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Non-Abelian Anyons
Nayak, Simon, Stern, Freedman, Das Sarma, Rev. Mod. Phys 80 (2008)

Non-Abelian anyons are particles whose exchange is described
by non-trivial unitary operators.
They are the key for topological quantum computation: qubits
can be stored in systems of non-abelian anyons and quantum
gates can be obtained by their exchanges (braidings).
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Non-Abelian Anyons

It seems that certain fractional quantum
Hall states have excitations which are
non-Abelian anyons (ν = 5/2, 12/5).
However, so far, there is no direct
observation of their non-abelian nature.
To control single excitation in a solid
state FQH device seems to be a very
difficult task.
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Ultracold atoms to simulate FQHE

‘And it grew wondrous cold’
The Rime of the Ancient Mariner

In order to simulate the quantum Hall physics with cold atoms the
following elements are needed:

A 2-dimensional confinement;
Strong and possibly tunable interactions among atoms
(eventually involving an inner degree of freedom);

A fictious magnetic field for the atoms (which are neutral!).
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Artificial magnetic fields for cold atoms:

With rotating traps.

See the review: N. Cooper, Adv. Phys. (2008)

With spatially dependent optical
couplings of internal states of the
atoms (Berry phases).

See Y.-J. Lin et al., Nature (2009)
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Rotating Cold Atomic Gases / Quantum Hall Systems

The duality between FQHE and rotating traps is based on the
following Hamiltonian in the rotating frame:

H =
N∑
i=1

(
p2
i

2m
+

1
2
mω2r2

i

)
− ΩLz +Hint

Let us define a vector potential A = (Ax, Ay):

~A = mωẑ × ~r ⇒ ~Beff = ~∇× ~A = 2mωẑ

We can rewrite H in the form:

H =
N∑
i=1

1
2m

(
~pi − ~A

)2

+ (ω − Ω)Lz +Hint

which coincides with the Landau levels Hamiltonian in the limit of fast
rotation Ω→ ω
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From the 2D harmonic oscillator to the Landau levels:
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From the 2D harmonic oscillator to the Landau levels:
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Lowest Landau Level
The angular momentum degeneracy implies that the lowest Landau
level is spanned by the single-particle wavefunctions:

ψ0,m(z) = zme−
B
4 |z|

2
with z = x+ iy

The many particle states are defined by:

Ψ (z1, . . . , zN ) = P (z1, . . . , zN ) e−
B
4

∑
i |zi|2

Consider a strong repulsive contact interaction:

H =
N∑
i=1

(
~pi − ~A

)2

+ (ω − Ω)Lz + g
∑
i<j

δ (zi − zj)

To have zero interaction energy one must introduce a Jastrow factor:

⇒ P (z1, . . . , zN ) ∝
∏
i<j

(zi − zj)
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Rotating Bosons / FQHE States

Laughlin States (Strong interaction regime):

ψL (z) =
N∏
i<j

(zi − zj)m
N∏
k

e−
|zk|2

2

m even: Bosonic gas m odd: Fermionic gas
(m = 1 : Slater determinant)

The rotational term breaks the
LLL degeneracy.
The total angular momentum of
ψgs is M0 = N (N − 1)m/2.
Elementary excitations in the LLL
must have M > M0.

Figure: N = 5 bosons, Ω = 0, 999ω

Michele Burrello Non-abelian anyons with ultracold atoms in artificial gauge potentials



Excitations of the Laughlin state

With a repulsive localized potential (off–resonant laser) we can obtain
excitations:

ψL −→ ψζ0,ζ1,...,ζM
=
∏
i

(zi − ζ0)
∏
i

(zi − ζ1) . . .
∏
i

(zi − ζM )ψL

These quasi-holes can be moved
one around the other.
Once two excitations are
counterclockwise exchanged the
wavefunction acquires a phase
π/m.
They are abelian anyons.
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The Quest for Non-Abelian Anyons with cold atoms

Laughlin ground-states have abelian excitations:
the Berry phase is a number.
How can we make it a matrix?

First naive guess: we add a degree of freedom, i.e. we consider
a two-component fermionic or bosonic gas.

The question we want to address can be rephrased as:

‘Is it possible to obtain non-abelian excitations using a non-abelian
gauge potential?’

The general answer is ‘No’. But...
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Non-Abelian Gauge Potentials

What is a non-abelian gauge potential?

How can we simulate it with cold atoms?

What are the features of the corresponding system?
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Classical Non-Abelian Gauge Potentials
We consider a two-component gas (|↑〉 and |↓〉).
The single-particle Hamiltonian reads:

H = (px +Ax)2 + (py +Ay)2

where Ax and Ay are 2× 2 matrices and:

[Ax, Ay] 6= 0 Example : Ax =
(

0 1
1 0

)
, Ay =

(
0 −i
i 0

)
Moving an atom around a closed path a non-trivial unitary operator is
applied:

e−iAy∆y eiAy∆y

e−iAx∆x

eiAx∆x
-

?

�

6

t

Wilson loop:

W = Tr
(
eiAx∆xeiAy∆ye−iAx∆xe−iAy∆y

)
In order to be truly non-abelian:

|W | < 2
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Non-Abelian Gauge Potentials
Dalibard et al., arXiv:1008.5378

How can non-abelian vector potentials be obtained?
4-level tripod atomic systems (Laser induced vector potential)
Cavity QED (Larson and Levin)
Optical lattices (Zoller, Lewenstein,...)
Bose-Einstein condensates with laser induced potentials (Larson
and Sjoqvist)

The essential characteristic of these systems is the presence of
different internal atomic levels (usually hyperfine states) coupled by
external potentials.

Their effective Hamiltonian can be described by a non-abelian gauge
potential.
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Tripod scheme
Ruseckas et al., PRL 95, 010404 (2005)
Jacob et al., NJPh 10, 045022 (2008)

Optical couplings among 3 quasi-degenerate ground states and one
excited state:

|1〉 |2〉

|0〉

|3〉

Ω1 Ω3Ω2












�

J
J
J
J
J
Ĵ?

Rabi frequencies:

Ω1 = Ω sin θ cosφ eiS1

Ω2 = Ω sin θ sinφ eiS2

Ω3 = Ω cos θ sinφ eiS3

There are two dark states whose effective Hamiltonian is described
by a 2× 2 fictious non-abelian potential A:

H = (px +Ax)2 + (py +Ay)2
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Non Abelian Symmetric Gauge
M.Burrello and A. Trombettoni

The system we want to analyze is characterized by the following
potential:

Ax = qσx −
B

2
yI , Ay = qσy +

B

2
xI ;

The corresponding Hamiltonian can be written as:

H = (px +Ax)2 + (py +Ay)2 = HaI +Hna

Introducing the ladder operators d† = Bz̄ − 4∂z and d = Bz + 4∂z̄ we
can rewrite:

Ha = 2q2 +B +
1
4
d†d , Hna = q

(
0 −id
id† 0

)
which corresponds to the Jaynes-Cummings model.
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Non Abelian Symmetric Gauge
Single particle spectrum

The non-Abelian term splits the Landau levels in two sublevels
and couples subsequent Landau levels.
The eigenstates of the Hamiltonian can be written in the form:

χ±n =
(
B + 2q

√
2Bn∓

√
B2 + 8q2Bn

)
ψn−1 |↑〉+

+
(
B − 2q

√
2Bn±

√
B2 + 8q2Bn

)
ψn |↓〉

The energy eigenvalues are:

ε±n = 2Bn+ 2q2 ±
√
B2 + 8q2Bn

and in the limit of small q we get the splitting ∼ En−1 ± 4q2n

There is only one family of uncoupled states: ψ0 |↓〉
The ground state for q2 < 3 is χ−1 .
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Non Abelian Symmetric Gauge
Single particle spectrum
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Many-particle states
0 < q2/B < 3: Deformed Laughlin states

We can map the LLL states in QHE in the ground states χ−1 :

zme−
B
4 |z|

2
|↓〉 ∈ LLL → Gzme−B

4 |z|
2
|↓〉 ∈ χ−1 ; G ≡ c↑σx + c↓d

†

We introduce intra-species repulsive delta interaction (|↑↑〉
and |↓↓〉).

Deformed Laughlin states (abelian!) are the new ground states:

Ψm =
N∏
j

Gj
N∏
i<j

(zi − zj)m e
−B

4

N∑
i
|zi|2
|↓↓ ... ↓〉

Fermions: m = 1, 3, 5, . . .
(Antisymmetric)

Bosons: m = 4, 6, 8, . . .
(Intraspecies repulsion)
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Degeneracy points
q2/B = 3, 5, 7, . . .
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Degeneracy point: q2/B = 3
Fermions

In this point a single particle is in a superposition of states in χ−1
and χ−2 .
We can define:

G1 ≡ c↑,1σx + c↓,1d
†︸ ︷︷ ︸

G1zme−
B
4 |z|

2
|↓〉 ∈χ−1

and G2 ≡ c↑,2σxd† + c↓,2d
† 2︸ ︷︷ ︸

G2zme−
B
4 |z|

2
|↓〉 ∈χ−2

Clustering: to minimize the energy associated to an angular
momentum term, N/2 atoms must be in χ−1 and N/2 in χ−2 .
For fermions the highest density ground state is given by:

Ωc = A

N/2∏
k∈A

G1;k

∏
i<j∈A

(zi − zj)
N/2∏
l∈B

G2;l

∏
i<j∈B

(zi − zj)

 e−B
4

2N∑
i
|zi|2
|↓↓ ... ↓〉
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Examples of ground states at the degeneracy points
Highest density state ν = 2:

Ωc = A

N/2∏
k∈A

G1;k

∏
i<j∈A

(zi − zj)
N/2∏
l∈B

G2;l

∏
i<j∈B

(zi − zj)

 e−B
4

2N∑
i
|zi|2
|↓↓ ... ↓〉

Its elementary excitations are fermions but their superposition shows
a non-Abelian behaviour.

Deformed Haffnian state ν = 1:

ΩHf = Hf
(

(G1;iG2;j − G2;iG1;j)
1

zi − zj

) N∏
i<j

(zi − zj) e
−B

4

N∑
i
|zi|2
|↓↓ ... ↓〉

Deformed Moore and Read state ν = 1/2:

ΩMR = S

(∏
i∈A
G1;i

∏
l∈B

G2;l

)
Pf
(

1
zi − zj

) N∏
i<j

(zi − zj)2
e
−B

4

N∑
i
|zi|2
|↓↓ ... ↓〉

Its excitations are non-abelian Ising anyons.
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Conclusions and Perspectives

Non-abelian gauge potentials do not generally give non-abelian
excitations: rather deformed Laughlin states are found;
These potentials split the degeneracy of the Landau levels, are
experimentally realizable, and, in the symmetric gauge case, can
be exactly solved;
There are degeneracy points where non-abelian ground states
can be recovered;
Future work:

We can introduce more components (SU(3) potentials);
We can analyze systems where lines of degeneracy are present;
We can study conductivity properties of the states in the
degeneracy points;
We can investigate the case of attractive inter-species interactions;
The non-abelian states at the degeneracy points deserve further
investigations.
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From the tripod atoms to the symmetric gauge

A gas of tripod atoms in rotation is described by the following
Hamiltonian:

HRot =
(
p+ Ã

)2

+
1
4
ω2r2 + Ω~r ×

(
~p+ Ã

)
+ Vrot

The effective potential for the two dark states is given, as a function of
the Rabi frequencies, by:

A11 = cos2 φ∇S23 + sin2 φ∇S13

A22 = cos2 θ
(
cos2 φ∇S13 + sin2 φ∇S23

)
A12 = cos θ

(
1
2

sin 2φ∇S12 − i∇φ
)

With a suitable choice of the parameters and a gauge transformation
it is possible to rewrite the Hamiltonian as:

H = (p+A)2 + (Ω− ω)~r × ~p

which is the single-particle Hamiltonian we analyzed.
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About the excitations of Ωc

Ωc has the following excitations:
σ1 is a fermionic (skyrmion-like) quasi-hole in the χ−1 sector.
σ2 is a fermionic (skyrmion-like) quasi-hole in the χ−2 sector.
ψ = σ1 × σ2 is a true bosonic quasi-hole.

The correspondig fusion rules are the same of the toric code.
However, in the contest of cold atoms, one can consider the following
superposition (excited atom):

σ ≡ σ1 + σ2√
2

The fusion rules for σ result (Ising-like but with different dimensions):

σ × σ = I + ψ , σ × ψ = σ

Braiding rules:

ρ1 =
(
−1 0
0 1

)
; ρ2 =

(
1/2 −

√
3/2

−
√

3/2 −1/2

)
; F =

(
1/2

√
3/2√

3/2 −1/2

)
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