R Y])
$$

defines a second Lie bracket on $\mathfrak{g}=\mathcal{L g}^{\Omega}$ (dialgebra).
Remark: Due to the twist in the inner product, R is not skew:

$$
R^{*}=-\varphi^{-1} \circ R \circ \varphi, \quad \varphi(z)=\phi(z) z^{-1}
$$

r / s-matrices

Tensor kernels: Given $\mathcal{O}: \mathfrak{g} \rightarrow$ g. define $\mathcal{O}_{\underline{12}} \in \mathfrak{g} \otimes \mathfrak{g}$ by

$$
(\mathcal{O} X)_{\underline{\mathbf{1}}}=\left(\mathcal{O}_{\underline{\mathbf{1}}}, X_{\underline{\mathbf{2}}}\right)_{\phi \underline{\mathbf{2}}} .
$$

Projection kernels are

$$
\pi_{ \pm \underline{12}}=\sum_{m=1}^{\infty}\left(\frac{z_{1}}{z_{2}}\right)^{ \pm m} C_{\underline{\mathbf{1 2}}}^{(\pm m \mp m)} \phi\left(z_{2}\right)^{-1}
$$

where $C_{\underline{12}}=C_{\underline{12}}^{(00)}+C_{\underline{12}}^{(13)}+C_{\underline{12}}^{(22)}+C_{\underline{12}}^{(31)}$ is tensor Casimir.
Recall that $r=\frac{1}{2}\left(R-R^{*}\right)$ and $s=-\frac{1}{2}\left(R+R^{*}\right)$, or explicitly

$$
\begin{aligned}
& r_{12}=\text { v.p. } \frac{1}{z_{2}^{4}-z_{1}^{4}}\left[\sum_{j=0}^{3} z_{1}^{4-j} z_{2}^{j} C_{\underline{12}}^{(4-j)} \phi\left(z_{1}\right)^{-1}+\sum_{j=0}^{3} z_{1}^{j} z_{2}^{4-j} C_{\underline{12}}^{(j 4-j)} \phi\left(z_{2}\right)^{-1}\right], \\
& \mathbf{s}_{\underline{2}}=\frac{1}{z_{2}^{4}-z_{1}^{4}}\left[\sum_{j=0}^{3} z_{1}^{4-j} z_{2}^{j} C_{\underline{12}}^{(4-j)} \phi\left(z_{1}\right)^{-1}-\sum_{j=0}^{3} z_{1}^{j} z_{2}^{4-j} C_{\underline{12}}^{(4-j)} \phi\left(z_{2}\right)^{-1}\right] .
\end{aligned}
$$

These are exactly the r / s-matrices of superstring [Magro '08].

Conclusions \& outlook

- Integrable structure of AdS/CFT at $\lambda \gg 1$ is given by a Lie dialgebra, with standard R-matrix but twisted inner product.
- Although loop algebra $\mathcal{L g}^{\Omega}$ is written in the z-variable, the Zhukovsky map $z \mapsto u$ enters naturally in inner product:

$$
(X, Y)_{\phi}=\oint \frac{d u}{2 \pi i}\langle X(z), Y(z)\rangle
$$

where $\langle X(z), Y(z)\rangle$ is a formal Laurent series in u.

- Other \mathbb{Z}_{m}-gradings are also known to give rise to actions admitting a Lax connection [Young '05]. In this case twist and Zhukovsky map should be

$$
\phi(z)=\frac{4 m z^{m}}{\left(1-z^{m}\right)^{2}}, \quad u=2 \frac{1+z^{m}}{1-z^{m}}
$$

- Generalise to include ghosts and compare GS to PS?
- How to quantize Lie dialgebas?

Integrable structures in AdS/CFT

TACK SJÄLV

