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Motivation

• From integrability � Spectrum

• Other observables?.  Correlation 
functions, Wilson loops, amplitudes…

• We consider Wilson loops / Amplitudes 

• We know the weak and strong coupling 
answers. How do we go between them? 



• We will show how to compute the answer in one 
corner of parameter space for all coupling. 

• It is a simple analog of the ordinary operator 
product expansion, but for Wilson loops. 

• Wilson loops with null edges are eminently 
lorentzian observables. Understanding this 
expansion could be useful for other lorentzian
observables. 

• The OPE expansion we derive is valid in any 
CFT which has a conserved electric flux. 



Plan

• The ordinary OPE
• Symmetries of null lines
• Families of Wilson loops
• States that propagate
• The form of the OPE
• Checks at weak and strong coupling
• Predictions for all coupling



The ordinary OPE
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- We surround operators 1 and 2 with a 3-sphere. 
- We have some state propagating � expand it in terms of energy eigenstates
- States on the sphere are  in correspondence with local operators. 

- Symmetries :   We imagine acting with a dilatation on  1 & 2 (but not the rest) 
We get a family of points depending on t 

〈O1O2 · · ·Ok〉 ∼
∑

n

e−tEnC12nCn3···k
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〈O1O2 · · ·Ok〉



- Euclidean time evolution

- Discrete sum � discrete spectrum of dimensions of operators

- Known dimensions � constraints on the functions that appear. 

- We could surround more points by the 3-sphere and have similar  expansions

- We can do it in many possible “channels”

- Consistency of the expansion in all channels � should determine the function

- Convergent expansion (finite radius of convergence) 

Bootstrap: Polyakov
Belavin, Polyakov, Zamolodchikov

〈O1O2 · · ·Ok〉 ∼
∑

n

e−tEnC12nCn3···k

Basic object is the three point function. 



Wilson loops

States : defined on a sphere with null lines 

Colinear limit, including subleading terms. 



Two null lines

-Two generic null lines  � all the same up to symmetries
- Symmetries preserved by the null lines:  SL(2,R) x R x SO(2) 

- Map the two lines to an R1,1 subspace
- Lines lie along x-

- SL(2,R) acts on x-

- R is essentially dilations on x+

- SO(2) rotates the transverse 2d space

- 3-sphere and two null lines. 
- Null lines � null Wilson lines in the fundamental and 

anti- fundamental
- Color electric flux between the lines
- Flux breaks the SL(2,R) symmetry into R . 

τ



This picture also appeared in high spin operators. 

As  S � Infinity  , we get two null Wilson lines

In suitable coordinates we get:

is the energy
density of this flux. 

= twist

Tr[Φ∂SΦ]

∂τ = ∆− S

Γcusp(λ)

τ

σ , ∆σ ∼ logS

τ is the time coordinate,
conjugate to twist

is the space coordinate 
conjugate to the extra 
noncompact symmetry

σ

Flux

Alday & JM



- So far we described the ground state.
- The ground state is the only state that propagates in the square wilson loop
- We should also consider excited states. 
- In the planar theory � planar excitations only. 
- Excitations of the flux tube 
- Particles propagating, whose properties are modified by the presence

of flux 
- Viewed as insertions of operators along a null line
- Extra insertions of fields on the high spin operator. 
- New vacuum:  Sea of derivatives.  We get impurities along the sea of derivatives. 

Tr[Φ∂nF∂S−nΦ] , or · · · ∂∂∂∂∂F∂∂∂∂∂ · · ·



Properties of the excitations
- At weak coupling excitations are characterized by

their  “twist” = 1,2,3

-They get a correction 

- The twist one insertions are six scalars and two F’s plus
eight fermions. 

-At strong coupling there are different regions depending
on the momentum. The analog of the BMN region gives
a relativistic dispersion relation.  There is also a “giant hole”
region. 

- B. Basso computed the exact dispersion relation for some
of the simplest impurities. (To appear)

Dorey Losi

∆ − S = E = 1 + λγ(p) + o(λ2)

Frolov Tseytlin



Goldstone particles

Fermions with p=0  correspond to the goldstone fermions of the supersymmetries
broken by the flux. 

There are bosonic modes with 

ǫ(p = 0) = 1

ǫ(p = ±i) = 1

This, together with relativistic invariance, gives fixes the strong coupling 
worldsheet spectrum. 



Summary 
States propagating

- Ground state. Just flux along an infinite non-compact direction. 

- Energy density is the cusp anomalous dimension. 

- Excitations: particles propagating along this flux.  

- Dispersion relation. 

- All states � just multiparticle states. We could have bound states, etc..

ǫ(p, λ)



A family of Polygons

- Choose two segments of the polygon.  
- Define a reference square   ABCD 
- Act with symmetries on the bottom side of the polygon.
- Symmetries involve three parameters:  τ, σ, φ



Example: Hexagon

Three cross ratios. 

Three explicit symmetries in OPE. 



States
n 



Divergencies

• There are UV divergencies in the Wilson 
loop. These break the symmetries. 

• Violation is understood

• Anomalous Ward identities. 
Drummond, Korchemsky
Sokatchev



Removing divergencies in practice

• Using the U(1) theory. Remainder function

• Ratio of Wilson loops 

eR =
〈W 〉

[
〈W 〉U(1)

]Γcusp

er =
〈W 〉〈Wsquare〉

〈Wtop〉〈Wbottom〉

Bern Dixon Smirnov



Expansion for the remainder 
function

U(1) pieceFull theory

If we computed r , using the second method, we would obtain just the first piece. 

R ∼

∫
dpeipσ

[
C(p, λ)e−τǫ(p,λ) − e−τΓcusp(λ)C1(p)

]



Checks

• Two loops

Term linear in        is completely fixed. 

R ∼

∫
dpeipσ

[
C(p, λ)e−τǫ(p,λ) − e−τΓcusp(λ)C1(p)

]

R ∼ λ2e−τ
∫
dpeipσ [τγ(p)C1(p) + C2 − Γ2C1(p)]

τ



One loop anomalous dimension
One loop dispersion relation 

Can be determined by a simple
computation in the U(1) theory. 

h(σ) = ψ(
3

2
+ i
p

2
) + ψ(

3

2
− i
p

2
)− 2ψ(1)

h(σ)=

∫
dpeipσC1(p)γ(p)

Belitsky, Gorsky,
Korchemsky

Brandhuber, Heslop, Travaglini
Del Duca, Duhr, Smirnov
Zhang

C1(p) =
1

p2 + 1

1

cosh pπ

2

Goncharov, Spradlin, 
Vergu, Volovich



Strong coupling results

U(1) result. Is just 
∫
dpeipσC(p)

Relativistic dispersion relation 
at strong coupling. 

Hexagon:

Only  three cross ratios � all can be parameters of the expansion. 



Higher loop predictions

R ∼ cosφe−ττL−1
∫
dpeipσC1(p) [γ1(p)]

L−1

More predictions are possible once we input the higher loop anomalous
dimensions. 



Building up a Polygon

3 parameters each 
time we add a line. 



Wilson loops in general CFT’s

• This OPE is valid for general conformal field 
theories in any dimension. 

• In theories where the electric flux is conserved 
(For example, non-planar N=4 SYM and Wilson lines in the fundamental ) 

the OPE will have similar properties. 
• Similar one particle dispersion relation for twist 

one fields, but harder to compute. 

• For ABJM one would probably have a similar 
behavior. 



Conclusions

• The operator product expansion can be 
applied to Wilson loops. 

• Divergences can be controlled and one 
has a manageable expansion. 

• We have explicitly checked that the 
expansion works for 2 loops and also for 
strong coupling. 

• We made predictions for larger values of 
the coupling. 



Future

• Can this be used to determine the full 
correlator ? Bootstrap ?

• Need: better way to label the propagating 
states, to include multiparticle states, 
bound states, etc. 

• Good news: we have the usual infinite set 
of charges !. 



• by next meeting… ?


