The classical *R*-matrix of AdS/CFT

Benoît Vicedo

LPT, ENS & IPhT, CEA

IGST2010 NORDITA, Stockholm Tuesday 29-th June, 2010

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The pursuit of finiteness

TBA approach: Assumes integrability at finite λ , *L*.

- At L ≫ 1, factorizability of the S-matrix → Fix 2-body S-matrix using Yangian symmetry (universal *R*-matrix?)
- Zamolodchikov's TBA trick ~→ Ground state energy E₀(L). <u>Claim</u>: Excited states described by solutions of Y-system (boundary & analyticity conditions?). [Bombardelli-Tateo-Fioravanti, Frolov-Arutyunov, Gromov-Kazakov-Kozak-Vieira '09]

Need to prove integrability $\forall (\lambda, L) \rightsquigarrow QISM$.

Quantum Inverse Scattering Method

Starting point for QISM:

$$R_{\underline{12}}(u,v)L_{\underline{1}}^{n}(u)L_{\underline{2}}^{n}(v) = L_{\underline{2}}^{n}(v)L_{\underline{1}}^{n}(u)R_{\underline{12}}(u,v),$$

$$L_{\underline{1}}^{n}(u)L_{\underline{2}}^{m}(v) = L_{\underline{2}}^{m}(v)L_{\underline{1}}^{n}(u), \quad \forall n \neq m.$$

Defining monodromy $M_1(u) := L_1^N(u) \dots L_1^1(u)$, we have

$$\boldsymbol{T}(u) := \operatorname{tr}_{\underline{1}} \boldsymbol{M}_{\underline{1}}(u), \qquad [\boldsymbol{T}(u), \boldsymbol{T}(v)] = 0, \ \forall u, v.$$

Classical limit and CISM: Letting $R_{12} = 1 + \hbar r_{12} + O(\hbar^2)$ and $L_{\underline{1}}^{n} = L_{\underline{1}}^{n} + O(\hbar)$ we find $\{L_{\underline{1}}^{n}, L_{\underline{2}}^{m}\} = [r_{\underline{12}}, L_{\underline{1}}^{n}L_{\underline{2}}^{n}]\delta^{n\,m}.$ Continuum limit:

$$L^n = P \overleftarrow{\exp} \int_{\sigma_n}^{\sigma_{n+1}} d\sigma L(\sigma)$$

yields $|\{L_1, L_2\} = [r_{12}, L_1 + L_2]\delta_{\sigma\sigma'}| \rightsquigarrow$ Lie bialgebra structure.

Integrable Hamiltonian systems

(日) (日) (日) (日) (日) (日) (日) (日)

Consider *n*-dim Hamiltonian system: $(\mathcal{P}; \{\cdot, \cdot\}), h \in C(\mathcal{P})$.

Definition

 $\mu \in {\it C}({\cal P})$ is an integral of motion if

- { μ , **h**} = 0,
- $d\mu \neq 0$.

Definition (Integrable system)

 $(\mathcal{P}, \{\cdot, \cdot\}, h)$ is integrable if $\exists \mu_1, \dots, \mu_n \in C(\mathcal{P})$ s.t.

- $\{\mu_i, h\} = 0, \quad i = 1, ..., n,$
- $d\mu_1 \wedge \ldots \wedge d\mu_n \neq 0$,
- $\{\mu_i, \mu_j\} = 0, \quad i, j = 1, ..., n.$

Tasks for proving integrability:

- (*i*) Identify the integrals of motion μ_i .
- (*ii*) Show their involution $\{\mu_i, \mu_j\} = 0$.

Lax pair

Idea:[Lax] Obtain integrals μ_i from eigenvalues of a matrix *L*.

 \rightsquigarrow Reduces task (*i*) to spectral theory.

Suppose we can find $L \in Mat_{N \times N}[C(\mathcal{P})]$ whose evolution is 'isospectral', namely

$$\dot{L} \coloneqq \{L, h\} = [M, L],$$

where $M \in Mat_{N \times N}[C(\mathcal{P})]$. Then also $\{L^{j}, h\} = [M, L^{j}]$, and

$$\{\operatorname{tr} L^j, h\} = 0, \quad \forall j \in \mathbb{N}.$$

Hence spectrum of *L* provides integrals of motion of *h*.

So problem is reduced to finding such an L.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Dual of a Lie algebra

Let \mathfrak{g} be a Lie algebra. Dual \mathfrak{g}^* is a Poisson manifold:

Lie bracket on $\mathfrak{g} \quad \rightsquigarrow \quad$ Poisson bracket on \mathfrak{g}^* .

Kostant-Kirillov bracket (KK-bracket): Let $f \in C(\mathfrak{g}^*)$ and $L \in \mathfrak{g}^*$, then $(df)_L \in (\mathfrak{g}^*)^* \simeq \mathfrak{g}$. So define

 $\{f,g\}(L) \coloneqq \langle L, [(df)_L, (dg)_L] \rangle.$

Lax equation: $X \in \mathfrak{g} \simeq (\mathfrak{g}^*)^*$ defines $\hat{X} : L \mapsto \langle L, X \rangle$. Then

$$\frac{d}{dt}\langle L,X\rangle := \{\hat{X},h\}(L) = \langle L,[X,(dh)_L]\rangle = \langle ad^*(dh)_L \cdot L,X\rangle.$$

Identifying $\mathfrak{g}^* \simeq \mathfrak{g}$ we have $ad^* \simeq ad$, and hence

$$\dot{L} = ad^*(dh)_L \cdot L \quad \Leftrightarrow \quad \dot{L} = [M, L], \quad M \coloneqq (dh)_L.$$

Setbacks

Any $h \in C(\mathfrak{g}^*)$ generates a Lax equation! Unlikely to provide a framework for describing non-trivial integrable systems.

Moreover,

Proposition

Spectral invariant functions $f \in C(\mathfrak{g}^*)$, i.e. ad^* -invariant functions, are Casimirs of the Kostant-Kirillov bracket.

In other words, the natural candidates tr L^{j} for integrable Hamiltonians all generate trivial flows under KK-bracket.

Resolution: Introduce a second Poisson bracket on g^* .

- Spectral invariants still characterised by KK-bracket, but
- Flows will be generated w.r.t. a different R-bracket.

Dual of a Lie di-algebra

Let \mathfrak{g} be a Lie algebra. Given $R \in \operatorname{End} \mathfrak{g}$, introduce

 $[X, Y]_R \coloneqq \frac{1}{2} ([RX, Y] + [X, RY]).$

Anti-symmetry of $[\cdot, \cdot]_R$ follows from that of $[\cdot, \cdot]$. Sufficient condition for $[\cdot, \cdot]_R$ to satisfy Jacobi identity is

$$[RX, RY] - R([RX, Y] + [X, RY]) = -[X, Y], \quad \forall X, Y \in \mathfrak{g}.$$

This is the modified classical Yang-Baxter equation (mCYBE) and its solutions are classical R-matrices.

 $(\mathfrak{g}, [\cdot, \cdot], [\cdot, \cdot]_R)$ is a Lie dialgebra. Its dual \mathfrak{g}^* has two PBs

$$\{f,g\}(L) \coloneqq \langle L, [(df)_L, (dg)_L] \rangle, \\ \{f,g\}_R(L) \coloneqq \langle L, [(df)_L, (dg)_L]_R \rangle$$

Constructing integrable systems

Theorem (Semenov-Tian-Shansky)

(*i*) Casimirs of KK-bracket are in involution w.r.t. R-bracket. (*ii*) The flow generated by a Casimir h via R-bracket reads $\dot{L} = ad^*M \cdot L$, $M := R(dh)_L$.

This is the generalised Lax equation. When $\mathfrak{g}^* \simeq \mathfrak{g}$, it takes the form of the standard Lax equation.

Upshot: Allows construction of integrable systems on the dual $(\mathfrak{g}^*, \{\cdot, \cdot\}_R)$ of a Lie dialgebra (\mathfrak{g}, R) .

Lax matrix: Describing a specific model with phase-space $(\mathcal{P}, \{\cdot, \cdot\})$ requires a Poisson map

$$L: (\mathcal{P}, \{\cdot, \cdot\}) \to (\mathfrak{g}^*, \{\cdot, \cdot\}_R),$$

i.e. $\{L^*f, L^*g\} = L^*\{f, g\}_R$ for any $f, g \in C(\mathfrak{g}^*)$.

Lie dialgebra: $R \in \text{End }\mathfrak{g}$ defines a second bracket on \mathfrak{g} , $[x, y]_R = \frac{1}{2} ([Rx, y] + [x, Ry]).$

Lie bialgebra: $\delta^* : \mathfrak{g}^* \land \mathfrak{g}^* \to \mathfrak{g}^*$ defines bracket on \mathfrak{g}^* . In coboundary case $\delta^*_r : (\xi, \xi') \mapsto [\xi, \xi']_* = \frac{1}{2} ([r\xi, \xi'] - [\xi, r^*\xi']).$

Classical Yang-Baxter equation

Only restriction on the *R*-matrix is that it satisfies the mCYBE

$$[\mathsf{R}\mathsf{X},\mathsf{R}\mathsf{Y}]-\mathsf{R}ig([\mathsf{R}\mathsf{X},\mathsf{Y}]+[\mathsf{X},\mathsf{R}\mathsf{Y}]ig)=-[\mathsf{X},\mathsf{Y}], \hspace{1em} orall \mathsf{X},\mathsf{Y}\in \mathfrak{g}.$$

In tensor notation this reads

$$[R_{\underline{12}}, R_{\underline{13}}] + [R_{\underline{12}}, R_{\underline{23}}] + [R_{\underline{32}}, R_{\underline{13}}] = -\hat{\omega}_{\underline{123}},$$

where $\hat{\omega}(X, Y, Z) \coloneqq \langle [X, Y], Z \rangle$.

For the *r*-matrix of a Lie bialgebra, $r + r^*$ is *ad*-invariant. Imposing this further condition on *R*-matrix we obtain

$$[R_{\underline{12}}, R_{\underline{13}}] + [R_{\underline{12}}, R_{\underline{23}}] + [R_{\underline{13}}, R_{\underline{23}}] = -\hat{\omega}_{\underline{123}},$$

which is the usual mCYBE for R = r.

Zero curvature equation

The generalised Lax equation applies to any Lie (di)algebra \mathfrak{g} ,

$$\dot{L} = ad^*M \cdot L.$$

So far we've used it to discuss only the Lax equation $\hat{L} = [M, L]$. By choosing \mathfrak{g} appropriately it is possible to cover also the zero-curvature equation

$$\partial_{\tau} \mathfrak{L} - \partial_{\sigma} \mathfrak{M} = [\mathfrak{M}, \mathfrak{L}].$$

Indeed, just need to find \mathfrak{g} such that

$$ad^*\mathfrak{M}\cdot\mathfrak{L}=[\mathfrak{M},\mathfrak{L}]+\partial_{\sigma}\mathfrak{M}.$$

Given by central extension $\hat{\mathfrak{G}}$ of current algebra $C^{\infty}(S^1, \mathfrak{g})$.

Centrally extended current algebras

Let \mathfrak{g} be a 'little' Lie algebra with inner product (\cdot, \cdot) . Consider $\mathfrak{G} := C^{\infty}(S^1, \mathfrak{g})$ with non-deg., inv., bilinear product

$$((\mathfrak{X},\mathfrak{Y})) \coloneqq \int_{\mathcal{S}^1} d\sigma(\mathfrak{X}(\sigma),\mathfrak{Y}(\sigma)), \quad \mathfrak{X},\mathfrak{Y} \in \mathfrak{G}.$$

Central extension: defined by the 2-cocycle

$$\omega(\mathfrak{X},\mathfrak{Y})\coloneqq\int_{\mathcal{S}^1} d\sigma(\mathfrak{X}(\sigma),\partial_\sigma\mathfrak{Y}(\sigma)),\quad\mathfrak{X},\mathfrak{Y}\in\mathfrak{G}.$$

As a vector space $\hat{\mathfrak{G}}\equiv\mathfrak{G}\oplus\mathbb{C},$ equipped with the Lie bracket

$$[(\mathfrak{X}, \boldsymbol{a}), (\mathfrak{Y}, \boldsymbol{b})] \coloneqq ([\mathfrak{X}, \mathfrak{Y}], \omega(\mathfrak{X}, \mathfrak{Y})).$$

Extend also the product as $(((\mathfrak{X}, a), (\mathfrak{Y}, b))) := ((\mathfrak{X}, \mathfrak{Y})) + ab$. Lemma

If $(\hat{\mathfrak{g}}, R)$ is a Lie dialgebra, then so is $(\hat{\mathfrak{G}}, R)$, where

 $R(\mathfrak{X}(\sigma), c) \coloneqq (R(\mathfrak{X}(\sigma)), c), \text{ for } (\mathfrak{X}(\sigma), c) \in \hat{\mathfrak{G}}.$

Coadjoint action

Define the coadjoint action of $\hat{\mathfrak{G}}$ on $\hat{\mathfrak{G}}^*$ as

 $((ad^*(\mathfrak{M}, c) \cdot (\mathfrak{X}, a), (\mathfrak{Y}, b))) \coloneqq -(((\mathfrak{X}, a), [(\mathfrak{M}, c), (\mathfrak{Y}, b)])).$

R.h.s. is independent of *c*, so center of $\hat{\mathfrak{G}}$ acts trivially. Coadjoint action of \mathfrak{G} on $\hat{\mathfrak{G}}^*$ reads

$$ad^*\mathfrak{M} \cdot (\mathfrak{X}, a) = (ad^*\mathfrak{M} \cdot \mathfrak{X} + a \partial_{\sigma}\mathfrak{M}, 0).$$

Since $a \in \mathbb{C}$ is invariant, we restrict attention to

$$\hat{\mathfrak{G}}_1^* \coloneqq \mathfrak{G}^* \oplus \{1\} \subset \mathfrak{G}^* \oplus \mathbb{C}.$$

Coadjoint action of \mathfrak{G} on $\hat{\mathfrak{G}}_1^* \simeq \mathfrak{G}^* \simeq \mathfrak{G}$ is therefore

$$ad^*\mathfrak{M}\cdot(\mathfrak{X},1)=([\mathfrak{M},\mathfrak{X}]+\partial_{\sigma}\mathfrak{M},0).$$

Constructing 2-d integrable field theories

The dual $\hat{\mathfrak{G}}^*$ of the Lie dialgebra $(\hat{\mathfrak{G}}, [\cdot, \cdot], [\cdot, \cdot]_R)$ has two PBs:

- 1) Kostant-Kirillov bracket: $\{f, g\}(\mathfrak{L}) \coloneqq ((\mathfrak{L}, [df, dg]))$.
- 2) R-bracket: $\frac{1}{2} \{f, g\}_R(\mathfrak{L}) := ((\mathfrak{L}, [df, dg]_R)).$

Theorem

- (i) Casimirs of KK-bracket are in involution w.r.t. R-bracket.
- (*ii*) The flow generated by a Casimir h via R-bracket takes the form of a zero-curvature equation,

 $\partial_{\tau}\mathfrak{L} - \partial_{\sigma}\mathfrak{M} = [\mathfrak{M}, \mathfrak{L}], \quad \mathfrak{M} := R(dh)_{\mathfrak{L}}.$

The Poisson manifold $(\hat{\mathfrak{G}}^*, \{\cdot, \cdot\}_R)$ therefore provides a very general setting for describing 2-d integrable field theories.

Different models correspond to different coadjoint orbits in $\hat{\mathfrak{G}}^*$.

r/*s*-matrix formalism

Let us write out the bracket $\{f, g\}_R$ for linear functions,

$$f:(\mathfrak{L},1)\mapsto (\!(\mathfrak{L},\mathfrak{X})\!),\quad g:(\mathfrak{L},1)\mapsto (\!(\mathfrak{L},\mathfrak{Y})\!),$$

where $\mathfrak{X} := X \cdot \delta_{\sigma_1}$, $\mathfrak{Y} := Y \cdot \delta_{\sigma_2}$ and $X, Y \in \mathfrak{g}$. We then have, in the standard tensor notation

 $\{\mathfrak{L}_{\underline{1}},\mathfrak{L}_{\underline{2}}\}_{R}=[R_{\underline{12}},\mathfrak{L}_{\underline{1}}]\delta_{\sigma_{1}\sigma_{2}}-[R_{\underline{12}}^{*},\mathfrak{L}_{\underline{2}}]\delta_{\sigma_{1}\sigma_{2}}+(R_{\underline{12}}+R_{\underline{12}}^{*})\delta_{\sigma_{1}\sigma_{2}}'.$

This is the standard r/s-matrix algebra if we identify

$$r := \frac{1}{2}(R - R^*), \quad s := -\frac{1}{2}(R + R^*).$$

ultralocal models (s = 0) \rightsquigarrow described by Lie bialgebra. non-ultralocal models ($s \neq 0$) \rightsquigarrow described by Lie dialgebra.

\mathbb{Z}_4 -graded Lie superalgebra

Consider σ -models on semi-symmetric spaces [Zarembo '10]:

$$\longrightarrow$$
 super($AdS_n \times Y_{10-n}$) $\equiv G/H$

Ingredients: Let $\mathfrak{g} = \mathfrak{g}_{\bar{0}} \oplus \mathfrak{g}_{\bar{1}}$ be a Lie superalgebra.

 \mathbb{Z}_4 -grading: Given by automorphism $\Omega : \mathfrak{g} \to \mathfrak{g}$, s.t. $\Omega^4 = 1$.

•
$$\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2 \oplus \mathfrak{g}_3$$
, where $\Omega(\mathfrak{g}_n) = i^n \mathfrak{g}_n$.

• $[\mathring{g}_n, \mathring{g}_m] \subset \mathring{g}_{(n+m) \mod 4}$, $\mathring{g}_{2n} \subset \mathring{g}_{\bar{0}}$, $\mathring{g}_{2n+1} \subset \mathring{g}_{\bar{1}}$. Inner product: Non-deg., inv., bilinear form $\langle \cdot, \cdot \rangle : \mathring{g} \times \mathring{g} \to \mathbb{C}$.

• $\langle \mathfrak{g}_n, \mathfrak{g}_m \rangle = 0$ unless $n + m = 0 \mod 4$.

Grassmann envelope: $\mathfrak{g} = (\Gamma \otimes \mathfrak{g})_{\bar{\mathfrak{g}}}$ is an ordinary Lie algebra.

- g inherits corresponding properties from g.
- $G := \exp \mathfrak{g}$ and $H := \exp \mathfrak{g}_0$ (using $[\mathfrak{g}_0, \mathfrak{g}_0] \subset \mathfrak{g}_0$).

\mathbb{Z}_4 -graded supercoset σ -models

Want σ -model for maps $\Sigma = \mathbb{R} \times S^1 \to G/H$. So let $g: \Sigma \to G, \quad A = -g^{-1} dg \in \Omega^1(\Sigma, \mathfrak{g})$

and impose

- Global left G-action: under $g \mapsto Ug$, $U \in G$, have $A \mapsto A$.
- Local right *H*-action: under $g \mapsto gh$, $h : \Sigma \to H$ have $A \mapsto h^{-1}Ah h^{-1}dh$, hence

$$\mathcal{A}^{(1,2,3)}\mapsto h^{-1}\mathcal{A}^{(1,2,3)}h,$$
 where $\mathcal{A}^{(n)}\in\mathfrak{g}_n.$

Possible Lagrangians (matter part of GS and PS s-strings):

$$\begin{split} \mathcal{L}_{\mathsf{GS}} &:= -\frac{1}{2} \langle \mathsf{A}^{(2)} \wedge * \mathsf{A}^{(2)} \rangle - \frac{1}{2} \langle \mathsf{A}^{(1)} \wedge \mathsf{A}^{(3)} \rangle + \langle \Lambda, \mathsf{d}\mathsf{A} - \mathsf{A}^2 \rangle, \\ \mathcal{L}_{\mathsf{PS}} &:= -\frac{1}{2} \langle (\mathsf{A} - \mathsf{A}^{(0)}) \wedge * (\mathsf{A} - \mathsf{A}^{(0)}) \rangle \\ &+ \frac{1}{2} \langle \mathsf{A}^{(1)} \wedge \mathsf{A}^{(3)} \rangle + \langle \Lambda, \mathsf{d}\mathsf{A} - \mathsf{A}^2 \rangle. \end{split}$$

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ()

Hamiltonian formalism

Phase-space \mathcal{P} parametrised by $(A_1^{(0,1,2,3)}, \Pi_1^{(0,1,2,3)})$ with

$$\{A_{1\underline{1}}^{(i)}(\sigma), \Pi_{1\underline{2}}^{(4-i)}(\sigma')\}_{\text{P.B.}} = C_{\underline{12}}^{(i\,4-i)}\delta(\sigma-\sigma').$$

<u>Constraints:</u> { $\Phi^A \approx 0$ }

GS: first class $\mathcal{T}_{\pm} \approx \mathcal{C}^{(0)} \approx 0$, (partly) second class $\mathcal{C}^{(1,3)} \approx 0$. PS: first class $\hat{\mathcal{T}}_{\pm} := \mathcal{T}_{\pm} + \frac{1}{2} \langle \mathcal{C}^{(1)}, \mathcal{C}^{(3)} \rangle \approx \mathcal{C}^{(0)} \approx 0$.

Extended Hamiltonian: $\mathcal{H} = \sum_{A} \rho_{A} \Phi^{A}$

$$\begin{aligned} \mathcal{H}_{\text{GS}} &= \underbrace{\rho_{+}\mathcal{T}_{+} + \rho_{-}\mathcal{T}_{-}}_{\text{conformal tr.}} - \underbrace{\langle \mu^{(3)}, \mathcal{C}^{(1)} \rangle - \langle \mu^{(1)}, \mathcal{C}^{(3)} \rangle}_{\kappa-\text{symmetry}} - \underbrace{\langle \mu^{(0)}, \mathcal{C}^{(0)} \rangle}_{\text{coset}}, \\ \mathcal{H}_{\text{PS}} &= \underbrace{\hat{\rho}_{+}\hat{\mathcal{T}}_{+} + \hat{\rho}_{-}\hat{\mathcal{T}}_{-}}_{\text{conformal tr.}} - \underbrace{\langle \hat{\mu}^{(0)}, \mathcal{C}^{(0)} \rangle}_{\text{coset}}. \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Hamiltonian Lax matrix

Look for Lax matrix \mathfrak{L} as a linear combination of $(A_1^{(i)}, \Pi_1^{(i)})$, s.t.

 $\{\mathfrak{L}, P_0\} = \partial_{\sigma}\mathfrak{M} + [\mathfrak{M}, \mathfrak{L}],$

for some \mathfrak{M} , where P_0 is energy. A careful Hamiltonian analysis of both GS and PS yields

$$\begin{split} \mathfrak{L}_{\text{GS}} &= \mathfrak{L}_{\text{BPR}}(z) + \frac{1}{2\sqrt{\lambda}}(1-z^4) \left(\frac{\mathcal{C}^{(0)}}{(2^{(0)}+z^{-3}\mathcal{C}^{(1)}+z^{-1}\mathcal{C}^{(3)}} \right), \\ \mathfrak{L}_{\text{PS}} &= \mathfrak{L}_{\text{p.s.}}(z) \Big|_{\text{ghosts}=0} + \frac{1}{2\sqrt{\lambda}}(1-z^4) \frac{\mathcal{C}^{(0)}}{(2^{(0)}-z^4)}. \end{split}$$

Surprisingly we find the same result $\mathfrak{L}_{GS} = \mathfrak{L}_{PS} \eqqcolon \mathfrak{L}$. Explicitly,

$$\mathfrak{L}(z) = \sum_{j=1}^{4} z^{j} A_{1}^{(j)} + \frac{1-z^{4}}{4z^{4}} \left(\sum_{j=1}^{4} j \, z^{j} A_{1}^{(j)} + 2 \sum_{j=1}^{4} z^{j} (\nabla_{1} \Pi_{1})^{(j)} \right).$$

Twisted loop algebra

Consider loop algebra $\mathcal{L}\mathfrak{g} := \mathfrak{g}[\![z, z^{-1}]\!]$ with decomposition

$$\mathcal{L}\mathfrak{g} = \mathcal{L}\mathfrak{g}_+ \dotplus \mathcal{L}\mathfrak{g}_-,$$

where

- *L*g₊ := g[[z]] consists of formal Taylor series in z,
- $\mathcal{L}\mathfrak{g}_{-} := z^{-1}\mathfrak{g}[z^{-1}]$, polys in z^{-1} without const. term.

 \mathbb{Z}_4 -twist: Notice $\Omega(\mathfrak{L}(z)) = \mathfrak{L}(iz)$. So extend $\Omega : \mathfrak{g} \to \mathfrak{g}$ as

$$\hat{\Omega}:\mathcal{L}\mathfrak{g}
ightarrow\mathcal{L}\mathfrak{g},\quad\hat{\Omega}(X)(z)=\Omega(X(-iz)).$$

The twisted loop algebra is $\mathcal{Lg}^{\Omega} := \{X \in \mathcal{Lg} \mid \hat{\Omega}(X) = X\}$. In particular $\mathcal{Lg}^{\Omega} = \mathcal{Lg}^{\Omega}_{+} \dotplus \mathcal{Lg}^{\Omega}_{-}$ and

$$\mathfrak{L} \in C^{\infty}(S^{1}, \mathcal{Lg}^{\Omega}).$$

Twisted inner product

Lax matrix can be rewritten as

$$\mathfrak{L} = 4 \, \phi(\mathbf{z})^{-1} \sum_{k=1}^{\infty} \mathbf{z}^k \left(k \, A_1^{(k)} + 2 \, (\nabla_1 \Pi_1)^{(k)} \right),$$

where $\phi(z) := rac{16z^4}{(1-z^4)^2}.$

Introduce a twist in the standard inner product on \mathcal{Lg}^{Ω} :

$$(X, Y)_{\phi} := \oint \frac{dz}{2\pi i z} \phi(z) \langle X(z), Y(z) \rangle = \oint \frac{du}{2\pi i} \langle X(z), Y(z) \rangle.$$

The Zhukovsky variable u plays a central role in AdS/CFT,

$$u=2\frac{1+z^4}{1-z^4}.$$

 $\text{Recall } \langle \mathfrak{g}_n \cdot z^n, \mathfrak{g}_m \cdot z^m \rangle = \langle \mathfrak{g}_n, \mathfrak{g}_m \rangle z^{n+m} = 0 \text{ if } n+m \neq 0 \pmod{4}.$

Smooth dual

'little' Lie algebra:

$$\mathring{\mathfrak{g}} \coloneqq \mathcal{L}\mathfrak{g}^{\Omega}$$
 with bilinear product $(\cdot, \cdot)_{\phi}$.

Current algebra: $\mathfrak{G} = C^{\infty}(\mathfrak{S}^1, \mathfrak{g})$ inherits twisted inner product,

$$((\mathfrak{X},\mathfrak{Y}))_{\phi} := \int_{S^1} d\sigma(\mathfrak{X}(\sigma),\mathfrak{Y}(\sigma))_{\phi}.$$

Let $\mathfrak{G}_{\pm} \coloneqq C^{\infty}(S^1, \mathring{\mathfrak{g}}_{\pm})$ and $\mathfrak{G}_{\pm}^{\perp} \coloneqq C^{\infty}(S^1, \mathring{\mathfrak{g}}_{\pm}^{\perp})$ where

With respect to $(\!(\cdot,\cdot)\!)_{\phi}$ we have $\mathfrak{G}_{-}^* \simeq \phi^{-1} \mathfrak{G}_{+}^{\perp}$ and so

$$\mathfrak{L}\in\mathfrak{G}_{-}^{\ast}.$$

Standard R-matrix

With respect to the decomposition $\mathring{\mathfrak{g}} = \mathring{\mathfrak{g}}_+ \dotplus \mathring{\mathfrak{g}}_-$, let

 $\boldsymbol{R} := \pi_+ - \pi_-,$

where $\pi_{\pm} : \mathfrak{g} \to \mathfrak{g}_{\pm}$ are projections. It satisfies mCYBE, $[RX, RY] - R([RX, Y] + [X, RY]) = -[X, Y], \quad \forall X, Y \in \mathfrak{g},$

so that

$$[X, Y]_{\mathcal{R}} := \frac{1}{2}([\mathcal{R}X, Y] + [X, \mathcal{R}Y]),$$

defines a second Lie bracket on $\mathring{\mathfrak{g}} = \mathcal{L}\mathfrak{g}^{\Omega}$ (dialgebra).

Remark: Due to the twist in the inner product, R is not skew:

$$R^* = -\varphi^{-1} \circ R \circ \varphi, \quad \varphi(z) = \phi(z)z^{-1}$$

A D > 4 回 > 4 回 > 4 回 > 1 の Q Q

r/*s*-matrices

Tensor kernels: Given $\mathcal{O}:\mathfrak{g}\to\mathfrak{g}$, define $\mathcal{O}_{\underline{12}}\in\mathfrak{g}\otimes\mathfrak{g}$ by

$$(\mathcal{O}X)_{\underline{1}} = (\mathcal{O}_{\underline{12}}, X_{\underline{2}})_{\underline{\phi}\underline{2}}.$$

Projection kernels are

$$\pi_{\pm \underline{12}} = \sum_{m=1}^{\infty} \left(\frac{z_1}{z_2}\right)^{\pm m} C_{\underline{12}}^{(\pm m \mp m)} \phi(z_2)^{-1},$$
where $C_{\underline{12}} = C_{\underline{12}}^{(00)} + C_{\underline{12}}^{(13)} + C_{\underline{12}}^{(22)} + C_{\underline{12}}^{(31)}$ is tensor Casimir.
Recall that $r = \frac{1}{2}(R - R^*)$ and $s = -\frac{1}{2}(R + R^*)$, or explicitly
 $r_{\underline{12}} = v.p.\frac{1}{z_2^4 - z_1^4} \left[\sum_{j=0}^3 z_1^{4-j} z_2^j C_{\underline{12}}^{(4-j)} \phi(z_1)^{-1} + \sum_{j=0}^3 z_1^j z_2^{4-j} C_{\underline{12}}^{(j4-j)} \phi(z_2)^{-1} \right],$
 $\underline{s_{\underline{12}}} = \frac{1}{z_2^4 - z_1^4} \left[\sum_{j=0}^3 z_1^{4-j} z_2^j C_{\underline{12}}^{(4-j)} \phi(z_1)^{-1} - \sum_{j=0}^3 z_1^j z_2^{4-j} C_{\underline{12}}^{(j4-j)} \phi(z_2)^{-1} \right].$

These are exactly the r/s-matrices of superstring [Magro '08].

Conclusions & outlook

- Integrable structure of AdS/CFT at λ ≫ 1 is given by a Lie dialgebra, with standard *R*-matrix but twisted inner product.
- Although loop algebra \mathcal{Lg}^{Ω} is written in the *z*-variable, the Zhukovsky map $z \mapsto u$ enters naturally in inner product:

$$(X, Y)_{\phi} = \oint \frac{du}{2\pi i} \langle X(z), Y(z) \rangle,$$

where $\langle X(z), Y(z) \rangle$ is a formal Laurent series in *u*.

 Other Z_m-gradings are also known to give rise to actions admitting a Lax connection [Young '05]. In this case twist and Zhukovsky map should be

$$\phi(z) = rac{4m z^m}{(1-z^m)^2}, \qquad u = 2rac{1+z^m}{1-z^m}$$

(日) (日) (日) (日) (日) (日) (日) (日)

- Generalise to include ghosts and compare GS to PS?
- How to quantize Lie dialgebas?

Integrable structures in AdS/CFT

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

TACK SJÄLV

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで