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Motivation

From integrability = Spectrum

Other observables?. Correlation
functions, Wilson loops, amplitudes...

We consider Wilson loops / Amplitudes

We know the weak and strong coupling
answers. How do we go between them?



We will show how to compute the answer in one
corner of parameter space for all coupling.

It Is a simple analog of the ordinary operator
product expansion, but for Wilson loops.

Wilson loops with null edges are eminently
lorentzian observables. Understanding this
expansion could be useful for other lorentzian
observables.

The OPE expansion we derive is valid in any
CFT which has a conserved electric flux.



Plan

he ordinary OPE

Symmetries of null lines

Families of Wilson loops

States that propagate

The form of the OPE

Checks at weak and strong coupling
Predictions for all coupling



The ordinary OPE
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- We surround operators 1 and 2 with a 3-sphere.
- We have some state propagating = expand it in terms of energy eigenstates
- States on the sphere are in correspondence with local operators.

- Symmetries : We imagine acting with a dilatation on 1 & 2 (but not the rest)
We get a family of points depending on t
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- Euclidean time evolution

- Discrete sum - discrete spectrum of dimensions of operators

- Known dimensions - constraints on the functions that appear.

- We could surround more points by the 3-sphere and have similar expansions
- We can do it in many possible “channels”

- Consistency of the expansion in all channels - should determine the function

Bootstrap: Polyakov
Belavin, Polyakov, Zamolodchikov

- Convergent expansion (finite radius of convergence)

>7/< Basic object is the three point function.



Wilson loops
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@ States : defined on a sphere with null lines
Colinear limit, including subleading terms.



Two null lines

-Two generic null lines - all the same up to symmetries
- Symmetries preserved by the null lines: SL(2,R) X R x SO(2)

T
\ - Map the two lines to an R1.1 subspace
- Lines lie along x-
- SL(2,R) acts on x-
- R is essentially dilations on x*
- SO(2) rotates the transverse 2d space

- 3-sphere and two null lines.
- Null lines = null Wilson lines in the fundamental and
anti- fundamental
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- Flux breaks the SL(2,R) symmetry into R .




This picture also appeared in high spin operators.
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As S - Infinity , we get two null Wilson lines

Or =A—-S5 =twist
In suitable coordinates we get: Alday & JM

Icusp(A) is the energy
density of this flux.

Flux 7 is the time coordinate,
conjugate to twist

() is the space coordinate
o, Ao ~ log S conjugate to the extra
noncompact symmetry
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- So far we described the ground state.
- The ground state is the only state that propagates in the square wilson loop
- We should also consider excited states.
- In the planar theory - planar excitations only.
- Excitations of the flux tube
- Particles propagating, whose properties are modified by the presence
of flux
- Viewed as insertions of operators along a null line
- Extra insertions of fields on the high spin operator.
- New vacuum: Sea of derivatives. We get impurities along the sea of derivatives.
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Properties of the excitations

- At weak coupling excitations are characterized by
their “twist” =1,2,3

-They get a correction

A—S=FE=1+M(p)+ o))

- The twist one insertions are six scalars and two F’s plus
eight fermions.

-At strong coupling there are different regions depending
on the momentum. The analog of the BMN region gives
a relativistic dispersion relation. There is also a “giant hole”

region. Frolov Tseytlin Dorey Losi

- B. Basso computed the exact dispersion relation for some
of the simplest impurities. (To appear)



Goldstone particles

Fermions with p=0 correspond to the goldstone fermions of the supersymmetries
broken by the flux.

e(p=0)=1

There are bosonic modes with

e(p = ::i) =1

This, together with relativistic invariance, gives fixes the strong coupling
worldsheet spectrum.



Summary
States propagating

- Ground state. Just flux along an infinite non-compact direction.
- Energy density is the cusp anomalous dimension.
- Excitations: particles propagating along this flux.
- Dispersion relation. 6(]?, )\)

- All states - just multiparticle states. we could have bound states, etc..



A family of Polygons
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- Choose two segments of the polygon.

- Define a reference square ABCD

- Act with symmetries on the bottom side of the polygon.
- Symmetries involve three parameters: T, O, gb



Example: Hexagon

Three cross ratios. D

Three explicit symmetries in OPE.
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Divergencies

 There are UV divergencies in the Wilson
loop. These break the symmetries.

e Violation is understood

Drummond, Korchemsky

e Anomalous Ward identities. Sokatchev



Removing divergencies In practice

e Using the U(1) theory. Remainder function
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Expansion for the remainder
function
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If we computed r , using the second method, we would obtain just the first piece.



Checks

wo loops
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Term linear in 7 is completely fixed.
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Belitsky, Gorsky,

Korchemsky
One loop anomalous dimension 3 D 3 D
One loop dispersion relation h — (= + & — 358y —2(1
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p2 + 1 cosh %T computation in the U(1) theory.



Strong coupling results

Hexagon:
Only three cross ratios = all can be parameters of the expansion.
R=Ri+R 5+ Ra+---

Ry = —cos¢e " (cosholog|2cosh o] — osinh o)
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Relativistic dispersion relation U(1) result. Is just
at strong coupling. f dpei?e C(p)



Higher loop predictions
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More predictions are possible once we input the higher loop anomalous
dimensions.



Building up a Polygon

3 parameters each
time we add a line.



Wilson loops in general CFT’s

This OPE Is valid for general conformal field
theories in any dimension.

In theories where the electric flux iIs conserved

(For example, non-planar N=4 SYM and Wilson lines in the fundamental )

the OPE will have similar properties.

Similar one particle dispersion relation for twist
one fields, but harder to compute.

For ABJM one would probably have a similar
behavior.



Conclusions

The operator product expansion can be
applied to Wilson loops.

Divergences can be controlled and one
has a manageable expansion.

We have explicitly checked that the
expansion works for 2 loops and also for
strong coupling.

We made predictions for larger values of
the coupling.



Future

e Can this be used to determine the full
correlator ? Bootstrap ?

* Need: better way to label the propagating
states, to include multiparticle states,
bound states, etc.

e Good news: we have the usual Iinfinite set
of charges !.



* by next meeting... ?



