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Atom in a Cavity
Consider only two levels of atom, with energy separation Ωh

Atom drifts through electromagnetic resonant cavity with very high Q

Jaynes-Cummings Hamiltonian:

γ - modescavity -non  toratedecay 

Strong Coupling limit

γκ ,>>g
Blais et. al, Phys. Rev. A, 2004

Needed:
High Q
Large d



Electropolished superconducting Nb cavity

http://www.lkb.ens.fr/recherche/qedcav/english/englishframes.htmlNice presentation at:

50 mm diameter and a 40 mm radius of curvature 



Energy Eigenstates

Neglect damping for the moment, exact diagonalization gives energy eigenstates:

For zero detuning the degeneracy of the photon states with the atom state is lifted by 
the coupling.  These “dressed states” are “maximally entangled” atom – field states

Blais et. al, Phys. Rev. A, 2004
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Vacuum Rabi flopping:

atom in GS
1 photon in cavity
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atom in excited state
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Level splitting depends on 
number of photons in cavity
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Blais et. al, Phys. Rev. A, 2004



Splitting of Cavity Resonance
Now consider damping:  excitation is ½ photon, ½ atom ⇒ decay rate: 

2
γκ +

In strong coupling limit there is a splitting of cavity resonance which 
can be resolved because:

γκε ,rms >>=
h

dg

Blais et. al, Phys. Rev. A, 2004



CP box in Microstrip line cavity

Very small effective volume, ~10-5 cubic wavelengths

Blais et. al, Phys. Rev. A, 2004



Cooper Pair Box as TLS
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Map to James-Cummings Hamiltonian

Very large effective dipole moment:

Blais et. al, Phys. Rev. A, 2004



Experiment 1 by Yale Group

Nb cavity on Si/SiO2 substrate, length 24 cm, 

Wallraff et. al, NATURE, 2004



Schematic of measurement

Wallraff et. al, NATURE, 2004



Vacuum Rabi splitting

Blue – small T,  Red – large T
n=0.06
n=0.5

By fitting the split cavity resonance, they can determine the 
mean number of thermal photons in the cavity Wallraff et. al, NATURE, 2004



Atom vs. Circuit implementation

Atomic Physics: 
Measure shift of atom level which drifts through cavity and infer the 
state of photons in the cavity

Circuit QED:  
Directly measure transmission of cavity and observe splitting of cavity 
resonance.

“Atom” replaced by a superconducting circuit with quantized energy.

Circuit does not drift, no transit time.

Circuit two-level-system can be tuned with external voltage and 
current.



Comparison

•Cooper Pair Box does not drift, stays in place ttransit=∞

•Examine one (and the same) quantum system

•Tune parameters of CPB Hamiltonian with external gate 
voltage and magnetic flux

Blais et. al, Phys. Rev. A, 2004



Superconducting cavities at Albanova

Niobium process:

• Nb thin film

• E-Beam Lithography

• Etch gapsBCl3, 



Coupling capacitors

• Lc =0, 25, 50, 100 µm, S=10μm, w=4μm,  fabaricated and tested
• Coupling capacitances Cκ, between 0.1 and 5 fF
• Cκ determines loaded Q factor, QL

Lc

d
b





Bonding chip in RF package



Sample holder and RF connection

Chip in PC board

Bonded with Al wires

Shielded by copper box

Mounted in cryostat

Connected via MMCX connectors



Broad band cabling to sample cryogenic low noise amplifier

Still

vacuum

SMA

MMCX

Mixer
20 cm UT20-CuNi-AuCuNi
0.5 mm OD 50 Ω coax
Insertion loss -6dB @ 3GHz

2 coax lines to sample
Base T before coax, 15-20mK
Base T after coax 25-30mK

Cryogenic amplifier
Miteq APS series
Gain 36 dB, 2-4 GHz
T=30K
Tnoise <16K ??
0.260mW DC power

Sorb
Pum

ping line



Cooling down

Dewar filled with liquid helium

Cryostat mounted on dewar

Slowly lowered into the helium

Dilution refrigeration Tmin=20mK

Network analyzer (in rack) connected 
to crystat

Microwave transmission up to 50 GHz



Low drive power, High Q oscillator



Increasing
drive Power

•Bending of resonance curve 
to lower frequency

•Bifrication at critical power

•Classic “Duffing oscillator” 
behavior



Sources of Nonlinearity

Transmission line equations for strip line:
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Due to penetration of B field in to superconductor, Kerr-like nonlinearity.

Tam and Scalapino, J. Appl. Phys. 81 2002 (1997)
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Nonlinear damping:

KineticEM LLL +=

Kinetic Inductance (kinetic energy in charge flow due to mass of charge carriers)



The Parametric amplifier

•Change parameter (moment of inertia) during oscillation.
•Small amplitude motion is amplified to large amplitude of swing
•Possible because swing stores energy (under damped oscillator, Q>1)
•Amplification is phase sensitive.

•Pumping at correct phase gives maximum amplification
•Pumping π/2 out of phase gives maximum deamplification.



Mechanical pumping , E&M oscillator



Hard Work!



Non-linear element and E&M pump



Resonance of a driven, damped, 
simple harmonic oscillator
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Driven, damped nonlinear oscillator
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Pump, Signal and Idlers



Kerr Non-Linearity for parametric Amplification

Yurke and Buks quant-ph/0505018

Pump Amplitude

Signal Gain



Measuring intermodulation



Pump power dependence : 
Sample 1

Transmission of pump, dB Transmission of signal, dB



Maximum gain at instability



Zoom around maximum gain:
sample 2



Gain is sharply peaked



Phase sensitive amplification

X

Phase Shifter



Deamplification of Signal

Applies to all signals in the cavity – even Noise
Deamplify quantum noise (zero point fluctuations) 

⇒Squeezed vacuum states!





Need to measure low power
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Need to keep cavity cold

• Must have kBT>hf0 (5GHz ⇒ 250mK)
• Self heating due to hard pumping and internal 

losses
– Sample 1 → 900 mK
– Sample 2 → 250 mK

• Optimize coupling and Q, should be possible to 
reach

• noise from pump, back action of cryo amplifier
– Need to isolate input and output, attenuators, 

circulators…..



Conclusions
• QED with superconducting nano-circuits leads to 

interesting new possibilities for Quantum 
Electronics at Microwave frequencies

• Strong Coupling QED with Solid State systems

• Non-Linearity of Cavity can be used for 
parametric amplification, noise squeezing

• Beat “standard quantum limit” for signal amplifier
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