Magnetism and Superconductivity in Graphene from Electronic Correlations

Annica Black-Schaffer

NORDITA

Quantum Matter in Low Dimensions: Opportunities and Challenges September 6th, 2010

Acknowledgements: Sebastian Doniach (Stanford), Jonas Fransson (Uppsala), Biplab Sanyal (Uppsala)

Free Electron Picture of Graphene

Honeycomb lattice:

1st BZ:

 sp^2 hybridization $\Rightarrow 1p_z$ orbital per C atom left Tight-binding with nearest neighbor hopping only: (Wallace, 1946) EHoles \mathbf{k}'_x \mathbf{k}_y' Electrons Upper and lower π -band Massless Dirac Fermions $(c \rightarrow v_F \sim c/300)$ Graphite: C-C bond distance: 1.42 Å

Interplanar distance: 3.37 Å

Outline

- Evidence for the importance of electronic correlations in graphene
- Modeling electronic correlations
- Mean-field *d*-wave superconductivity in graphene
- Graphene SNS Josephson junctions
- RKKY coupling between magnetic impurities in graphene

Outline

- Evidence for the importance of electronic correlations in graphene
- Modeling electronic correlations
- Mean-field *d*-wave superconductivity in graphene
- Graphene SNS Josephson junctions
- RKKY coupling between magnetic impurities in graphene

Traces of Superconductivity in Graphite

- Minima for B < 0:
 - Ferromagnetism (FM)
 - Homogenous superconductor (SC) with pinned vortices
- Minima for B > 0:
 - Granular SC with Josephson coupled grains
 - $T_c \sim 25 \text{ K}$

Intrinsic granular superconductivity in graphite?

Graphite-Sulfur Composites

Graphite and sulfur structures are intact

• No additional phases, compounds, or impurities

Superconducting (type-II) behavior:

- T_c ~ 10-60 K
- SC located to the graphite planes
- ~ 0.05% of the volume superconducting
 - No bulk SC, no zero resistivity
 - Heat and age sensitive
- SC and FM co-exists

Superconductivity in the graphite sheets, heavily influenced by the sulfur environment

Ferromagnetism in Graphene

DFT calculations of spin polarization between two distant magnetic defects on the same sublattice:

Ferromagnetism at room temperature even for unexpectedly low defect concentrations due to an intrinsic (magnetic) π -band instability

In comparison to quantum electrodynamics (QED) the fine structure constant $\alpha_g \sim 2$ is very large:

- Expect Coulomb interactions to be very important
- Lattice gauge theory calculations have indicated that Coulomb interactions can cause a semi-metal insulator transition in graphene [1]
 - 1/r-tail irrelevant coupling, so only short-range interactions are important [2]

Outline

- Evidence for the importance of electronic correlations in graphene
- Modeling electronic correlations
- Mean-field *d*-wave superconductivity in graphene
- Graphene SNS Josephson junctions
- RKKY coupling between magnetic impurities in graphene

Electronic Correlations in Graphene

Electronic correlations should be important in graphite and graphene:

Nearest neighbor hopping t ~ 2.5 eV On-site repulsion U ~ 6 - 10 eV $\left. \begin{array}{c} \text{Intermediate coupling regime} \end{array} \right\}$

 $p\pi$ -bonded planar organic molecules:

Nearest neighbor spin-singlet bonds (SB) encouraged compared to polar configurations Pauling's Resonance Valence Bond (RVB) idea

Give good estimates for

Cohesive energy, C-C bond distance, singlet-triplet exciton energy differences etc.

Modeling SB Correlation Effects

G. Baskaran suggested in 2002 a phenomenological model: [1]

Outline

- Evidence for the importance of electronic correlations in graphene
- Modeling electronic correlations
- Mean-field *d*-wave superconductivity in graphene
- Graphene SNS Josephson junctions
- RKKY coupling between magnetic impurities in graphene

Superconducting Mean-Field Treatment

Effective Hamiltonian:

Mean-field order parameter in the Cooper pairing channel:

 $\Delta_{J\mathbf{a}} = \langle h_{i,i+\mathbf{a}}^{\dagger} \rangle =$ $\langle f_{i\uparrow}^{\dagger}g_{i+\mathbf{a}\downarrow}^{\dagger} - f_{i\downarrow}^{\dagger}g_{i+\mathbf{a}\uparrow}^{\dagger} \rangle$

Expectation value of SB pair creation

Superconducting Mean-Field Solution

BCS-type self-consistency equation: Intraband pairing (regular BCS form)

$$\Delta_{J\mathbf{a}}^{\dagger} = \frac{J}{N} \sum_{\mathbf{k}} \sum_{\mathbf{b}} \left[\cos(\mathbf{k} \cdot \mathbf{a} - \varphi_{\mathbf{k}}) \cos(\mathbf{k} \cdot \mathbf{b} - \varphi_{\mathbf{k}}) \left(\frac{\tanh(\beta_{c}(t\epsilon_{\mathbf{k}} + \mu)/2)}{2(t\epsilon_{\mathbf{k}} + \mu)} + \frac{\tanh(\beta_{c}(t\epsilon_{\mathbf{k}} - \mu)/2)}{2(t\epsilon_{\mathbf{k}} - \mu)} \right) + \sin(\mathbf{k} \cdot \mathbf{a} - \varphi_{\mathbf{k}}) \sin(\mathbf{k} \cdot \mathbf{b} - \varphi_{\mathbf{k}}) \left(\frac{\sinh(\beta_{c}\mu)}{2\mu\cosh(\beta_{c}(t\epsilon_{\mathbf{k}} + \mu)/2)\cosh(\beta_{c}(t\epsilon_{\mathbf{k}} - \mu)/2)} \right) \right] \Delta_{J\mathbf{b}}^{\dagger}$$

$$\alpha_{\mathbf{k}} = \sum_{\mathbf{a}} e^{i\mathbf{k} \cdot \mathbf{a}}$$
Interband pairing, negligible contribution at low temperatures

3×3 eigenvalue problem for $\mathbf{\Delta}_{Ja} = (\Delta_{J\mathbf{a}_1}^{\dagger}, \Delta_{J\mathbf{a}_2}^{\dagger}, \Delta_{J\mathbf{a}_3}^{\dagger})^T$:

$$\frac{1}{J} \Delta_{Ja} = \begin{pmatrix} D & B & B \\ B & D & B \\ B & B & D \end{pmatrix} \Delta_{Ja} \qquad \begin{array}{c} D = \text{RHS for a = b} \\ B = \text{RHS for a \neq b} \end{array}$$

Black-Schaffer et al. PRB 75, 134512 (2007)

Gap Symmetries

s-wave:

• 1/(J/t) = D + 2B

 $\Delta_{Ja} = (1,1,1)$

• 1/(J/t) = D - B

- $\Delta_{Jk} \in E_2 \text{ of } D_6$
- For self-consistency below T_c need $d(x^2-y^2)+id(xy)$
- ⇒ breaks time-reversal symmetry (FM possible)

extended s-wave $(\Delta_{J\mathbf{k}} \propto |\alpha_{\mathbf{k}}|)|$

• $\Delta_{Jk} \in A_1 \text{ of } D_6$

Black-Schaffer et al. PRB 75, 134512 (2007)

Mean-Field Results

Zero doping:

- QCP at $J_c/t = 1.91$
- *s* and *d*-wave solutions degenerate

Finite doping:

• $T_c(d) >> T_c(s) \text{ for } 0 < \delta < 0.4$

Realization of *d***-wave Superconductivity**

Need $\delta \sim 0.01$ for $T_c(d$ -wave) ~ 10 K:

- Doping of a graphene sheet:
 - 3D graphite: $\delta \sim 10^{-4}$
 - Induced doping by gate voltage: $\delta \sim 0.005$
 - Extended defects in graphene might induce self-doping [1]
- Other possibilities:
 - Proximity effect enhancement of SB correlations in a *d*-wave contact graphene SNS Josephson junctions [2]
 - Chemical doping

A *d*-wave superconducting state in the interfacial graphite sheets caused by induced doping from sulfur adsorption?

DFT Results

Atomic sulfur on graphene prefers high density adsorption:

Outline

- Evidence for the importance of electronic correlations in graphene
- Modeling electronic correlations
- Mean-field *d*-wave superconductivity in graphene
- Graphene SNS Josephson junctions

Can an induced superconducting state enhance the intrinsic SB correlations?

• RKKY coupling between magnetic impurities in graphene

Graphene SNS Josephson Junction

Graphene SNS Josephson Junction

- Model the effect of the superconducting contacts with
 - Effective pairing potential
 - Heavy doping

 Self-consistently solve the Bogoliubov-de Gennes (BdG) for the tight-binding graphene Hamiltonian

Tight-Binding BdG Formalism

Effective Hamiltonian for conventional, *s*-wave contacts: $H_{\text{eff}} = -t \sum_{\langle i,j \rangle,\sigma} (f_{i\sigma}^{\dagger}g_{j\sigma} + g_{i\sigma}^{\dagger}f_{j\sigma}) + \sum_{i,\sigma} \mu(i)(f_{i\sigma}^{\dagger}f_{i\sigma} + g_{i\sigma}^{\dagger}g_{i\sigma}) \right\} \begin{array}{c} \text{Tight-binding}\\ \text{band structure} \\ -2 \sum_{\langle i,j \rangle} J(i)h_{ij}^{\dagger}h_{ij} \end{array} \right\} \begin{array}{c} \text{SB correlations} \\ -\sum_{i} U(i)(n_{fi\uparrow}n_{fi\downarrow} + n_{gi\uparrow}n_{gi\downarrow}) \end{array} \right\} \begin{array}{c} \text{Effective}\\ \text{s-wave pairing} \end{array}$

S

U > 0

J = 0

 $\tilde{\mu} \gg 0$

Ν

U = 0

J > 0

 $\tilde{\mu} > 0$

S

U > 0

 $\tilde{\mu} \gg 0$

J = 0

Solve self-consistently for on-site pair amplitude: $\Delta_U(i) = \frac{\langle f_{i\downarrow}f_{i\uparrow} + g_{i\downarrow}g_{i\uparrow} \rangle}{2}$ SB pair amplitude: $\Delta_{Ja}(i) = \langle h_{i,i+a} \rangle$

Can the SB correlations be enhanced by *s*-wave superconducting contacts?

Finite Size Suppression

Finite size suppression of superconductivity:

• Larger J (or μ) necessary in N for SC than in the bulk

d-wave Contacts: Proximity Effect

d-wave contacts: Set J >> 0 and enforce $d(x^2-y^2)$ -symmetry in the S regions

d-wave Contacts: Decay Length

The superconducting decay length in N depends on T_c :

d-wave Contacts: Josephson Current

Black-Schaffer et al. PRB 81, 014517 (2010)

d-wave Contacts: Josephson Current

Enhanced Josephson current even for $T >> T_c$

Outline

- Evidence for the importance of electronic correlations in graphene
- Modeling electronic correlations
- Mean-field *d*-wave superconductivity in graphene
- Graphene SNS Josephson junctions
- RKKY coupling between magnetic impurities in graphene

SB correlations are also closely related to magnetism; behavior of magnetic impurities in undoped graphene?

Very weak SC correlations

Mean-Field Magnetism in Graphene

Effective Hamiltonian (itinerant Heisenberg model):

$$H = -t \sum_{\langle i,j \rangle,\sigma} (f_{i\sigma}^{\dagger}g_{j\sigma} + g_{i\sigma}^{\dagger}f_{j\sigma}) + \mu \sum_{i,\sigma} (f_{i\sigma}^{\dagger}f_{i\sigma} + g_{i\sigma}^{\dagger}g_{i\sigma}) - 2J \sum_{\langle i,j \rangle} h_{ij}^{\dagger}h_{ij}$$

Mean-field order parameter in the particle-hole (magnetic) channel:

$$M_{i} = \langle \mathbf{S}_{i} \rangle =$$
$$\langle f_{i\uparrow}^{\dagger} f_{i\uparrow} - f_{i\downarrow}^{\dagger} f_{i\downarrow} \rangle$$

Expectation value of local spin polarization

Zero doping: AFM for $J > J_c = 0.75t$ No SC Finite doping: SC for any J $J_c(AFM) > 0.75t$ Uniform solution for J = tin undoped graphene:

 $J(\mathbf{S}_i \cdot \mathbf{S}_j - \frac{1}{4}n_i n_j)$

RKKY Coupling in Graphene

Effective coupling J_{RKKY} between two magnetic impurities I_i propagated by the conduction electrons:

$$H_{\text{eff}} = J_{\text{RKKY}}(R)\mathbf{I}_i \cdot \mathbf{I}_j$$

where

 $J_{\rm RKKY}(R) \propto \chi^0(R,\omega=0)$

(static spin susceptibility)

Mean-Field Solution

$$H_{\text{RKKY}} = -t \sum_{\langle i,j \rangle,\sigma} (f_{i\sigma}^{\dagger} g_{j\sigma} + g_{i\sigma}^{\dagger} f_{j\sigma}) + J \sum_{\langle i,j \rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j} + J_{k} \sum_{i=\text{imp}} \mathbf{I}_{i} \cdot \mathbf{S}_{i}$$

Mean-field solution for $M_i = \langle \mathbf{S}_i \rangle$ with $\begin{cases} \mathbf{I}_i, \mathbf{I}_j = \uparrow, \uparrow & \text{FM} \\ \mathbf{I}_i, \mathbf{I}_j = \uparrow, \downarrow & \text{AFM} \end{cases}$

$$\Rightarrow J_{\rm RKKY} = \frac{E({\rm FM}) - E({\rm AFM})}{2I^2}$$

RKKY Coupling For Zigzag Impurities

With increasing J (even for $J \leq J_c = 0.75t$):

- (1+cos)-type oscillations disappear
- Longer ranged power-law decay
- Lattice details washed out (zigzag vs. armchair, A-A vs. A-B impurities etc)

Can we also determine J?

Comparison with DFT Results

Black-Schaffer PRB (in press), [1]: Pisani et al. New J. Phys. 10, 033002 (2008)

Summary

Highly doped graphene:

- Nearest-neighbor spin-singlet bond (SB) correlations in graphene lead to a TRSB *d*-wave superconducting state
 - Sulfur adsorption creates a doping level such that $T_{\rm c} \sim 10~{\rm K}$
 - The SB correlations are considerably magnified in a *d*-wave contact graphene SNS Josephson junction

Undoped graphene:

- The RKKY coupling between magnetic impurities is significantly enhanced by el-el interactions
 - SB correlations provide a simple way to treat these interaction effects
 - Surprisingly high J, close to the AFM instability

Undoped graphene: close to AFM insulator Doped graphene: *d*-wave superconductor?