QUANTUM PHASES OF A SUPERSYMMETRIC MODEL FOR LATTICE FERMIONS

Liza Huijse – University of Amsterdam Sept 9, 2010 INSTANS conference – Nordita, Stockholm

COLLABORATORS AND REFERENCES

- **× K. Schoutens**, UvA
- × P. Fendley, J. Halverson, UVa
- × J. Vala, N. Moran, DAQIST Maynooth

- P. Fendley, K. Schoutens, J. de Boer, PRL (2003)
- P. Fendley, K. Schoutens, PRL (2005)
- L. Huijse, J. Halverson, P. Fendley, K. Schoutens, PRL (2008)
- L. Huijse, K. Schoutens, ICMP proceedings (2010)
- L. Huijse, K. Schoutens, ATMP (2010)

INTRODUCTION

Challenge: study strongly interacting itinerant fermions at intermediate densities

- A supersymmetric model
- × Analytic tools
- **x** Interesting features:
 - + integrability and quantum criticality in 1D,
 - + superfrustration and possibly topological order in 2D

THE MODEL

- Hardcore spinless fermions
 - spinless fermions
 - hardcore
 - hopping t

Fermi liquid

THE MODEL

- Hardcore spinless fermions
 - spinless fermions
 - hardcore
 - hopping t

Fermi liquid

 $V_1 \rightarrow \infty$

[Fendley, et. al. '03]

OUTLINE

- × Supersymmetry
- ***** The model
- × 1D chain: quantum critical (SCFT)
- × 2D lattices I: superfrustration
- × 2D lattices II: supertopological phases?

SUPERSYMMETRIC QM

Algebraic structure

Susy charges Q^+ , $Q^-=(Q^+)^+$ and fermion number N_f :

$$(\mathbf{Q}^{+})^{2} = 0, \quad (\mathbf{Q}^{-})^{2} = 0, \quad [N_{f}, \mathbf{Q}^{\pm}] = \pm \mathbf{Q}^{\pm}$$

Hamiltonian defined as

$$H = \left\{ \mathbf{Q}^+, \mathbf{Q}^- \right\}$$

satisfies

 $[H,Q^+] = [H,Q^-] = 0, \quad [H,N_f] = 0$

- **x** $E \ge 0$ for all states
- **x** E > 0 states are paired into doublets of the susy algebra

$$\{|\psi\rangle, Q^+|\psi\rangle\} \quad Q^-|\psi\rangle = 0$$

• E = 0 iff a state is a singlet under the susy algebra

$$Q^+|\psi\rangle = Q^-|\psi\rangle = 0$$

* if E = 0 ground state exist, supersymmetry is unbroken.

$$W = \mathrm{Tr}(-1)^{N_f}$$

x E>0 doublets {|ψ⟩, Q⁺|ψ⟩} with N_f = f, N_f = f+1 cancel in W **x** only E=0 groundstates contribute

\Rightarrow |W| is lower bound on # of ground states

SUSY LATTICE MODEL

configurations: lattice fermions with nearest neighbor exclusion

SUSY LATTICE MODEL

configurations: lattice fermions with nearest neighbor exclusion

SUSY LATTICE MODEL

configurations: lattice fermions with nearest neighbor exclusion

nilpotent supercharges, respecting exclusion rule:

$$Q^+ = \sum_i c_i^{\dagger} \prod_{j \text{ next to } i} (1 - n_j), \quad Q^- = (Q^+)^{\dagger}, \quad n_j = c_j^{\dagger} c_j$$

Hamiltonian: kinetic (hopping) plus potential terms

$$H = \left\{ \mathbf{Q}^+, \mathbf{Q}^- \right\} = H_{kin} + H_{pot}$$

[Fendley - Schoutens - de Boer '03]

SUSY MODEL IN 1D

supercharges

$$Q^{+} = \sum_{i} (1 - n_{i-1}) c_{i}^{\dagger} (1 - n_{i+1}), \quad Q^{-} = (Q^{+})^{\dagger}$$

Hamiltonian:

$$H = \sum_{i} \left[(1 - n_{i-1}) c_i^{\dagger} c_{i+1} (1 - n_{i+2}) + \text{h.c.} \right] + \sum_{i} n_{i-1} n_{i+1} - 2N_f + L$$

L=6 MODEL: WITTEN INDEX

 $W = \mathrm{Tr}(-1)^{N_f}$

 $N_f = 0$: 1 state $N_f = 1$: 6 states $N_f = 2$: 9 states $N_f = 3$: 2 states

 \Rightarrow W = 1 - 6 + 9 - 2 = 2

SPECTRUM FOR L=6 SITES

Large variety in observed properties

- x Choose underlying lattice
- x Generalize hard-core constraint
- x Introduce site-dependent coefficients

Large variety in observed properties

- x Choose underlying lattice
- x Generalize hard-core constraint
 - + Allow k particles to be nearest neighbors, but not k+1: M_k susy models

[Fendley, Nienhuis, Schoutens '03]

x Introduce site-dependent coefficients

Large variety in observed properties

- x Choose underlying lattice
- x Generalize hard-core constraint
- x Introduce site-dependent coefficients
 - + Supercharge: $Q^+ = \sum_i \lambda_i c_i^{\dagger} \prod_{i \text{ nt } i} (1 n_j)$

× Example: staggered 1D chain

[Fendley, Hagendorf'10]

- Large variety in observed properties
- Choose underlying lattice
 - + 1D: Quantum criticality
 - + 2D: Superfrustration
 - + 2D: 'Supertopological' phases
- x Generalize hard-core constraint
- x Introduce site-dependent coefficients

1D CHAIN

...................

QUANTUM CRITICAL BEHAVIOR 1D

periodic chain:
2 gs for *L* multiple of 3, else 1 gs

exactly solvable via Bethe Ansatz \rightarrow continuum limit: $\mathcal{N}=(2,2)$ SCFT with central charge c=1

[Fendley, Schoutens, de Boer '03]

- Virasoro algebra extended with two supercharges G[±] and a U(1) current J
- * Supercharges have conformal dimension 3/2
- * Minimal unitary series:

$$c = \frac{3k}{k+2} \quad k = 1, 2, \dots$$

N=2 SCFT FIRST MINIMAL MODEL

- ***** First minimal model: $k=1 \Rightarrow c=1$
- * Free boson at $R = \sqrt{3}$ $S = \frac{2}{3\pi} \int dx dt \left[(\partial_t \Phi)^2 - (\partial_x \Phi)^2 \right]$
- **×** Vertex operators

$$T_{m,n} = \exp\left(\imath m \Phi + \imath n \tilde{\Phi}\right) \qquad \Phi = \Phi_L + \Phi_R, \ \tilde{\Phi} = \frac{2}{3}(\Phi_L - \Phi_R)$$

Conformal dimensions

$$h_{L,R} = \frac{3}{8}(m \pm \frac{2}{3}n)^2$$

× Supercharges (h_{L,R}=3/2)

 $G_L^{\pm} = V_{\pm 1,\pm 3/2}$ and $G_R^{\pm} = V_{\pm 1,\mp 3/2}$

SPECTRUM FOR 1D CHAIN, L=27, N_F =9

..............

N=2 SCFT DESCRIPTION FOR THE CHAIN

Different chain lengths and boundary conditions correspond to different sectors

***** (anti) periodic bc \leftrightarrow Ramond (NS) sector

$$(-1)^{m+2n} = \begin{cases} +1 & \mathrm{NS} \\ -1 & \mathrm{R} \end{cases}$$

★ Chain length
L = 3I ↔ m ∈ Z
L = 3I ± 1 ↔ m ∈ Z ± 1/3

N=2 SCFT DESCRIPTION FOR THE CHAIN

Identify lattice operators with operators in SCFT * Energy

$$E_{\text{lat}} = E_{\text{CFT}} v_F / L = (h_L + h_R - c/12) v_F / L$$

× Charge

$$N_f - N_{f_{\rm GS}} = m$$

× Momentum

$$P_{\text{lat}} = 2\pi n/3 + 2\pi (h_R - h_L)/L + f_{GS}\pi \mod 2\pi$$

SPECTRUM FOR 1D CHAIN, L=27, N_F =9

..............

SPECTRUM FOR 1D CHAIN, L=27, N_F =9

..................

DENSITY FLUCTUATIONS

Beccaria, De Angelis

Clear \mathbb{Z}_3 substructure for fermion density $< n_k >$ in chain with L Mod 3 = 0 and open bc

Scaling dimension of 1/3 was extracted

DENSITY FLUCTUATIONS

Open bc: L and R movers couple Operators: $V_m = e^{(\iota m \Phi/\sqrt{3})}$ We identify:

$$\begin{aligned} 3\langle n_k \rangle &= \langle R | V_0 + A_1 (V_1 + V_{-1}) | R \rangle_{\text{strip}} \\ 3\langle n_{k\pm 1} \rangle &= \langle R | V_0 + A_1 (e^{\pm 2\pi i/3} V_1 + e^{\pm 2\pi i/3} V_{-1}) | R \rangle_{\text{strip}} \end{aligned}$$

DENSITY FLUCTUATIONS

SCFT Result: scaling dimension 1/3 and density fluctuations near boundary

2D LATTICES

POWERFUL TOOLS

× Witten index

- + gives lower bound to number of ground states: W=#GS_B-#GS_F
- Cohomology of Q
 - + GS are in 1-1 correspondence with cohomology elements
 - × gives total number of gs
 - × gives fermion number of gs
 - × often gives relation between gs and geometric object

WITTEN INDEX

Triangular lattice

 $N \times M$ sites with periodic BC

	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	1	1
2	1	-3	-5	1	11	9	-13	-31	-5	57
3	1	-5	-2	7	1	-14	1	31	-2	-65
4	1	1	7	-23	11	25	-69	193	-29	-279
5	1	11	1	11	36	-49	211	-349	811	-1064
6	1	9	-14	25	-49	-102	-13	-415	1462	-4911
7	1	-13	1	-69	211	-13	-797	3403	-7055	5237
8	1	-31	31	193	-349	-415	3403	881	-28517	50849
9	1	-5	-2	-29	881	1462	-7055	-28517	31399	313315
10	1	57	-65	-279	-1064	-4911	5237	50849	313315	950592
11	1	67	1	859	1651	12607	32418	159083	499060	2011307
12	1	-47	130	-1295	-589	-26006	-152697	-535895	-2573258	-3973827
13	1	-181	1	-77	-1949	67523	330331	-595373	-10989458	-49705161
14	1	-87	-257	3641	12611	-139935	-235717	5651377	4765189	-232675057
15	1	275	-2	-8053	-32664	272486	-1184714	-1867189	134858383	-702709340

[van Eerten, '05]

WITTEN INDEX

Honeycomb lattice

 $N \times M$ sites with periodic BC

	2	4	6	8	10	12	14	16	18
2	-1	-1	2	-1	-1	2	-1	-1	2
4	3	7	18	47	123	322	843	2207	5778
6	-1	-1	32	-73	44	356	-1387	2087	2435
8	3	7	18	55	123	322	843	2215	5778
10	-1	-1	152	-321	-171	7412	-26496	10079	393767
12	3	7	156	1511	6648	29224	150069	1039991	6208815
14	-1	-1	338	727	-5671	1850	183560	-279497	-4542907
16	3	7	1362	12183	31803	379810	5970107	55449303	327070578

[van Eerten, '05]

COHOMOLOGY

Martini lattice

Number of ground states

number of dimer coverings of honeycomb lattice

[Fendley, et. al. '05]

SUPERFRUSTRATION

Frustration

- Competing terms in hamiltonian
- → multiple ground states

Supersymmetry

Subtle competition between kinetic and potential terms

- \rightarrow for 2D, 3D lattices exponential ground state degeneracy
- \rightarrow extensive ground state entropy

SUPERFRUSTRATION

'3-rule'

- repulsive interactions favor 3-site interparticle distance
 chamical potential favors higher densit
- * chemical potential favors higher densities

Combined with kinetic terms

→ quantum charge frustration at intermediate densities

[Fendley, Schoutens, '05]

REDUCED FRUSTRATION

 Λ_3 lattice nicely accommodates 3-rule

- * 1 gs @ N_f/L = 1/5 all particles on the corners
- x 1 gs @ N_f/L = 2/5 all particles resonating on the bond-sites

SQUARE LATTICE

Witten index

 $N \times M$ sites with periodic BC

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	-1	1	3	1	-1	1	3	1	-1	1	3	1	-1	1	3	1	-1	1	3
3	1	1	4	1	1	4	1	1	4	1	1	4	1	1	4	1	1	4	1	1
4	1	3	1	7	1	3	1	7	1	3	1	7	1	3	1	7	1	3	1	7
5	1	1	1	1	-9	1	1	1	1	11	1	1	1	1	-9	1	1	1	1	11
6	1	-1	4	3	1	14	1	3	4	-1	1	18	1	-1	4	3	1	14	1	3
7	1	1	1	1	1	1	1	1	1	1	1	1	1	-27	1	1	1	1	1	1
8	1	3	1	7	1	3	1	7	1	43	1	7	1	3	1	7	1	3	1	47
9	1	1	4	1	1	4	1	1	40	1	1	4	1	1	4	1	1	76	1	1
10	1	-1	1	3	11	-1	1	43	1	9	1	3	1	69	11	43	1	-1	1	13
11	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
12	1	3	4	7	1	18	1	7	4	3	1	166	1	3	4	7	1	126	1	7
13	1	1	1	1	1	1	1	1	1	1	1	1	-51	1	1	1	1	1	1	1
14	1	-1	1	3	1	-1	-27	3	1	69	1	3	1	55	1	451	1	-1	1	73
15	1	1	4	1	-9	4	1	1	4	11	1	4	1	1	174	1	1	4	1	11

[Fendley - Schoutens - van Eerten '05]

SQUARE LATTICE: WITTEN INDEX

Witten index related to rhombus tilings of the lattice

periodicities u, v

Total # of ground states related to rhombus tilings

Conjecture [Fendley]

$$\# \mathrm{GS} = t_{even} + t_{odd} + \Delta$$

with
$$|\Delta| = |(-1)^{d_-} \theta_{d_-} \theta_{d_+}|$$

Total # of ground states related to rhombus tilings

Theorem [LH - Schoutens 2010] $N_i = t_i + \Delta_i$ for $\vec{u} = (m, -m)$ and $v_1 + v_2 = 3p$ with $\Delta_i = \begin{cases} -(-1)^{(\theta_m+1)p} \theta_{d_-} \theta_{d_+} & \text{if } i = [2m/3]p \\ 0 & \text{otherwise,} \end{cases}$ $d_{\pm} = \gcd(u_1 \pm u_2, v_1 \pm v_2) \quad \theta_{3p} = 2 \quad \theta_{3p\pm 1} = -1$

• *#* gs grows exponentially with the linear size of the system

GS ~
$$\frac{4^{p+q}}{\sqrt{pq}}$$
 for periodicities $\vec{u} = (3p, -3p)$
 $\vec{v} = (3q, 3q)$

• zero energy ground states found at intermediate density:

Tilings as ground states?

.....................

Tilings as ground states?

SQUARE LATTICE: EDGE STATES

- for 'diagonal' open boundary conditions there is a unique gs; expect that 'vanished' torus gs's form band of edge modes
- explicit evidence for critical modes from ED studies of various ladder geometries

[LH - Halverson - Fendley - Schoutens '08]

SUPERTOPOLOGICAL PHASE?

OCTAGON-SQUARE LATTICE

- ★ N × M plaquettes with open bc : unique gs with one fermion per plaquette
- ★ $N \times M$ plaquettes with closed bc: $2^M + 2^{N-1}$ gs
- gapless defects by adding diagonal link on plaquette

WORK IN PROGRESS

Understand character of GS using insights from cohomology

- × Unique gs: 'filled Landau level'
- Defects: interpret extra link as flux through plaquette

With J. Vala and N. Moran Numerical studies: 3x3 plaquettes

SINGLE PLAQUETTE

PROJECTED SINGLE PARTICLE STATES

Single particle product state with n.n. occupancies projected out (PPS) • Fermion density per site

• $|\langle \Psi | \Psi_{PPS} \rangle|^2 = 0.651$ • 2 particles on 1 plaquette: $\langle n_i n_k \rangle \approx 10^{-2}$

To test PPS for defect we need to lift gs degeneracy: add small weight to extra link

IDENTIFY DEFECT STATE

Fermion density per site

2D LATTICE (OPEN)

open bc (1 gs)

"filled Landau level"

2D LATTICE (H-DEFECT)

H-defect (2 gs)

2D LATTICE (V-DEFECT)

V-defect (2 gs)

2D LATTICE (2 DEFECTS)

H-defect plus V-defect (4 gs)

2D LATTICE (2 DEFECTS)

H-defect plus V-defect (4 gs)

2D LATTICE (2 DEFECTS)

H-defect plus V-defect (4 gs)

SUPERTOPOLOGICAL PHASE?

need to understand

× ...

- **x** gap above torus gs?
- **x** edge modes for open system?
- * topological interactions and braiding of H, V and HV defects?

CONCLUSION

Supersymmetry:

- * Powerful analytic tools
- Subtle interplay between kinetic and interaction terms
- * Variety of features: quantum criticality, superfrustration, edge modes, supertopological phase?, ...

THANK YOU