Circuit Quantum Electrodynamics (QED)

David Haviland Erik Tholen Jochen Walter Adem Ergul Frank Weber Evelyn Dorthy

Nanostructure Physics, Dept. Applied Physics, KTH, Albanova

Atom in a Cavity

Consider only two levels of atom, with energy separation $\hbar\Omega$

Atom drifts through electromagnetic resonant cavity with very high Q

Jaynes-Cummings Hamiltonian:

$$H = \hbar \omega_{\rm r} \left(a^{\dagger} a + \frac{1}{2} \right) + \frac{\hbar \Omega}{2} \sigma^z + \hbar g (a^{\dagger} \sigma^- + \sigma^+ a) + H_{\kappa} + H_{\gamma}.$$

coupling strength $g = \mathcal{E}_{rms} d/\hbar$ cavity decay rate $\kappa = \omega_r / Q$. decay rate to non - cavity modes - γ

Needed: High *Q* Large *d*

Blais et. al, Phys. Rev. A, 2004

Electropolished superconducting Nb cavity

50 mm diameter and a 40 mm radius of curvature

Nice presentation at: http://www.lkb.ens.fr/recherche/qedcav/english/englishframes.html

Energy Eigenstates

$$H = \hbar \omega_{\rm r} \left(a^{\dagger} a + \frac{1}{2} \right) + \frac{\hbar \Omega}{2} \sigma^z + \hbar g (a^{\dagger} \sigma^- + \sigma^+ a) + \frac{1}{2} + \frac{1}{2} \sigma^z$$

Neglect damping for the moment, exact diagonalization gives energy eigenstates:

$$\begin{split} |\mp,n\rangle &= \cos \theta_n |\downarrow,n\rangle + \sin \theta_n |\uparrow,n+1\rangle, \\ |\overline{-,n}\rangle &= -\sin \theta_n |\downarrow,n\rangle + \cos \theta_n |\uparrow,n+1\rangle, \\ \theta_n &= \frac{1}{2} \tan^{-1} \left(\frac{2g\sqrt{n+1}}{\Delta}\right), \qquad E_{\pm,n} &= (n+1)\hbar \omega_r \pm \frac{\hbar}{2} \sqrt{4g^2(n+1) + \Delta^2}, \qquad E_{\uparrow,0} &= -\frac{\hbar \Delta}{2}. \\ \Delta &\equiv \Omega - \omega_r \text{ the atom-cavity detuning,} \end{split}$$

For zero detuning the degeneracy of the photon states with the atom state is lifted by the coupling. These "dressed states" are "maximally entangled" atom – field states

$$|\pm,0\rangle = (|\uparrow,1\rangle \pm |\downarrow,0\rangle)/\sqrt{2}$$

Blais et. al, Phys. Rev. A, 2004

Spectrum

Blais et. al, Phys. Rev. A, 2004

Splitting of Cavity Resonance

Now consider damping: excitation is $\frac{1}{2}$ photon, $\frac{1}{2}$ atom \Rightarrow decay rate: $\frac{\kappa + \gamma}{2}$

In *strong coupling limit* there is a splitting of cavity resonance which can be resolved because:

$$g = \frac{\boldsymbol{\mathcal{E}}_{\mathrm{rms}}d}{\hbar} >> \kappa, \gamma$$

Blais et. al, Phys. Rev. A, 2004

CP box in Microstrip line cavity

At a resonant frequency of 10 GHz $(h\nu/k_B \sim 0.5 \text{ K})$

 $V_{\rm rms}^0 \sim \sqrt{\hbar \omega_{\rm r}/cL} \sim 2 \ \mu {\rm V} \qquad \mathcal{E}_{\rm rms} \sim 0.2 \ {\rm V/m}$

Very small effective volume, ~10⁻⁵ cubic wavelengths

Blais et. al, Phys. Rev. A, 2004

Map to James-Cummings Hamiltonian

$$H = \hbar \omega_{\rm r} \left(a^{\dagger} a + \frac{1}{2} \right) + \frac{\hbar \Omega}{2} \sigma^z + \hbar g (a^{\dagger} \sigma^- + \sigma^+ a) + H_{\kappa} + H_{\gamma}.$$

$$\Omega = E_J / \hbar \qquad g = \frac{\beta e}{\hbar} \sqrt{\frac{\hbar \omega_r}{cL}} \qquad \beta \equiv C_g / C_{\Sigma}$$

Very large effective dipole moment:

$$d \equiv \hbar g / \mathcal{E}_{\rm rms} \sim 2 \times 10^4$$
 atomic units (ea₀)

Experiment 1 by Yale Group

Nb cavity on Si/SiO2 substrate, length 24 cm,

Wallraff et. al, NATURE, 2004

Schematic of measurement

Wallraff et. al, NATURE, 2004

Vacuum Rabi splitting

By fitting the split cavity resonance, they can determine the mean number of thermal photons in the cavity

Wallraff et. al, NATURE, 2004

Atom vs. Circuit implementation

Atomic Physics:

Measure shift of atom level which drifts through cavity and infer the state of photons in the cavity

Circuit QED:

Directly measure transmission of cavity and observe splitting of cavity resonance.

"Atom" replaced by a superconducting circuit with quantized energy.

Circuit does not drift, no transit time.

Circuit two-level-system can be tuned with external voltage and current.

Comparison

TABLE I. Key rates and CQED parameters for optical [2] and microwave [3] atomic systems using 3D cavities, compared against the proposed approach using superconducting circuits, showing the possibility for attaining the strong cavity QED limit ($n_{\text{Rabi}} \ge 1$). For the 1D superconducting system, a full-wave ($L = \lambda$) resonator, $\omega_r/2\pi = 10$ GHz, a relatively low Q of 10⁴, and coupling $\beta = C_g/C_{\Sigma} = 0.1$ are assumed. For the 3D microwave case, the number of Rabi flops is limited by the transit time. For the 1D circuit case, the intrinsic Cooper-pair box decay rate is unknown; a conservative value equal to the current experimental upper bound $\gamma \le 1/(2 \mu s)$ is assumed.

Parameter	Symbol	3D optical	3D microwave	1D circuit
Resonance or transition frequency	$\omega_{\rm r}/2\pi, \Omega/2\pi$	350 THz	51 GHz	10 GHz
Vacuum Rabi frequency	$g/\pi, g/\omega_{\rm r}$	220 MHz, 3×10 ⁻⁷	47 kHz, 1×10 ^{−7}	100 MHz, 5×10 ⁻³
Transition dipole	d/ea0	~ 1	1×10^{3}	2×10^{4}
Cavity lifetime	$1/\kappa, Q$	10 ns, 3×10^{7}	$1 \text{ ms}, 3 \times 10^8$	160 ns, 10 ⁴
Atom lifetime	$1/\gamma$	61 ns	30 ms	2 µs
Atom transit time	t _{transit}	≥50 <i>μ</i> s	100 µs	00
Critical atom number	$N_0 = 2 \gamma \kappa / g^2$	6×10 ⁻³	3×10 ⁻⁶	≤6×10 ⁻⁵
Critical photon number	$m_0 = \gamma^2 / 2g^2$	3×10^{-4}	3×10 ⁻⁸	≤1×10 ⁻⁶
Number of vacuum Rabi flops	$n_{\text{Rabi}}=2g/(\kappa+\gamma)$	$\sim \! 10$	~5	$\sim \! 10^2$

•Cooper Pair Box does not drift, stays in place $t_{\text{transit}} = \infty$

•Examine one (and the same) quantum system

•Tune parameters of CPB Hamiltonian with external gate voltage and magnetic flux

Blais et. al, Phys. Rev. A, 2004

Superconducting cavities at Albanova

Coupling capacitors

- $L_c = 0, 25, 50, 100 \ \mu m, S = 10 \ \mu m, w = 4 \ \mu m$, fabaricated and tested
- Coupling capacitances C_{κ} , between 0.1 and 5 fF
- C_{κ} determines loaded Q factor, Q_L

$$\frac{1}{Q_L} = \frac{1}{Q_{\text{int}}} + \frac{1}{Q_{\text{ext}}} \qquad Q_{\text{ext}} = \frac{\omega C}{G_{\text{ext}}} \qquad G_{\text{ext}} = \frac{2R_L C_\kappa^2 \omega^2}{1 + R_L^2 C_\kappa^2 \omega^2}$$

Bonding chip in RF package

Sample holder and RF connection

Chip in PC board Bonded with AI wires Shielded by copper box

Mounted in cryostat Connected via MMCX connectors

Broad band cabling to sample cryogenic low noise amplifier

Cooling down

Dewar filled with liquid helium Cryostat mounted on dewar Slowly lowered into the helium Dilution refrigeration T_{min} =20mK

Network analyzer (in rack) connected to crystat

Microwave transmission up to 50 GHz

Low drive power, High Q oscillator

Increasing drive Power

•Bending of resonance curve to lower frequency

•Bifrication at critical power

•Classic "Duffing oscillator" behavior

Sources of Nonlinearity

Transmission line equations for strip line:

$$L = L_{EM} + L_{Kinetic}$$

$$\frac{\partial I}{\partial z} = -C \frac{\partial V}{\partial t}$$
$$\frac{\partial V}{\partial z} = -L \frac{\partial I}{\partial t} - RI$$

Kinetic Inductance (kinetic energy in charge flow due to mass of charge carriers)

$$L(I) = L_0 + \Delta L \left(\frac{I}{I_c}\right)^2$$

Due to penetration of \vec{B} field in to superconductor, Kerr-like nonlinearity.

Tam and Ca

Nonlinear damping:

$$R(I) = R_0 + \Delta R \left(\frac{I}{I_c}\right)^2$$

Tam and Scalapino, J. Appl. Phys. 81 2002 (1997)

The Parametric amplifier

•Change parameter (moment of inertia) during oscillation.

•Small amplitude motion is amplified to large amplitude of swing

•Possible because swing stores energy (under damped oscillator, Q>1)

•Amplification is *phase sensitive*.

•Pumping at correct phase gives maximum amplification •Pumping $\pi/2$ out of phase gives maximum deamplification.

Mechanical pumping, E&M oscillator

Hard Work!

Non-linear element and E&M pump

Resonance of a driven, damped, simple harmonic oscillator

Driven, damped nonlinear oscillator

$$U(i) = \frac{1}{2}Li^2 - L_{NL}i^4$$

Pump, Signal and Idlers

$$i^{3} = [i_{p}\cos(\omega_{p}t) + i_{s}\cos(\omega_{s}t)]^{3} = 6i_{p}^{2}i_{s}\cos(\omega_{s}t) + 3i_{p}^{2}i_{s}\cos(\omega_{p}-\Delta\omega) + 3i_{p}i_{s}^{2}\cos(\omega_{s}+\Delta\omega) + \dots$$

Kerr Non-Linearity for parametric Amplification

Yurke and Buks quant-ph/0505018

Measuring intermodulation

Pump power dependence : Sample 1

Maximum gain at instability

Zoom around maximum gain: sample 2

Gain is sharply peaked

Gain [dB]

Phase sensitive amplification

Deamplification of Signal

Applies to all signals in the cavity – even Noise Deamplify quantum noise (zero point fluctuations) \Rightarrow Squeezed vacuum states!

Observation of Zero-Point Noise Squeezing via a Josephson-Parametric Amplifier

R. Movshovich, B. Yurke, and P. G. Kaminsky AT&T Bell Laboratories, Murray Hill, New Jersey 07974

A. D. Smith, A. H. Silver, and R. W. Simon

TRW Space and Technology Group, Redondo Beach, California 90275

M. V. Schneider

AT&T Bell Laboratories, Holmdel, New Jersey 07733 (Received 7 June 1990)

Need to measure low power

$$Q = \frac{\text{Energy Stored in cycle}}{\text{Energy lost per cycle}}$$

$$Q \approx \frac{\left(N + \frac{1}{2}\right)hf_0}{P_{\text{out}}/f_0} = \frac{\left(N + \frac{1}{2}\right)hf_0^2}{P_{\text{out}}}$$

$$P_{\text{out}}^{ZPF} = \frac{\frac{1}{2}hf_0^2}{Q} \bigg|_{f_0 = 5\text{GHz}} = -151 \text{ dBm} \quad (0 \text{ dBm} = 1\text{ mW})$$

$$Q \approx \frac{10^4}{Q} \left|_{f_0 = 5\text{ GHz}} = -151 \text{ dBm} \quad (0 \text{ dBm} = 1\text{ mW})$$

$$Q \approx \frac{10^4}{Q} \left|_{f_0 = 5\text{ GHz}} = -151 \text{ dBm} \quad (0 \text{ dBm} = 1\text{ mW})$$

$$Q \approx \frac{10^4}{Q} \left|_{f_0 = 5\text{ GHz}} = -125 \text{ dBm} \right|_{f_0 = 125 \text{ dBm}}$$

Need to keep cavity cold

- Must have $k_{\rm B}T > hf_0$ (5GHz \Rightarrow 250mK)
- Self heating due to hard pumping and internal losses
 - Sample $1 \rightarrow 900 \text{ mK}$
 - Sample $2 \rightarrow 250 \text{ mK}$
- Optimize coupling and Q, should be possible to reach
- noise from pump, back action of cryo amplifier
 Need to isolate input and output, attenuators, circulators.....

Conclusions

- QED with superconducting nano-circuits leads to interesting new possibilities for Quantum Electronics at Microwave frequencies
- Strong Coupling QED with Solid State systems
- Non-Linearity of Cavity can be used for parametric amplification, noise squeezing
- Beat "standard quantum limit" for signal amplifier

Bibliography

- Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation, Alexandre Blais, Ren-Shou Huang, Andreas Wallraff, S. M. Girvin, and R. J. Schoelkopf, Phys Rev. A 69, 062320 (2004)
- Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics, A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.- S. Huang, J. Majer, S. Kumar, S. M. Girvin & R. J. Schoelkopf, NATURE **431**, 162 (2004)
- Approaching Unit Visibility for Control of a Superconducting Qubit with Dispersive Readout, A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, J. Majer, M.H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. Lett. **95**, 060501 (2005)
- Steve Girvins Les Houches Lectures: **Prospects for Strong Cavity QuantumElectrodynamics with Superconducting Circuits**, S. M. Girvin, Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, and R. J. Schoelkopf (cond-mat/0310670 v1 28 Oct 2003)
- Theory of Microwave Parametric Down-Conversion and Squeezing Using Circuit QED, K. Moon and S. M. Girvin, Phys. Rev. Lett. 95, 140504 (2005)
- Web site of LABORATOIRE KASTLER BROSSEL with info on Atom-Cavity QED, link to publication list
 - http://www.lkb.ens.fr/recherche/gedcav/english/englishframes.html
- *Colloquium*: Manipulating quantum entanglement with atoms and photons in a cavity, J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys., **73**, 565 (2001)
- Vacuum Rabi splitting with asingle quantum dot in a photonic crystal nanocavity, T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper2, C. Ell, O. B. Shchekin & D. G. Deppe, NATURE **432, 200** (2004)