# QUANTUM PHASES OF A SUPERSYMMETRIC MODEL FOR LATTICE FERMIONS 

Liza Huijse - University of Amsterdam
Sept 9, 2010
INSTANS conference - Nordita, Stockholm

## COLLABORATORS AND REFERENCES

* K. Schoutens, UvA
× P. Fendley, J. Halverson, UVa
*J. Vala, N. Moran, DAQIST Maynooth
P. Fendley, K. Schoutens, J. de Boer, PRL (2003)
P. Fendley, K. Schoutens, PRL (2005)
L. Huijse, J. Halverson, P. Fendley, K. Schoutens, PRL (2008)
L. Huijse, K. Schoutens, ICMP proceedings (2010)
L. Huijse, K. Schoutens, ATMP (2010)


## INTRODUCTION

Challenge: study strongly interacting itinerant fermions at intermediate densities

A supersymmetric model
$\times$ Analytic tools
x Interesting features:

+ integrability and quantum criticality in 1D,
+ superfrustration and possibly topological order in 2D


## THE MODEL

* Hardcore spinless fermions
- spinless fermions
- hardcore

$$
V_{1} \rightarrow \infty
$$



- hopping $t$


Fermi liquid


Insulator

## THE MODEL

* Hardcore spinless fermions
- spinless fermions
- hardcore

$$
V_{1} \rightarrow \infty
$$



- hopping $t$



Fermi liquid

## Supersymmetry

[Fendley, et. al. '03]


Insulator

## OUTLINE

* Supersymmetry
$\times$ The model
* 1 D chain: quantum critical (SCFT)
$\times 2$ D lattices I: superfrustration
$\times 2$ lattices II: supertopological phases?


## SUPERSYMMETRIC QM

Algebraic structure
Susy charges $\mathrm{Q}^{+}, \mathrm{Q}^{-}=\left(\mathrm{Q}^{+}\right)^{+}$and fermion number $\mathrm{N}_{\mathrm{f}}$ :

$$
\left(\mathrm{Q}^{+}\right)^{2}=0, \quad\left(\mathrm{Q}^{-}\right)^{2}=0, \quad\left[N_{f}, \mathrm{Q}^{ \pm}\right]= \pm \mathrm{Q}^{ \pm}
$$

Hamiltonian defined as
satisfies

$$
H=\left\{\mathrm{Q}^{+}, \mathrm{Q}^{-}\right\}
$$

$$
\left[H, \mathrm{Q}^{+}\right]=\left[H, \mathrm{Q}^{-}\right]=0, \quad\left[H, N_{f}\right]=0
$$

## SPECTRUM

$\times \mathrm{E} \geq 0$ for all states
$x E>0$ states are paired into doublets of the susy algebra

$$
\left\{|\psi\rangle, Q^{+}|\psi\rangle\right\} \quad Q^{-}|\psi\rangle=0
$$

$x E=0$ iff a state is a singlet under the susy algebra

$$
Q^{+}|\psi\rangle=Q^{-}|\psi\rangle=0
$$

$x$ if $E=0$ ground state exist, supersymmetry is unbroken.

## WITTEN INDEX

$$
W=\operatorname{Tr}(-1)^{N_{f}}
$$

× $\mathrm{E}>0$ doublets $\left\{|\psi\rangle, Q^{+}|\psi\rangle\right\}$
with $\mathrm{N}_{\mathrm{f}}=\mathrm{f}, \mathrm{N}_{\mathrm{f}}=\mathrm{f}+1$ cancel in W
x only $\mathrm{E}=0$ groundstates contribute
$\Rightarrow|\mathrm{W}|$ is lower bound on \# of ground states

THE MODEL

## SUSY LATTICE MODEL

## configurations:

lattice fermions with nearest neighbor exclusion


## SUSY LATTICE MODEL

## configurations:

lattice fermions with nearest neighbor exclusion


## SUSY LATTICE MODEL

## configurations:

lattice fermions with nearest neighbor exclusion

nilpotent supercharges, respecting exclusion rule:

$$
Q^{+}=\sum_{i} c_{i}^{\dagger} \prod_{j \text { next to } i}\left(1-n_{j}\right), \quad Q^{-}=\left(Q^{+}\right)^{\dagger}, \quad n_{j}=c_{j}^{\dagger} c_{j}
$$

Hamiltonian: kinetic (hopping) plus potential terms

$$
H=\left\{\mathrm{Q}^{+}, \mathrm{Q}^{-}\right\}=H_{k i n}+H_{p o t}
$$

[Fendley - Schoutens - de Boer 'o3]

## SUSY MODEL IN ID

supercharges


$$
Q^{+}=\sum_{i}\left(1-n_{i-1}\right) c_{i}^{\dagger}\left(1-n_{i+1}\right), \quad Q^{-}=\left(Q^{+}\right)^{\dagger}
$$

## Hamiltonian:

$$
H=\sum_{i}\left[\left(1-n_{i-1}\right) c_{i}^{\dagger} c_{i+1}\left(1-n_{i+2}\right)+\text { h.c. }\right]+\sum_{i} n_{i-1} n_{i+1}-2 N_{f}+L
$$

## L=6 MODEL: WITTEN INDEX

$$
W=\operatorname{Tr}(-1)^{N_{f}}
$$


$N_{f}=0: 1$ state
$N_{f}=1: 6$ states
$N_{f}=2: 9$ states
$N_{f}=3: 2$ states
$\Rightarrow W=1-6+9-2=2$

## SPECTRUM FOR L=6 SITES



## SUPERSYMMETRIC MODELS

Large variety in observed properties

* Choose underlying lattice
* Generalize hard-core constraint
* Introduce site-dependent coefficients


## SUPERSYMMETRIC MODELS

Large variety in observed properties

* Choose underlying lattice
* Generalize hard-core constraint
+Allow k particles to be nearest neighbors, but not $\mathrm{k}+1$ : $\mathrm{M}_{\mathrm{k}}$ susy models
[Fendley, Nienhuis, Schoutens 'o3]
$\times$ Introduce site-dependent coefficients


## SUPERSYMMETRIC MODELS

Large variety in observed properties

* Choose underlying lattice
* Generalize hard-core constraint
* Introduce site-dependent coefficients
+ Supercharge: $Q^{+}=\sum_{i} \lambda_{i} c_{i}^{\dagger} \prod_{j \text { n.t. } i}\left(1-n_{j}\right)$
$\times$ Example: staggered 1D chain
[Fendley, Hagendorf ' 10]


## SUPERSYMMETRIC MODELS

## Large variety in observed properties

* Choose underlying lattice
+1D: Quantum criticality
+2D: Superfrustration
+2D: 'Supertopological' phases
* Generalize hard-core constraint
* Introduce site-dependent coefficients


## QUANTUM CRITICAL BEHAVIOR 1D

- periodic chain:

2 gs for $L$ multiple of 3 , else 1 gs


- exactly solvable via Bethe Ansatz
$\rightarrow$ continuum limit:
$N=(2,2)$ SCFT with central charge $c=1$
[Fendley, Schoutens, de Boer 'o3]


## $\mathbf{N}=2$ SCFT

* Virasoro algebra extended with two supercharges $\mathrm{G}^{ \pm}$and a U(1) current J
* Supercharges have conformal dimension $3 / 2$
x Minimal unitary series:

$$
c=\frac{3 k}{k+2} \quad k=1,2, \ldots
$$

## N=2 SCFT FIRST MINIMAL MODEL

$\times$ First minimal model: $\mathrm{k}=1 \Rightarrow \mathrm{c}=1$
$\times$ Free boson at $\mathrm{R}=\sqrt{ } 3$

$$
S=\frac{2}{3 \pi} \int d x d t\left[\left(\partial_{t} \Phi\right)^{2}-\left(\partial_{x} \Phi\right)^{2}\right]
$$

* Vertex operators

$$
V_{m, n}=\exp (\imath m \Phi+\imath \tilde{\Phi}) \quad \Phi=\Phi_{L}+\Phi_{R}, \tilde{\Phi}=\frac{2}{3}\left(\Phi_{L}-\Phi_{R}\right)
$$

* Conformal dimensions

$$
h_{L, R}=\frac{3}{8}\left(m \pm \frac{2}{3} n\right)^{2}
$$

* Supercharges $\left(h_{L, R}=3 / 2\right)$

$$
G_{L}^{ \pm}=V_{ \pm 1, \pm 3 / 2} \quad \text { and } \quad G_{R}^{ \pm}=V_{ \pm 1, \mp 3 / 2}
$$

## SPECTRUM FOR 1D CHAIN, $L=27, N_{F}=9$



## $N=2$ SCFT DESCRIPTION FOR THE CHAIN

Different chain lengths and boundary conditions correspond to different sectors

* (anti) periodic bc $\leftrightarrow$ Ramond (NS) sector

$$
(-1)^{m+2 n}= \begin{cases}+1 & \text { NS } \\ -1 & \mathrm{R}\end{cases}
$$

$\times$ Chain length
$\mathrm{L}=31 \rightarrow \mathrm{~m} \in \mathbb{Z}$
$\mathrm{L}=3 \mathrm{I} \pm 1 \rightarrow \mathrm{~m} \in \mathbb{Z} \pm 1 / 3$

## $N=2$ SCFT DESCRIPTION FOR THE CHAIN

Identify lattice operators with operators in SCFT

* Energy

$$
E_{\text {lat }}=E_{\mathrm{CFT}} v_{F} / L=\left(h_{L}+h_{R}-c / 12\right) v_{F} / L
$$

* Charge

$$
N_{f}-N_{f \mathrm{GS}}=m
$$

* Momentum

$$
P_{\mathrm{lat}}=2 \pi n / 3+2 \pi\left(h_{R}-h_{L}\right) / L+f_{G S} \pi \bmod 2 \pi
$$

## SPECTRUM FOR 1D CHAIN, $L=27, N_{F}=9$



## SPECTRUM FOR 1D CHAIN, L=27, $\mathrm{N}_{\mathrm{F}}=9$



## DENSITY FLUCTUATIONS

Beccaria, De Angelis
Clear $\mathbb{Z}_{3}$ substructure for fermion density $<n_{k}>$ in chain with L Mod $3=0$ and open bc

Scaling dimension of $1 / 3$ was extracted

[Beccaria, De Angelis ‘o5]

## DENSITY FLUCTUATIONS

Open bc: L and R movers couple
Operators: $\quad V_{m}=e^{(i m \Phi / \sqrt{3})}$
We identify:

$$
\begin{aligned}
3\left\langle n_{k}\right\rangle & =\langle R| V_{0}+A_{1}\left(V_{1}+V_{-1}\right)|R\rangle_{\text {strip }} \\
3\left\langle n_{k \pm 1}\right\rangle & =\langle R| V_{0}+A_{1}\left(e^{\mp 2 \pi \iota / 3} V_{1}+e^{ \pm 2 \pi \iota / 3} V_{-1}\right)|R\rangle_{\text {strip }}
\end{aligned}
$$

## DENSITY FLUCTUATIONS

SCFT Result: scaling dimension $1 / 3$ and density fluctuations near boundary

SCFT


Beccaria et. al.


2D LATTICES

## POWERFUL TOOLS

* Witten index
+ gives lower bound to number of ground states: $\mathrm{W}=\# \mathrm{GS}_{\mathrm{B}}-\# \mathrm{GS}_{\mathrm{F}}$
* Cohomology of Q
+GS are in 1-1 correspondence with cohomology elements
$\times$ gives total number of $g s$
$\times$ gives fermion number of gs
$\times$ often gives relation between gs and geometric object


## WITTEN INDEX

## Triangular lattice


$N \times M$ sites with periodic BC

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | 1 | -3 | -5 | 1 | 11 | 9 | -13 | -31 | -5 | 57 |
| 3 | 1 | -5 | -2 | 7 | 1 | -14 | 1 | 31 | -2 | -65 |
| 4 | 1 | 1 | 7 | -23 | 11 | 25 | -69 | 193 | -29 | -279 |
| 5 | 1 | 11 | 1 | 11 | 36 | -49 | 211 | -349 | 811 | -1064 |
| 6 | 1 | 9 | -14 | 25 | -49 | -102 | -13 | -415 | 1462 | -4911 |
| 7 | 1 | -13 | 1 | -69 | 211 | -13 | -797 | 3403 | -7055 | 5237 |
| 8 | 1 | -31 | 31 | 193 | -349 | -415 | 3403 | 881 | -28517 | 50849 |
| 9 | 1 | -5 | -2 | -29 | 881 | 1462 | -7055 | -28517 | 31399 | 313315 |
| 10 | 1 | 57 | -65 | -279 | -1064 | -4911 | 5237 | 50849 | 313315 | 950592 |
| 11 | 1 | 67 | 1 | 859 | 1651 | 12607 | 32418 | 159083 | 499060 | 2011307 |
| 12 | 1 | -47 | 130 | -1295 | -589 | -26006 | -152697 | -535895 | -2573258 | -3973827 |
| 13 | 1 | -181 | 1 | -77 | -1949 | 67523 | 330331 | -595373 | -10989458 | -49705161 |
| 14 | 1 | -87 | -257 | 3641 | 12611 | -139935 | -235717 | 5651377 | 4765189 | -232675057 |
| 15 | 1 | 275 | -2 | -8053 | -32664 | 272486 | -1184714 | -1867189 | 134858383 | -702709340 |

[van Eerten, ‘05]

## WITTEN INDEX

## Honeycomb lattice


$N \times M$ sites with periodic BC

|  | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 2 |
| 4 | 3 | 7 | 18 | 47 | 123 | 322 | 843 | 2207 | 5778 |
| 6 | -1 | -1 | 32 | -73 | 44 | 356 | -1387 | 2087 | 2435 |
| 8 | 3 | 7 | 18 | 55 | 123 | 322 | 843 | 2215 | 5778 |
| 10 | -1 | -1 | 152 | -321 | -171 | 7412 | -26496 | 10079 | 393767 |
| 12 | 3 | 7 | 156 | 1511 | 6648 | 29224 | 150069 | 1039991 | 6208815 |
| 14 | -1 | -1 | 338 | 727 | -5671 | 1850 | 183560 | -279497 | -4542907 |
| 16 | 3 | 7 | 1362 | 12183 | 31803 | 379810 | 5970107 | 55449303 | 327070578 |

[van Eerten, ‘05]

## COHOMOLOGY

Martini lattice
Number of ground states
number of dimer coverings of honeycomb lattice
Ground state entropy: $\frac{S_{\mathrm{gs}}}{L}=\frac{1}{\pi} \int_{0}^{\pi / 3} d \theta \ln [2 \cos \theta]=0.16153 \ldots$
Density:

$$
N_{f} / L=1 / 4
$$

[Fendley, et. al. 'o5]

## SUPERFRUSTRATION

## Frustration

Competing terms in hamiltonian
$\rightarrow$ multiple ground states


## Supersymmetry

Subtle competition between kinetic and potential terms
$\rightarrow$ for 2D, 3D lattices exponential ground state degeneracy
$\rightarrow$ extensive ground state entropy

## SUPERFRUSTRATION

'3-rule'

* repulsive interactions favor 3-site interparticle distance
* chemical potential favors higher densities

Combined with kinetic terms
$\rightarrow$ quantum charge frustration at intermediate densities
[Fendley, Schoutens, '05]

## REDUCED FRUSTRATION

$\Lambda_{3}$ lattice nicely accommodates 3-rule

* 1 gs @ $\mathrm{N}_{\mathrm{f}} / \mathrm{L}=1 / 5$ all particles on the corners
* 1 gs @ $\mathrm{N}_{\mathrm{f}} / \mathrm{L}=2 / 5$
all particles resonating on the bond-sites


## SQUARE LATTICE

## Witten index


$N \times M$ sites with periodic BC

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | 1 | -1 | 1 | 3 | 1 | -1 | 1 | 3 | 1 | -1 | 1 | 3 | 1 | -1 | 1 | 3 | 1 | -1 | 1 | 3 |
| 3 | 1 | 1 | 4 | 1 | 1 | 4 | 1 | 1 | 4 | 1 | 1 | 4 | 1 | 1 | 4 | 1 | 1 | 4 | 1 | 1 |
| 4 | 1 | 3 | 1 | 7 | 1 | 3 | 1 | 7 | 1 | 3 | 1 | 7 | 1 | 3 | 1 | 7 | 1 | 3 | 1 | 7 |
| 5 | 1 | 1 | 1 | 1 | -9 | 1 | 1 | 1 | 1 | 11 | 1 | 1 | 1 | 1 | -9 | 1 | 1 | 1 | 1 | 11 |
| 6 | 1 | -1 | 4 | 3 | 1 | 14 | 1 | 3 | 4 | -1 | 1 | 18 | 1 | -1 | 4 | 3 | 1 | 14 | 1 | 3 |
| 7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -27 | 1 | 1 | 1 | 1 | 1 | 1 |
| 8 | 1 | 3 | 1 | 7 | 1 | 3 | 1 | 7 | 1 | 43 | 1 | 7 | 1 | 3 | 1 | 7 | 1 | 3 | 1 | 47 |
| 9 | 1 | 1 | 4 | 1 | 1 | 4 | 1 | 1 | 40 | 1 | 1 | 4 | 1 | 1 | 4 | 1 | 1 | 76 | 1 | 1 |
| 10 | 1 | -1 | 1 | 3 | 11 | -1 | 1 | 43 | 1 | 9 | 1 | 3 | 1 | 69 | 11 | 43 | 1 | -1 | 1 | 13 |
| 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 12 | 1 | 3 | 4 | 7 | 1 | 18 | 1 | 7 | 4 | 3 | 1 | 166 | 1 | 3 | 4 | 7 | 1 | 126 | 1 | 7 |
| 13 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -51 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 14 | 1 | -1 | 1 | 3 | 1 | -1 | -27 | 3 | 1 | 69 | 1 | 3 | 1 | 55 | 1 | 451 | 1 | -1 | 1 | 73 |
| 15 | 1 | 1 | 4 | 1 | -9 | 4 | 1 | 1 | 4 | 11 | 1 | 4 | 1 | 1 | 174 | 1 | 1 | 4 | 1 | 11 |

[Fendley - Schoutens - van Eerten 'o5]

## SQUARE LATTICE: WITTEN INDEX

Witten index related to rhombus tilings of the lattice
Theorem [Jonsson 2005]

$$
W_{\vec{u}, \vec{v}}=t_{\text {even }}-t_{o d d}-(-1)^{d_{-}} \theta_{d_{-}} \theta_{d_{+}}
$$

with $d_{ \pm}=\operatorname{gcd}\left(u_{1} \pm u_{2}, v_{1} \pm v_{2}\right), \theta_{3 p}=2 \quad \theta_{3 p \pm 1}=-1$


periodicities $\vec{u}, \vec{v}$


## SQUARE LATTICE: GROUND STATES

Total \# of ground states related to rhombus tilings
Conjecture [Fendley]

$$
\# \mathrm{GS}=t_{\text {even }}+t_{\text {odd }}+\Delta
$$

with $|\Delta|=\left|(-1)^{d_{-}} \theta_{d_{-}} \theta_{d_{+}}\right|$


periodicities $\vec{u}, \vec{v}$


## SQUARE LATTICE: GROUND STATES

Total \# of ground states related to rhombus tilings
Theorem [LH - Schoutens 2010]

$$
N_{i}=t_{i}+\Delta_{i}
$$

for $\vec{u}=(m,-m)$ and $v_{1}+v_{2}=3 p$


$$
\begin{aligned}
& \text { with } \Delta_{i}= \begin{cases}-(-1)^{\left(\theta_{m}+1\right) p} \theta_{d_{-}} \theta_{d_{+}} & \text {if } i=[2 m / 3] p \\
\text { otherwise, }\end{cases} \\
& d_{ \pm}=\operatorname{gcd}\left(u_{1} \pm u_{2}, v_{1} \pm v_{2}\right) \quad \theta_{3 p}=2 \quad \theta_{3 p \pm 1}=-1
\end{aligned}
$$

## SQUARE LATTICE: GROUND STATES

- \# gs grows exponentially with the linear size of the system
\# GS $\sim \frac{4^{p+q}}{\sqrt{p q}}$ for periodicities $\quad \begin{array}{r}\vec{u}=(3 p,-3 p) \\ \vec{v}=(3 q, 3 q)\end{array}$
- zero energy ground states found at intermediate density:

$$
\frac{f}{L} \in\left[\frac{1}{5}, \frac{1}{4}\right] \cap \mathbb{Q}
$$



## SQUARE LATTICE: GROUND STATES

Tilings as ground states?


## SQUARE LATTICE: GROUND STATES

Tilings as ground states?


## SQUARE LATTICE: EDGE STATES

- for 'diagonal' open boundary conditions there is a unique gs; expect that 'vanished' torus gs's form band of edge modes
- explicit evidence for critical modes from ED studies of various ladder geometries

[LH - Halverson - Fendley - Schoutens ‘o8]

SUPERTOPOLOGICAL PHASE?

## OCTAGON-SQUARE LATTICE


$\times N \times M$ plaquettes with open $\mathrm{bc}:$ unique gs with one fermion per plaquette
$\times N \times M$ plaquettes with closed bc: $2^{M}+2^{N}-1$ gs

* gapless defects by adding diagonal link on plaquette


## WORK IN PROGRESS

Understand character of GS using insights from cohomology

* Unique gs: 'filled Landau level'
$\times$ Defects: interpret extra link as flux through plaquette

With J. Vala and N. Moran
Numerical studies: $3 \times 3$ plaquettes

## SINGLE PLAQUETTE

plaquette
(1gs)

H-defect
(2gs)

V-defect
(2 gs)


HV-defect
(3 gs)


## PROJECTED SINGLE PARTICLE STATES

Single particle product state with n.n. occupancies projected out (PPS)

- Fermion density per site

- $\left|\left\langle\Psi \mid \Psi_{\text {PPS }}\right\rangle\right|^{2}=0.651$
- 2 particles on 1 plaquette:

$$
\left\langle n_{i} n_{k}\right\rangle \approx 10^{-2}
$$

## V-DEFECT

To test PPS for defect we need to lift gs degeneracy: add small weight to extra link


## IDENTIFY DEFECT STATE

Fermion density per site


## 2D LATTICE (OPEN)

open bc
( 1 gs )
"filled
Landau level"


## 2D LATTICE (H-DEFECT)

H-defect
(2 gs)


## 2D LATTICE (V-DEFECT)

V-defect (2 gs)



## 2D LATTICE (2 DEFECTS)

H-defect plus
V-defect
(4 gs)


## 2D LATTICE (2 DEFECTS)

H-defect plus
V-defect
(4 gs)


## 2D LATTICE (2 DEFECTS)

H-defect plus
V-defect
(4 gs)


## SUPERTOPOLOGICAL PHASE?

## need to understand



* gap above torus gs?
* edge modes for open system?
$\times$ topological interactions and braiding of $\mathrm{H}, \mathrm{V}$ and HV defects?


## CONCLUSION

Supersymmetry:

* Powerful analytic tools
* Subtle interplay between kinetic and interaction terms
* Variety of features: quantum criticality, superfrustration, edge modes, supertopological phase?, ...



## THANK YOU

