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•  Several baths (macroscopic, at equilibrium) 
•  Flow (of charge, spin, energy, …) through impurity 
•  Steady state 

 Questions: current  I(µ1,µ2,…) ? 
         fluctuations ΔI(µ1,µ2,…) ? 
         ..... 



  Keldysh method:  
•  allows for a formal expression of the out-of-equilibrium density matrix 

•  but how to evaluate/resum the perturbative expansion? 
Crucial in the strong coupling regime 
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  Keldysh method:  
•  allows for a formal expression of the out-of-equilibrium density matrix 

•  but how to evaluate/resum the perturbative expansion? 
Crucial in the strong coupling regime 
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ˆ ρ (t) =  U (0,t) ˆ ρ (0) U (0,t)−1
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U (0,t) =  P e− i γ dt 'H I ( t ' )0
t∫

 How to control approximate methods? 
•  non-equilibrium RG 
•  truncated EOM 
•  etc… 

200 nm 

Need for non-perturbative methods 



•  Dressed TBA (Quantum Hall edge states tunneling) 

•  Map to equilibrium problem (boundary sine Gordon model) 

•  Effectively non-interacting systems (free fermions) 
1-ch Kondo 
Lüttinger L. 
2-ch Kondo 

•  Scattering Bethe Ansatz (IRLM) 
(P.Mehta, N.Andrei 2006) 

(A. Schiller, U. Hershfield 1998) 
(A. Komnik, O. Gogolin 2003) 
(E. Sela, I. Affleck 2009) 

(V.Bazhanov, S.Lukyanov, A.B.Zamolodchikov 1999) 

(P.Fendley, A.W.W.Ludwig, H.Saleur 1995) 

Toulouse point 

QCP & vicinity 



•  Scattering approach (“dressed TBA”) 
–  Why ? 
–  When ? 

•  Interacting Resonant Level Model:  
–  Self dual point 
–  Current & Noise 

•  Time dependent DMRG 



•  Mapping to 1D  
-  linearization around kF  
-  « in » and « out » modes 

•  What is a bath ? 
–  A reservoir of incoming electrons with definite: 

•  temperature 

•  chemical potentials µ1,µ2 

–  Outcoming electrons:  
•  They are not thermalized right after the impurity. 
•  Hypothesis (« good baths ») : their (non-equilibrium) distribution don’t affect incoming 

electrons. 

µ2 = -V/2 

µ1 = +V/2 
“out” 

in 

out 
1 2 



•  Incoming particle can be either transmitted or reflected 

•  Generalizes to N-particle states (factorization) 

""""    Landauer-Büttiker formula: 
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Fermi functions 
for in-coming electrons 

in wires (1) and (2) 

scattering states:  

transmission probability 
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•  There is particle production 
•  N-particle state …. 

"""" 
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I = dE f1(E) − f2(E)( ) T(E)∫

⇒           +            + …   

⇒          + 



1. Build the scattering states: 

•  N-body electronic states diagonalizing H=H0+HI 

•   Relies on integrability of H  (“equilibrium property”) 
•  No particle production 
•  Factorization 

2. Impose a voltage 
•  Represent incoming Fermi seas in the basis of scattering states 
•  Determine the proper distribution for incoming quasiparticles 
•  Non-trivial condition !!! (severe requirement) 
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Gate voltage 
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 Hamiltonian: 

Interacting Resonant Level Model 

tunnelling Coulombic repulsion 
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1. Build the scattering states 

2. Impose a voltage   represent biased Fermi seas 
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 anisotropic Kondo model  
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Self dual point U=U* 
→ Scaling dimension D(U*)=1/4 
→ Enhanced SU(2) symmetry in the bulk
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•  Charge carriers: solitons (S+) and antisolitons (S−) 

•  Charges: 
–  Globally neutral: Q1+ Q2 = 0 

–  Relative charge:  Q1− Q2 = ± 2e  

S+  S+ 

“Reflection” 
S+  S− 

“Transmission” 

Incoming soliton: 
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1. Build the scattering states 

2. Impose a voltage   represent biased Fermi seas 

µ2 = -V/2 

µ1 = +V/2 



2. Represent incoming Fermi seas in the basis of scattering states: 

Incoming fields: don’t feel the impurity 

Represent  Y  in the q.p. basis: in general: particle production ! 
Sufficient condition to avoid this: it is a one-particle operator: 

→  At the self-dual point, Y is the charge : diagonal ! 
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•  Closed expressions for the Y operator: 

–  In terms of the “in” algebra: 

–  In terms of the “out” algebra: NON DIAGONAL CORRELATIONS! 
–  In terms of electrons: NON LOCAL!  
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•  Current: 

 → recover Landauer Buttiker formula: 

•  DC Noise: 
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Charge transfer rate 
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  Universal curve: I/TB= f (V/TB) 

U=0


  Current enhancement for U>0 → “Coulomb deblocking” 
  Large V decrease of the current 

2
1

2
3    −∝ VTI B

→ effect of correlations of q.p.’s 

2D-1 
•  Observed at small U 

•  RG argument:  
     V cuts off the flow 

(B.Doyon 2007) 
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•  Lattice model 

•  Time-dependent DMRG 

–  Initial state (t<0): prepare the electrodes at different chemical 
potentials ±V/2 

–  Switch off the voltage at t=0 

–  Time-evolve using the full interacting Hamiltonian H0+HI 
   (duration                          ) 

–  Extrapolate to infinite size 
Flead / vLt <Δ

t t t t ...... ...... t’ t’ 
U U 

(S.White, A.Feiguin 2004, P.Schmitteckert 2004) 







M=96 sites ; N=2000 states kept ; t’=0.5 

large V fit: 

€ 

I∝V −b



M=96 sites ; N=2000 states kept ; U=2 

Fitting parameter: hybridization temperature TB 



•  Need two-point function 

•   Quasi-stationnary state: 
–   No time translation invariance! 
–   Restriction on time-window:  

•  Settling time        (transient regime, damped oscillation of the current) 
•  Recurrence time               (finite size, wave packet bounces on the wall) 

•  Approximation of the noise: 

–  Neglects correlations outside window 
–  need large sizes ! 

€ 

S(t1,t2) = ˆ I (t1)ˆ I (t2) − ˆ I (t1) ˆ I (t2)

€ 

tR ∝L

€ 

tS

€ 

tS

€ 

tR

€ 

0

€ 

time

€ 

tmin

€ 

tmax

€ 

Snum (ω) = 4 Re dt eiω tS(tmin,t)
tmin

tmax

∫



2

mediate analytical results from [10]. Our approach, in
contrast, is based directly on the ‘experimentally’ mea-
sured time evolution of the current.
To make things concrete, we start by giving the Hamil-

tonian of our test system. It is composed of a structure
(ĤS) attached to leads (ĤL) described in real space by

Ĥ = ĤL + ĤS, (1)

ĤL = −J
−2
∑

m=−∞

ĉ†m+1ĉm − J
∞
∑

m=1

ĉ†m+1ĉm + h.c., (2)

ĤS = −J ′
∑

m=±1

(ĉ†mĉ0 + ĉ†0ĉm) + Vgn̂0

+ U
∑

m=±1

(

n̂m −
1

2

)(

n̂0 −
1

2

)

, n̂ = ĉ†ĉ, (3)

cf. Fig. 1. The nearest-neighbour hopping matrix ele-
ments in the leads and the coupling of the structure to
the leads are given by J and J ′. In the remainder of
this work we concentrate on the resonant case at zero
gate voltage Vg = 0 and half filling. Since we want to
compare the numerical data with analytical results, we
furthermore restrict ourselves to the non-interacting case
with U = 0.
To prepare the system in a state with finite current

through the structure, we add a charge imbalance opera-

tor Q̂ = Vsd

(

N̂L − N̂R

)

/2 to the Hamiltonian and calcu-

late the initial state as the ground state |Ψ(t = 0)〉 = |Ψ0〉
of Ĥ + Q̂. Here, N̂L (N̂R) counts the particle number in
the left (right) lead. We then perform the time evolution
with the Hamiltonian without Q̂. The time evolution
is performed by means of the time evolution operator
Û = e−iĤt, while all expectation values are evaluated
with respect to the initial state |Ψ0〉. For details see [20–
27].

The current operator Îm for the current at bond m is
given by

Îm(t) = i
e

!
Jm

[

ĉ†j(t)ĉj+1(t)− ĉ†j+1(t)ĉj(t)
]

. (4)

We define the current operator as an average over the
current on the left and the right contact of the nanos-
tructure

Î(t) =
1

2

[

Î−1(t) + Î0(t)
]

. (5)

The expectation value of Î(t) in the RLM for J ′ = 0.4J
and for some values of Vsd is shown in the upper part
of Fig. 2. Effects like the finite settling time tS and the
finite transit time tR as well as the I-Vsd-characteristics
have been discussed before in great detail [20, 27, 28].
Shot noise is defined as the zero-temperature contri-

bution to noise in a transport state. To obtain the noise
power spectrum from a real time simulation, the current-
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FIG. 2: Time dependent current I(t), and current correla-
tion function S(t, tmin) with tmin = 12, in the non-interacting
resonant level model RLM, with tight-binding leads and a
finite system size of M = 60 lattice sites, for different val-
ues of the bias voltage Vsd. The I(t) curves show the three
time regimes given by the settling time tS and the recurrence
time tR. The highlighted time domain indicates the integra-
tion range [tmin, tmax]. The inset demonstrates an additional
subtility: the correlation function shows finite size reflection
effects on the time scale t − tmin ! tR/2, which imposes an
additional restriction on tmax.

current correlations in the time domain

S(t, t′) =
1

2
〈∆Î(t)∆Î(t′) +∆Î(t′)∆Î(t)〉 (6)

= Re〈∆Î(t)∆Î(t′)〉 (7)

have to be calculated in a non-equilibrium zero-
temperature state, where ∆Î(t) = Î(t) − 〈Î(t)〉 [29, 30].
Therefore, the time dependent expectation value

〈∆Î(t)∆Î(t′)〉 = 〈Ψ0|eiĤt∆Îe−iĤ(t−t′)∆Îe−iĤt′ |Ψ0〉
(8)

has to be evaluated. In a steady state the correlation
function must fulfil S(t, t′) ≡ S(t − t′). Then the noise
power can be defined as the Fourier transform

2πδ(ω+ω′)S(ω) = 〈∆Î(ω)∆Î(ω′)+∆Î(ω′)∆Î(ω)〉, (9)

where

S(ω) = 2

∞
∫

−∞

dt eiωtS(t, t′ = 0) (10)

= 4Re

∞
∫

0

dt eiωtS(t, t′ = 0). (11)

The right-hand side of the equation accounts for the sym-
metry S(t− t′) = S(t′ − t). In a steady state, of course,
this expression should be independent of the choice of the
time t′

S = 4Re

∞
∫

t′

dt eiω(t−t′)S(t, t′) ∀ t′. (12)
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Û = e−iĤt, while all expectation values are evaluated
with respect to the initial state |Ψ0〉. For details see [20–
27].
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power spectrum from a real time simulation, the current-
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FIG. 2: Time dependent current I(t), and current correla-
tion function S(t, tmin) with tmin = 12, in the non-interacting
resonant level model RLM, with tight-binding leads and a
finite system size of M = 60 lattice sites, for different val-
ues of the bias voltage Vsd. The I(t) curves show the three
time regimes given by the settling time tS and the recurrence
time tR. The highlighted time domain indicates the integra-
tion range [tmin, tmax]. The inset demonstrates an additional
subtility: the correlation function shows finite size reflection
effects on the time scale t − tmin ! tR/2, which imposes an
additional restriction on tmax.

current correlations in the time domain

S(t, t′) =
1

2
〈∆Î(t)∆Î(t′) +∆Î(t′)∆Î(t)〉 (6)

= Re〈∆Î(t)∆Î(t′)〉 (7)

have to be calculated in a non-equilibrium zero-
temperature state, where ∆Î(t) = Î(t) − 〈Î(t)〉 [29, 30].
Therefore, the time dependent expectation value

〈∆Î(t)∆Î(t′)〉 = 〈Ψ0|eiĤt∆Îe−iĤ(t−t′)∆Îe−iĤt′ |Ψ0〉
(8)

has to be evaluated. In a steady state the correlation
function must fulfil S(t, t′) ≡ S(t − t′). Then the noise
power can be defined as the Fourier transform

2πδ(ω+ω′)S(ω) = 〈∆Î(ω)∆Î(ω′)+∆Î(ω′)∆Î(ω)〉, (9)

where

S(ω) = 2

∞
∫

−∞

dt eiωtS(t, t′ = 0) (10)

= 4Re

∞
∫

0

dt eiωtS(t, t′ = 0). (11)

The right-hand side of the equation accounts for the sym-
metry S(t− t′) = S(t′ − t). In a steady state, of course,
this expression should be independent of the choice of the
time t′

S = 4Re

∞
∫

t′

dt eiω(t−t′)S(t, t′) ∀ t′. (12)

2

mediate analytical results from [10]. Our approach, in
contrast, is based directly on the ‘experimentally’ mea-
sured time evolution of the current.
To make things concrete, we start by giving the Hamil-

tonian of our test system. It is composed of a structure
(ĤS) attached to leads (ĤL) described in real space by

Ĥ = ĤL + ĤS, (1)

ĤL = −J
−2
∑

m=−∞

ĉ†m+1ĉm − J
∞
∑

m=1

ĉ†m+1ĉm + h.c., (2)

ĤS = −J ′
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(ĉ†mĉ0 + ĉ†0ĉm) + Vgn̂0

+ U
∑

m=±1

(

n̂m −
1

2

)(

n̂0 −
1

2

)

, n̂ = ĉ†ĉ, (3)

cf. Fig. 1. The nearest-neighbour hopping matrix ele-
ments in the leads and the coupling of the structure to
the leads are given by J and J ′. In the remainder of
this work we concentrate on the resonant case at zero
gate voltage Vg = 0 and half filling. Since we want to
compare the numerical data with analytical results, we
furthermore restrict ourselves to the non-interacting case
with U = 0.
To prepare the system in a state with finite current

through the structure, we add a charge imbalance opera-

tor Q̂ = Vsd

(

N̂L − N̂R

)

/2 to the Hamiltonian and calcu-

late the initial state as the ground state |Ψ(t = 0)〉 = |Ψ0〉
of Ĥ + Q̂. Here, N̂L (N̂R) counts the particle number in
the left (right) lead. We then perform the time evolution
with the Hamiltonian without Q̂. The time evolution
is performed by means of the time evolution operator
Û = e−iĤt, while all expectation values are evaluated
with respect to the initial state |Ψ0〉. For details see [20–
27].

The current operator Îm for the current at bond m is
given by

Îm(t) = i
e

!
Jm

[

ĉ†j(t)ĉj+1(t)− ĉ†j+1(t)ĉj(t)
]

. (4)

We define the current operator as an average over the
current on the left and the right contact of the nanos-
tructure

Î(t) =
1

2

[

Î−1(t) + Î0(t)
]

. (5)

The expectation value of Î(t) in the RLM for J ′ = 0.4J
and for some values of Vsd is shown in the upper part
of Fig. 2. Effects like the finite settling time tS and the
finite transit time tR as well as the I-Vsd-characteristics
have been discussed before in great detail [20, 27, 28].
Shot noise is defined as the zero-temperature contri-

bution to noise in a transport state. To obtain the noise
power spectrum from a real time simulation, the current-
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resonant level model RLM, with tight-binding leads and a
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ues of the bias voltage Vsd. The I(t) curves show the three
time regimes given by the settling time tS and the recurrence
time tR. The highlighted time domain indicates the integra-
tion range [tmin, tmax]. The inset demonstrates an additional
subtility: the correlation function shows finite size reflection
effects on the time scale t − tmin ! tR/2, which imposes an
additional restriction on tmax.
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= Re〈∆Î(t)∆Î(t′)〉 (7)

have to be calculated in a non-equilibrium zero-
temperature state, where ∆Î(t) = Î(t) − 〈Î(t)〉 [29, 30].
Therefore, the time dependent expectation value

〈∆Î(t)∆Î(t′)〉 = 〈Ψ0|eiĤt∆Îe−iĤ(t−t′)∆Îe−iĤt′ |Ψ0〉
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has to be evaluated. In a steady state the correlation
function must fulfil S(t, t′) ≡ S(t − t′). Then the noise
power can be defined as the Fourier transform
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where
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The right-hand side of the equation accounts for the sym-
metry S(t− t′) = S(t′ − t). In a steady state, of course,
this expression should be independent of the choice of the
time t′

S = 4Re
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∫
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dt eiω(t−t′)S(t, t′) ∀ t′. (12)

2

mediate analytical results from [10]. Our approach, in
contrast, is based directly on the ‘experimentally’ mea-
sured time evolution of the current.
To make things concrete, we start by giving the Hamil-

tonian of our test system. It is composed of a structure
(ĤS) attached to leads (ĤL) described in real space by

Ĥ = ĤL + ĤS, (1)

ĤL = −J
−2
∑
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ĉ†m+1ĉm − J
∞
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ĉ†m+1ĉm + h.c., (2)
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, n̂ = ĉ†ĉ, (3)

cf. Fig. 1. The nearest-neighbour hopping matrix ele-
ments in the leads and the coupling of the structure to
the leads are given by J and J ′. In the remainder of
this work we concentrate on the resonant case at zero
gate voltage Vg = 0 and half filling. Since we want to
compare the numerical data with analytical results, we
furthermore restrict ourselves to the non-interacting case
with U = 0.
To prepare the system in a state with finite current

through the structure, we add a charge imbalance opera-

tor Q̂ = Vsd

(

N̂L − N̂R

)

/2 to the Hamiltonian and calcu-

late the initial state as the ground state |Ψ(t = 0)〉 = |Ψ0〉
of Ĥ + Q̂. Here, N̂L (N̂R) counts the particle number in
the left (right) lead. We then perform the time evolution
with the Hamiltonian without Q̂. The time evolution
is performed by means of the time evolution operator
Û = e−iĤt, while all expectation values are evaluated
with respect to the initial state |Ψ0〉. For details see [20–
27].

The current operator Îm for the current at bond m is
given by

Îm(t) = i
e

!
Jm

[

ĉ†j(t)ĉj+1(t)− ĉ†j+1(t)ĉj(t)
]

. (4)

We define the current operator as an average over the
current on the left and the right contact of the nanos-
tructure

Î(t) =
1

2

[

Î−1(t) + Î0(t)
]

. (5)

The expectation value of Î(t) in the RLM for J ′ = 0.4J
and for some values of Vsd is shown in the upper part
of Fig. 2. Effects like the finite settling time tS and the
finite transit time tR as well as the I-Vsd-characteristics
have been discussed before in great detail [20, 27, 28].
Shot noise is defined as the zero-temperature contri-

bution to noise in a transport state. To obtain the noise
power spectrum from a real time simulation, the current-
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time tR. The highlighted time domain indicates the integra-
tion range [tmin, tmax]. The inset demonstrates an additional
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〈∆Î(t)∆Î(t′) +∆Î(t′)∆Î(t)〉 (6)

= Re〈∆Î(t)∆Î(t′)〉 (7)

have to be calculated in a non-equilibrium zero-
temperature state, where ∆Î(t) = Î(t) − 〈Î(t)〉 [29, 30].
Therefore, the time dependent expectation value

〈∆Î(t)∆Î(t′)〉 = 〈Ψ0|eiĤt∆Îe−iĤ(t−t′)∆Îe−iĤt′ |Ψ0〉
(8)

has to be evaluated. In a steady state the correlation
function must fulfil S(t, t′) ≡ S(t − t′). Then the noise
power can be defined as the Fourier transform

2πδ(ω+ω′)S(ω) = 〈∆Î(ω)∆Î(ω′)+∆Î(ω′)∆Î(ω)〉, (9)

where
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0
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The right-hand side of the equation accounts for the sym-
metry S(t− t′) = S(t′ − t). In a steady state, of course,
this expression should be independent of the choice of the
time t′

S = 4Re
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∫

t′

dt eiω(t−t′)S(t, t′) ∀ t′. (12)
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mediate analytical results from [10]. Our approach, in
contrast, is based directly on the ‘experimentally’ mea-
sured time evolution of the current.
To make things concrete, we start by giving the Hamil-

tonian of our test system. It is composed of a structure
(ĤS) attached to leads (ĤL) described in real space by
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cf. Fig. 1. The nearest-neighbour hopping matrix ele-
ments in the leads and the coupling of the structure to
the leads are given by J and J ′. In the remainder of
this work we concentrate on the resonant case at zero
gate voltage Vg = 0 and half filling. Since we want to
compare the numerical data with analytical results, we
furthermore restrict ourselves to the non-interacting case
with U = 0.
To prepare the system in a state with finite current

through the structure, we add a charge imbalance opera-

tor Q̂ = Vsd

(

N̂L − N̂R

)

/2 to the Hamiltonian and calcu-

late the initial state as the ground state |Ψ(t = 0)〉 = |Ψ0〉
of Ĥ + Q̂. Here, N̂L (N̂R) counts the particle number in
the left (right) lead. We then perform the time evolution
with the Hamiltonian without Q̂. The time evolution
is performed by means of the time evolution operator
Û = e−iĤt, while all expectation values are evaluated
with respect to the initial state |Ψ0〉. For details see [20–
27].

The current operator Îm for the current at bond m is
given by

Îm(t) = i
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Jm

[

ĉ†j(t)ĉj+1(t)− ĉ†j+1(t)ĉj(t)
]

. (4)

We define the current operator as an average over the
current on the left and the right contact of the nanos-
tructure

Î(t) =
1
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[

Î−1(t) + Î0(t)
]

. (5)

The expectation value of Î(t) in the RLM for J ′ = 0.4J
and for some values of Vsd is shown in the upper part
of Fig. 2. Effects like the finite settling time tS and the
finite transit time tR as well as the I-Vsd-characteristics
have been discussed before in great detail [20, 27, 28].
Shot noise is defined as the zero-temperature contri-

bution to noise in a transport state. To obtain the noise
power spectrum from a real time simulation, the current-
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have to be calculated in a non-equilibrium zero-
temperature state, where ∆Î(t) = Î(t) − 〈Î(t)〉 [29, 30].
Therefore, the time dependent expectation value

〈∆Î(t)∆Î(t′)〉 = 〈Ψ0|eiĤt∆Îe−iĤ(t−t′)∆Îe−iĤt′ |Ψ0〉
(8)

has to be evaluated. In a steady state the correlation
function must fulfil S(t, t′) ≡ S(t − t′). Then the noise
power can be defined as the Fourier transform
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metry S(t− t′) = S(t′ − t). In a steady state, of course,
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2

tunneling amplitudes that we parametrize as:

γ1 + iγ2 = γ
√
2 eiΓ/2. (3)

In the following, we consider the (particle-hole symmet-
ric) resonant case with impurity onsite energy εd = 0.
The IRLM bears a duality symmetry exchanging large

and small U ’s [19]. For an intermediate value of U (of
order unity), it is self-dual, and enjoys an additional, hid-
den, SU(2) symmetry that mix the two wires, with gen-
erators #J = 1

2ψ
†
a#σabψb (σ’s are Pauli matrices) ; as was

shown in Ref.10, as a consequence, the out-of-equilibrium
self-dual IRLM (sd-IRLM) bears a description in terms
of dressed quasiparticles (qp’s), that are the many-body
modes diagonalizing the scattering on the impurity.
Let us now sketch the main lines of the derivation. As

usual in a scattering approach, one starts by identifying
two classes of asymptotic states, incoming and outgoing,
that correspond to states coming from the far left to-
wards the impurity, and escaping to the far right thereof,
respectively. Those states span Hilbert spaces Hin and
Hout. The effect of the impurity amounts to a linear

map Hin
R−→ Hout that encodes the fate of an asymp-

totic in state prepared in the far past when time-evolved
to far future. As soon as there is an interaction, this
linear map becomes a complicated many-body object in
the electronic basis. Integrability of the IRLM [17] en-
sures that one can identify a basis for Hin and Hout in
terms of pseudo-Fock states built out of a finite number

of quasiparticle modes A
in(out)
α (θ), where θ is a rapidity

parametrizing momentum, p = m
2 eθ. Those modes di-

agonalize the map R, in the sense that they cross the
impurity without qp production, and that this property
extends to any many-qp state [18]. The only effect of the
impurity is to change the qp index α. Formally, one has:

Ain
α (θ) = Rαβ(θ)A

out
β (θ) (4)

with R a scattering matrix. For the sd-IRLM, such a
basis can be obtained via bosonization and a mapping to
the anisotropic Kondo model (see [10] for details). The
total charge degree of freedom decouples from the prob-
lem, and one is left with a single degree of freedom, the
charge imbalance between the two wires. The qp’s con-
sist of a soliton and an antisoliton A±, and two breathers
A0 and A1. Importantly, those qp’s fall into representa-
tions of the aforementioned SU(2) symmetry: {A±, A1}
transform as a spin one, while A0 is a singlet. The charge
imbalance Q̂=

∫

dx
(

ψ†
1ψ1−ψ†

2ψ2

)

=2
∫

dxJz acts diago-

nally on the modes: Q̂ · Aα(θ)= qαAα(θ), with q±=±2e
and q0,1=0. Introducing the operator A†

α that destroys
the qp Aα, the charge Q̂ bears a simple representation
in terms of the modes: Q̂ =

∑

α

∫

dθqαAα(θ)A†
α(θ).

To complete the description, non-vanishing elements of
the R-matrix are R±±=Q − P cos2 Γ, R±∓=P sin2 Γ,

R1±=R±1=P sin(2Γ)√
2

, R11=Q+P cos(2Γ), and R00, with

P(θ) =
∏

k=0,±1
−i

eθ−θB+ iπk
3 +i

and Q(θ) =−ie3(θ−θB)P(θ).

The lead/impurity coupling results in the appearance of
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FIG. 1: Finite size error of noise. The blue lines represent
the analytical result Eq. (6) with symmetric coupling (Γ= π

2
).

The numerical data have been obtained for systems with cou-
pling J ′=0.4J and density-density interaction U=2.0J using
td-DMRG. The system size varies from M = 48 to M = 72
lattice sites. The difference of numerical and analytical data
in the low voltage regime is proportional to the squared dif-
ferential conductance G2 and scales linearly with the inverse
system size 1/M .

an energy scale TB = m
2 eθB marking the crossover be-

tween weak and strong hybridization regimes.

Forcing the sd-IRLM out of equilibrium is achieved by
imposing different chemical potentials µ1(2) = ±VSD

2 on
incoming electronic states in wires 1 and 2, i.e. by cou-
pling the system to VSD

2 Q̂in = VSD

2

∫ 0
−∞ dx

(

ψ†
1ψ1 −ψ†

2ψ2

)

.
In the qp basis, this operator acts diagonally on the
modes Ain

α , and the voltage VSD just amounts to a doping
of in modes. At zero-temperature and positive voltage,
the groundstate is obtained by filling antisoliton states
up to a voltage-dependent rapidity A = ln(2pf/m) where
pf ∝ VSD is akin to a “Fermi momentum” (because of in-
teractions, the proportionality constant is not one), with
distribution function ρVSD

− (θ) that is determined by doing
the thermodynamics for the gas of incoming antisolitons.

The current operator counts the charge imbalance be-
tween in and out modes, and reads (the factor 1

2 comes

from simple charge counting): Î = 1
2 (Q̂

in − Q̂out), that
can be rewritten solely in terms of in modes using (4):

Î =

∫

dθ Ain
α (θ) Παβ(θ) A

† in
β (θ) (5)

with Π = 1
2 (Q−R∗QR) and Qαβ = qαδαβ . Averaging

(5) yields I=
〈

Î
〉

=2 sin2 Γ
∫ A
−∞ dθρVSD

− (θ)T (θ), with T =

|P|2. The zero frequency noise in the steady state, S0=
〈

Î2
〉

− I2, is obtained by averaging the square of (5).

The terms
〈

Ain
α (θ)A† in

β (θ)Ain
α′ (θ′)A

† in
β′ (θ′)

〉

that appear
have a simple expression at zero temperature [8], and the

noise reads: S0 = 2 sin2 Γ
∫ A
0 dθ ρVSD

− (θ)
[

(1+sin2 Γ)T (θ)−
2 sin2 Γ(T (θ))2

]

. Simple algebraic manipulations using
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FIG. 3: Back scattering Fano factor as a function of the back
scattered current. The numerical data points have been ob-
tained using the numerical shot noise data divided by the
analytical back scattered current. The finite size error of the
numerical results for shot noise leads to a diverging Fano fac-
tor. The situation improves for the linearly extrapolated data,
while we find a nice agreement of the analytical result with
the G2-corrected data. For comparison we show the Fano
factor in the non-interacting case.

effects beyond the linear scaling.
Nevertheless, the numerical results shown in Fig. 2,

where we obtained data for the low voltage regime using
linear extrapolation, show very nice agreement with the
analytical results given by Eq. (6) with symmetric cou-
pling, Γ= π

2 . The back scattering Fano factor Fbs =S/Ibs,
can also be obtained from the numerical data, Fig. 3,
where we use the analytical result for the current [10]. It
fits nicely with the analytical result for Fbs as long as fi-
nite size effects can be neglected. However, the finite size

offset at Ibs → 0 leads to a strongly diverging Fano factor.
In contrast, Fbs remains finite even for very small values
of Ibs, when obtained from the linearly extrapolated shot
noise data. The deviations from the analytical result at
small Ibs can be traced back to small absolute errors that
get blown up in the limit Ibs → 0. The very nice agree-
ment of analytical result and G2-corrected data, even in
the regime of very small Ibs, indicates that increasing the
system size and adding more data points to the extrapo-
lation procedure should improve the extrapolated result.

In summary we have provided two different methods,
an analytical approach within the framework of the ther-
modynamic Bethe ansatz, and time dependent DMRG
simulations on the lattice to obtain the noise correlations
in the IRLM. Both methods show excellent agreement
and provide benchmark results for other methods. Most
strikingly our results show a strong enhancement of the
back scattered Fano factor due to interaction effects.

On the conceptual side, we believe our result further
establishes the reliability of the Bethe ansatz approach
to transport pioneered in [15]. One of the objections to
this approach sometimes raised is that it relies on the
theory of excitations over the vacuum, and thus deals
with fundamental objects - quasiparticles - which are not
simply related to the bare electrons. In the present case,
these objects are solitons, of charge |q±| = |2e|, which
are made of combinations of particle hole pairs mixing
the two wires. The results in the low energy limit give
these quasiparticles their physical reality: they are the
objects that tunnel in a Poissonian way at low voltage,
and the Fano factor is a direct measure of their charge.
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[1] M. Esposito, U. Harbola, S. Mukamel, Rev. Mod. Phys.
81 (2009) 1665.

[2] I. Klich, L. Levitov, Phys. Rev. Lett. 102 (2009) 100502.
[3] R. de Picciotto, M. Heiblum, H. Shtrikman, D. Mahalu,

Phys. Rev. Lett. 75 (1995) 3340.
[4] A. Kumar, L. Saminadayar, D.C. Glattli, Y. Jin, B. Eti-

enne, Phys. Rev. Lett. 76 (1996) 2778.
[5] B. Reulet, J. Senzier, D.E. Prober, Phys. Rev. Lett. 91

(2003) 196601.
[6] Y. Bomze, G. Gershon, D. Shovkun, L.S. Levitov, M.

Reznikov, Phys. Rev. Lett. 95 (2005) 176601.
[7] S. Gustavsson, R. Leturcq, B. Simovic, R. Schleser, T.

Ihn, P. Studerus, K. Ensslin, Phys. Rev. Lett. 96 (2006)
076605.

[8] P. Fendley, H. Saleur, Phys. Rev. B 54 (1996) 10845.
[9] P. Mehta, N. Andrei, Phys. Rev. Lett. 100 (2008) 086804.

[10] E. Boulat, H. Saleur, P. Schmitteckert, Phys. Rev. Lett.
101 (2008) 140601.

[11] L.S Levitov, G.B. Lesovik, JETP lett. 58 (1993) 230.
[12] L. Levitov, H. Lee, G.B. Lesovik , J. Math. Phys. 37

(1996) 4845.
[13] P. Fendley, F. Lesage, H. Saleur, J. Stat. Phys. 79 (1995)

799.

[14] V. Bazhanov, S. Lukyanov, A.B. Zamolodchikov, Nucl.
Phys. B549 (1999) 529.

[15] P. Fendley, A. Ludwig, H. Saleur, Phys. Rev. Lett. 75
(1995) 2196.

[16] A. Brandschadel, E. Boulat, H. Saleur, P. Schmitteckert,
unpublished.

[17] V. Filyov, P. Wiegmann, Phys. Lett. 76A (1980) 283.
[18] S. Ghoshal, A. Zamolodchikov, Int. J. Mod. Phys. A 9

(1994) 3841.
[19] A. Schiller, N. Andrei, cond-mat/0710.0249.
[20] L. Chen, C. Ting, Phys. Rev. B 43 (1990) 4534.
[21] P. Schmitteckert, Phys. Rev. B 70 (2004) 121302(R).
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•  Dressed TBA approach gives exact density matrix 
out-of-equilibrium 

•  Valid when both boundary scattering and Hershfield 
Y operator are diagonal (sufficient condition) 

•  td-DMRG gives current & noise, with remarquable 
accuracy 

IRLM:  
•  Negative differential conductance 
•  Solitons have a clear signature in the low-V noise  


