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Vortices in two-dimensional superconductors with broken time-reversal and spin-rotation symme-
try can bind states at zero excitation energy. These socalled Majorana bound states transform a
thermal insulator into a thermal metal and may be used to encode topologically protected qubits.
We identify an alternative mechanism for the formation of Majorana bound states, akin to the way
in which Shockley states are formed on metal surfaces: An electrostatic line defect can have a pair

of Majorana bound states at the end points. The Shockley mechanism explains the appearance of a
thermal metal in vortex-free lattice models of chiral p-wave superconductors and (unlike the vortex
mechanism) is also operative in the topologically trivial phase.
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Two-dimensional superconductors with spin-polarized-
triplet, p-wave pairing symmetry have the unusual prop-
erty that vortices in the order parameter can bind a non-
degenerate state with zero excitation energy [1–4]. Such
a midgap state is called a Majorana bound state, because
the corresponding quasiparticle excitation is a Majorana
fermion — equal to its own antiparticle. A pair of spa-
tially separated Majorana bound states encodes a qubit,
in a way which is protected from any local source of deco-
herence [5]. Since such a qubit might form the building
block of a topological quantum computer [6], there is
an intensive search [7–12] for two-dimensional supercon-
ductors with the required combination of broken time-
reversal and spin-rotation symmetries (symmetry class
D [13]).

The generic Bogoliubov-De Gennes Hamiltonian H
of a chiral p-wave superconductor is only constrained
by particle-hole symmetry, σxH

∗σx = −H . At low
excitation energies E (to second order in momentum
p = −i~∂/∂r) it has the form

H = ∆
(

pxσx + pyσy
)

+
(

U(r) + p2/2m
)

σz, (1)

for a uniform (vortex-free) pair potential ∆. The elec-
trostatic potential U (measured relative to the Fermi en-
ergy) opens up a band gap in the excitation spectrum.
At U = 0 the superconductor has a topological phase
transition (known as the thermal quantum Hall effect)
between two localized phases, one with and one without
chiral edge states [14–17].

Our key observation is that the Hamiltonian (1) on a
lattice has Majorana bound states at the two end points
of a linear electrostatic defect (consisting of a perturba-
tion of U on a string of lattice sites). The mechanism
for the production of these bound states goes back to
Shockley [18]: The band gap closes and then reopens
upon formation of the defect, and as it reopens a pair
of states splits off from the band edges to form localized
states at the end points of the defect (see Fig. 1). Such
Shockley states appear in systems as varied as metals

FIG. 1: Emergence of a pair of zero-energy MS states as the
defect potential U0 + δU is made more and more negative, at
fixed positive background potential U0 = 0.3. (All energies
are in units of γ ≡ ~∆/a.) The energy levels are the eigen-
values of the Hamiltonian (1) on a square lattice (dimension
100 a×100 a, β ≡ ~

2/2ma2 = 0.4 γ, periodic boundary condi-
tions). The line defect has length 50 a. The dense spectrum
at top and bottom consists of bulk states.

and narrow-band semiconductors [19], carbon nanotubes
[20], and photonic crystals [21]. In these systems they
are unprotected and can be pushed out of the band gap
by local perturbations. In a superconductor, in contrast,
particle-hole symmetry requires the spectrum to be ±E
symmetric, so an isolated bound state is constrained to
lie at E = 0 and cannot be removed by any local pertur-
bation.

We propose the name Majorana-Shockley (MS) bound
state for this special type of topologically protected
Shockley states. Similar states have been studied in the
context of lattice gauge theory by Creutz and Horváth
[22, 23], for an altogether different purpose (as a way to
restore chiral symmetry in the Wilson fermion model of
QCD [24]).

Consider a square lattice (lattice constant a), at uni-
form potential U0. The Hamiltonian (1) on the lattice

http://arxiv.org/abs/1002.3570v2
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FIG. 2: Main plot: Closing and reopening of the excitation
gap at U0 = 0.3, β = 0.4 (in units of γ), for states with
kx = 0 (black solid curve) and kx = π/a (black dashed curve).
The MS states exist for defect potentials in between two gap-
closings, indicated as a function of U0 by the shaded regions
in the inset. (The red solid and blue dashed curves show,
respectively U0 + δU0 and U0 + δUπ. The label T indicates
the topologically trivial phase.)

has dispersion relation

E2 = [U0 + 2β(2 − cos akx − cos aky)]2

+ γ2 sin2 akx + γ2 sin2 aky. (2)

(We have defined the energy scales β = ~
2/2ma2, γ =

~∆/a.) The spectrum becomes gapless for U0 = 0, −4β,
and −8β, signaling a topological phase transition [25].
The number of edge states is zero for U0 > 0 and U0 <
−8β, while it is unity otherwise (with a reversal of the
direction of propagation at U0 = −4β). The topologically
nontrivial regime is therefore reached for U0 negative but
larger than −8β.

We now introduce the electrostatic line defect by
changing the potential to U0+δU on the N lattice points
at r = (na, 0), n = 1, 2, . . .N . In Figs. 1 and 2 we show
the closing and reopening of the band gap as the defect
is introduced, accompanied by the emergence of a pair
of states at zero energy. The eigenstates for which the
gap closes and reopens have wave vector kx parallel to
the line defect equal to either 0 or ±π/a (in the limit
N → ∞ when kx is a good quantum number).

We have calculated that the gap closing at kx = 0
happens at a critical potential δU = δU0 given by [26]

δU0 =











−
√

U0(U0 + 4β) + γ2 for U0 > 0,
√

U0(U0 + 4β) + γ2 for U0 < −4β,

no finite value otherwise.

(3)

The critical potential δUπ for closing of the gap at
kx = ±π/a is obtained from Eq. (3) by the replacement
of U0 with U0 + 4β. The MS states appear for defect po-
tentials U0 + δU in between two subsequent gap closings,
as indicated in the inset of Fig. 2.

FIG. 3: Closing and reopening of the excitation gap at
U0 = −0.3, β = 0.4 (in units of γ), for states with kx = 0 (red
curves) and kx = π/a (black curves). The results were ob-
tained from numerical calculations using a constant isotropic
pair potential ∆ (solid lines) as in Fig. 2 as well as a spatially
dependent, anisotropic pair potential (∆x(r),∆y(r)) deter-
mined self-consistently from the gap equation (dashed lines)
[26].

We conclude that MS states exist for any value of U0.
In contrast, Majorana bound states in vortices exist only
in the topologically nontrivial regime [3, 27]. The index
theorem [28] for the production of zero-energy modes by
the vortex mechanism, which requires the topologically
nontrivial phase, is therefore not applicable to the Shock-
ley mechanism.

Our reasoning so far has relied on the assumption of
a constant pair potential ∆, unperturbed by the de-
fect. In order to demonstrate the robustness of the
Majorana-Shockley mechanism, we have performed nu-
merical calculations that determine the pair potential
self-consistently by means of the gap equation [26, 29].
In Fig. 3 we show a comparison of the closing and re-
opening of the band gap as obtained from calculations
with and without self-consistency, in the relevant weak
pairing regime (U0 < 0). The self-consistency does not
change the qualitative behavior. In particular, the gap
only closes at kx = π/a for the parameters chosen (c.f. in-
set in Fig. 2) and the self-consistent determination of ∆
only shifts the critical potential δU slightly.

In Fig. 4 we demonstrate that the MS states are lo-
calized at the end points of the line defect. The expo-
nentially small, but nonzero overlap of the pair of states
displaces their energy from 0 to ±E (with corresponding
eigenstates ψ− = σxψ

∗
+ related by particle-hole symme-

try). The unpaired Majorana bound states ψ1 and ψ2

are given by the linear combinations

ψ1 = 1
2 (1 − i)ψ+ + 1

2 (1 + i)ψ−, (4a)

ψ2 = 1
2 (1 + i)ψ+ + 1

2 (1 − i)ψ−, (4b)

shown also in Fig. 4. These states are particle-hole sym-
metric, ψ1,2 = σxψ

∗
1,2, so the quasiparticle in such a state

is indeed equal to its own antiparticle (hence, it is a Ma-
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FIG. 4: Probability density of the paired (ψ+) and unpaired
(ψ1, ψ2) Majorana bound states at the end points of a line
defect of length 50 a, calculated for U0 = 0.1 γ, U0 + δU =
−1.3 γ, β = 0.4 γ.

FIG. 5: Average density of states for a potential that fluc-
tuates randomly from site to site (Ū = 0.01 γ, ∆U = 2 γ,
β = 0.2 γ). The lattice has size 400 a× 400 a. The right inset
shows the same data as in the main plot, over a larger energy
range. The left inset has a logarithmic energy scale, to show
the dependence ρ ∝ ln |E| expected for a thermal metal (red
dashed line).

jorana fermion).

If the line defect has a width W which extends over
several lattice sites, multiple gap closings and reopenings
appear at kx = 0 upon increasing the defect potential
U0 + δU ≡ −(~kF )2/2m to more and more negative val-
ues at fixed positive background potential U0. In the
continuum limit W/a → ∞, the gap closes when [26]
qW = nπ + ν, n = 0, 1, 2, . . ., with q = [k2F − (m∆)2]1/2

the real part of the transverse wave vector and ν ∈ (0, π)
a phase shift that depends weakly on the potential. (Sim-
ilar oscillatory coupling energies of zero-modes have been
found in Refs. [30, 31].) The MS states at the two ends
of the line defect alternatingly appear and disappear at
each subsequent gap closing.

So far we constructed MS states for a linear electro-
static defect. More generally, we expect a randomly vary-

ing electrostatic potential to create a random arrange-
ment of MS states. To test this, we pick U(r) at each lat-
tice point uniformly from the interval (Ū −∆U, Ū + ∆U)
and calculate the average density of states ρ(E). The
result in Fig. 5 shows the expected peak at E = 0. This
peak is characteristic of a thermal metal, studied pre-
viously in models where the Majorana bound states are
due to vortices [32–34]. The theory of a thermal metal
[15] predicts a logarithmic profile, ρ(E) ∝ ln |E|, for the
peak in the density of states, which is consistent with our
data.

Without Majorana bound states, the chiral p-wave su-
perconductor would be in the thermal insulator phase,
with an exponentially small thermal conductivity at any
nonzero Ū [3, 32, 35, 36]. Our findings imply that electro-
static disorder can convert the thermal insulator into a
thermal metal, thereby destroying the thermal quantum
Hall effect. Numerical results for this insulator-metal
transition will be reported elsewhere [37].

These results are all for a specific model of a chiral p-
wave superconductor. We will now argue that our find-
ings are generic for symmetry class D (along the lines
of a similar analysis of solitons in a polymer chain [38]).
Let p be the momentum along the line defect and α a pa-
rameter that controls the strength of the defect. Assume
that the gap closes at α = α0 and at p = 0. (Because of
particle-hole symmetry the gap can only close at p = 0
or p = ±~π/a and these two cases are equivalent.) For
α near α0 and p near 0 the Hamiltonian in the basis of
left-movers and right-movers has the generic form

H(α) =

(

(v0 + v1)p −i(α− α0)
i(α− α0) −(v0 − v1)p

)

, (5)

with velocities 0 < v1 < v0. No other terms to first order
in p = −i~∂/∂x and α− α0 are allowed by particle-hole
symmetry, H(α) = −H∗(α).

The line defect is initially formed by letting α depend
on x on a scale much larger than the lattice constant.
We set one end of the defect at x = 0 and increase
α from α(−∞) < α0 to α(+∞) > α0. Integration of
H [α(x)]ψ(x) = 0 then gives the wave function of a zero-
energy state bound to this end point,

ψ(x) =

(√

v0/v1 − 1
√

v0/v1 + 1

)

exp

(

−

∫ x

0

α(x′) − α0
√

v20 − v21
dx′

)

.

(6)
This is one of the two MS states, the second being at
the other end of the line defect. We may now relax the
assumption of a slowly varying α(x), since a pair of un-
coupled zero-energy states cannot disappear without vi-
olating particle-hole symmetry.

We conclude with an outlook. We have identified a
purely electrostatic mechanism for the creation of Majo-
rana bound states in chiral p-wave superconductors. The
zero-energy (mid-gap) states appear in much the same
way as Shockley states in non-superconducting materi-
als, but now protected from any local perturbation by
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particle-hole symmetry. An experimentally relevant con-
sequence of our findings is that the thermal quantum Hall
effect is destroyed by electrostatic disorder (in marked
contrast to the electrical quantum Hall effect). A recent
proposal to realize Wilson fermions in optical lattices [39]
also opens the possibility to observe Majorana-Shockley
states using cold atoms.

Our analysis is based on a generic model of a
two-dimensional class-D superconductor (broken time-
reversal and spin-rotation symmetry). An interest-
ing direction for future research is to explore whether
Majorana-Shockley bound states exist as well in the other
symmetry classes [13]. Since an electrostatic defect pre-
serves time-reversal symmetry, we expect the Majorana-
Shockley mechanism to be effective also in class DIII

(when only spin-rotation symmetry is broken). That
class includes proximity-induced s-wave superconductiv-
ity at the surface of a topological insulator [40] and other
experimentally relevant topological superconductors [41–
43].

It would also be interesting to investigate the braiding
of two electrostatic defect lines, in order to see whether
one obtains the same non-Abelian statistics as for the
braiding of vortices [4].

We have benefited from discussions with B. Béri, L.
Fu, and C.-Y. Hou. This research was supported by the
Deutscher Akademischer Austausch Dienst DAAD, by
the Dutch Science Foundation NWO/FOM, by an ERC
Advanced Investigator Grant, and by the EU network
NanoCTM.
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main text, and introduced in the context of topological
insulators in Refs. [44, 45]. Then, in order to demonstrate
the generic nature of the results, we consider an alter-
native lattice model, the staggered fermion (or Kogut-
Susskind) model [46–48], introduced in the context of
graphene in Refs. [37, 49].

1. Wilson fermions

The Wilson fermion model has Hamiltonian

H =
∑

n

c†nEncn −
∑

n,m (nearest neighb.)

c†nTnmcm. (A1)

Each site n on a two-dimensional square lattice (lat-
tice constant a) has electron and hole states |e〉 and |h〉.
Fermion annihilation operators for these two states are
collected in a vector cn = (cn,e, cn,h). States on the same
site are coupled by the 2 × 2 potential matrix En and
states on adjacent sites by the 2×2 hopping matrix Tnm,
defined by [44, 45]

En =

(

Un 0
0 −Un

)

, Tnm =

(

β γeiθnm

γe−iθmn −β

)

. (A2)

Here Un is the electrostatic potential on site n and
θnm ∈ [0, π] is the angle between the vector rn − rm
and the positive y-axis (so θmn = π − θnm). In the con-
tinuum limit a→ 0, the tight-binding Hamiltonian (A1)
is equivalent to the chiral p-wave Hamiltonian (1), with
β = ~

2/2ma2 and γ = ~∆/a.
It is convenient to transform from position to momen-

tum representation. For that purpose we take periodic
boundary conditions in the y-direction, so that the trans-
verse wavevector (in units of 1/a) has the discrete values
kl = 2πl/N , l = −(N − 1)/2, . . . ,−1, 0, 1, . . . , (N − 1)/2
(for an odd number N of sites in the y-direction). The
Fourier transformation from position to momentum rep-
resentation is carried out by the unitary matrix with el-
ements [F ]nl = N−1/2einkl . We take an infinitely long
system in the x-direction, so the longitudinal wavevector
k varies continuously in the interval (−π, π].

For a uniform potential, Un ≡ U0 for all n, the Fourier
transformed Hamiltonian H0(k) has matrix elements

[H0(k)]ll′ = δll′El(k), (A3)

El(k) = U0σz + 2βσz(2 − cos k − cos kl)

+ γ(σx sin k + σy sinkl). (A4)

The corresponding dispersion relation is

E(k, kl)
2 = [U0 + 2β(2 − cos k − cos kl)]

2

+ γ2(sin2 k + sin2 kl), (A5)

cf. Eq. (2).
A line defect at row n0 (parallel to the x-axis) adds to

H0 the perturbation

[δH ]ll′ = N−1ein0(kl′
−kl)δUσz. (A6)

The determinantal equation Det (H0 + δH − E) = 0 for
eigenenergy E reads

Det (1 + F†
0δUσzF0(H0 − E)−1) = 0, (A7)

in terms of an 1 × N matrix F0 with elements [F0]1l =
N−1/2ein0kl . Sylvester’s theorem, Det(1+AB) = Det(1+
BA), allows us to rewrite the determinant in the form

Det (1 + δUσzF0(H0 − E)−1F†
0) = 0, (A8)

which reduces to

0 = Det

(

1 + δUσz
1

N

∑

l

1

El(k) − E

)

= Det

(

1 + δUσz
1

N

∑

l

El(k) + E

E(k, kl)2 − E2

)

. (A9)

A zero-mode is a pair of states (one left-mover and
one right-mover) at energy E = 0. This can only occur
at k = 0 or k = π (because for any eigenenergy E at
k there must also be an eigenenergy −E at −k). From
Eqs. (A4) and (A9) we obtain the condition for such a
zero-mode,

1

N

∑

l

U0 + 2β(1 + δ − cos kl)

[U0 + 2β(1 + δ − cos kl)]2 + γ2 sin2 kl
= −

1

δU
,

(A10)
where δ = 0 if k = 0 and δ = 2 if k = π. In the
limit N → ∞ we may replace the sum by an integral,
N−1

∑

l → (2π)−1
∫ π

−π dkl, which can be evaluated by
contour integration. The resulting critical value of δU is
given in the main text [Eq. (3) and following].

2. Staggered fermions

The staggered fermion model is a discretization of the
Hamiltonian (1) without the p2 term. It is formulated in
Refs. [47–49] in terms of the transfer matrix Mm, which
relates the transverse wave functions Ψm+1 = MmΨm

at columns m and m + 1 (parallel to the y-axis). For
a line defect along the x-axis, the transfer matrix is m-
independent, so we can omit the column number m.

The transfer matrix (at energy E) has the form

M =
1 − iX

1 + iX
, (A11)

X = (γJ )−1(γσzK + 1
2EσxJ − 1

2 iσyU). (A12)

In reference to Eq. (1), the parameter γ = ~∆/a for
lattice constant a. The N × N matrices J and K have
nonzero elements

Jn,n = 1, Jn,n+1 = Jn,n−1 = 1
2 , (A13)

Kn,n+1 = 1
2 , Kn,n−1 = − 1

2 , (A14)
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FIG. 6: Main plot: Closing and reopening of the excitation
gap in the staggered fermion model. The MS states exist
for defect potentials in the shaded regions in the inset. (All
energies are in units of γ.)

while the potential matrix U (for a line defect at row n0)
is given by

Unn′ = U0Jnn′ + 1
2δU(δn,n′δn,n0

+ δn,n′δn,n0+1

+ δn+1,n′δn,n0
+ δn,n′+1δn′,n0

). (A15)

In momentum representation, the matrix X has ele-
ments

Xll′ = Alδll′ − i(δU/2γ)σy
v∗l vl′

4 cos2(kl/2)
, (A16)

where we have defined

Al = iσz tan(kl/2) + (E/2γ)σx − i(U0/2γ)σy, (A17)

vl = N−1/2ein0kl(1 + eikl). (A18)

The dispersion relation of the staggered fermions is
tan2(k/2) = A(k, kl)

2, with

A(k, kl)
2 = (E/2γ)2 − tan2(kl/2) − (U0/2γ)2. (A19)

An eigenstate at energy E and longitudinal wavevec-
tor k is an eigenstate of X with eigenvalue − tan(k/2).
The determinantal equation Det[X + tan(k/2)] = 0 can
again be simplified using Sylvester’s theorem. The result,
analogous to Eq. (A9), is

0 = Det

(

1 −
δU

2γ
iσy

1

N

∑

l

1

Al + tan(k/2)

)

= Det

(

1 −
δU

2γ
iσy

1

N

∑

l

Al − tan(k/2)

A(k, kl)2 − tan2(k/2)

)

.

(A20)

Because of the pole in the dispersion relation at k = π,
the zero-mode now exists only at k = 0. The condition
for this zero-mode, analogous to Eq. (A10), is

1

N

∑

l

U0/2γ

(U0/2γ)2 + tan2(kl/2)
= −

2γ

δU
, (A21)

For N → ∞ we may again transform the sum into an
integral, and thus obtain the critical potential

δU =

{

−U0 − 2γ if U0 > 0,

−U0 + 2γ if U0 < 0.
(A22)

Upon varying the potential U0+δU of the line defect, at
fixed bulk potential U0, the closing and reopening of the
gap thus happens at U0+δU = −2γ sign (U0) (see Fig. 6).
The inset shows the region in parameter space where the
Majorana-Shockley states exist in the staggered fermion
model. This phase diagram is much simpler than the
corresponding phase diagram for Wilson fermions (Fig.
2, inset), because of the absence of the extra parameter
β (which quantifies the strength of the p2 term in the
Wilson fermion model).

Appendix B: Self-consistent determination of the

pair potential

In order to determine the pair potential self-
consistently in a spatially non-homogeneous situation, it
is necessary to allow for a position-dependent, anisotropic
pair potential ∆(r) = (∆x(r),∆y(r)). The Hamiltonian
then reads [29]

H =1
2 {∆x(r), px} σx + 1

2 {∆y(r), py} σy

+
(

U(r) + p2/2m
)

σz , (B1)

where {·, ·} denotes the anticommutator. In the dis-
cretization of this Hamiltonian on a square lattice, the
spatial dependence of ∆(r) is taken into account in the
hopping between neighbors as an average value of ∆(r)
on the two lattice points.

When the pair potential is homogeneous, the lattice
Hamiltonian has the spectrum

E2 = [U0 + 2β(2 − cos akx − cos aky)]2

+ γ2x sin2 akx + γ2y sin2 aky (B2)

with γx = ~∆x/a, γy = ~∆y/a and β = ~
2/2ma2.

The Hamiltonian must be solved self-consistently to-
gether with the equation for the pair potential. These
read [29] (with derivatives discretized on the lattice)

γx(r) = −ig
∑

En>0

(un(x+ a, y) − un(x− a, y)) v∗n(x, y)

− un(x, y) (v∗n(x+ a, y) − v∗n(x− a, y)),

γy(r) = g
∑

En>0

(un(x, y + a) − un(x, y + a)) v∗n(x, y)

− un(x, y) (v∗n(x, y + a) − v∗n(x, y + a)).
(B3)

Here un and vn are the electron and hole component
of the wave function, respectively, and assumed to be
from the tight-binding model, i.e. they are dimensionless
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and represent the probability amplitude per lattice point
(x, y).

The coupling constant g must be chosen such that it
gives the correct pair potential γ in the bulk. It can be
calculated as

γ

g
=

1

π2

∫ π

−π

d(akx)

∫ π

−π

d(aky) sin(akx)u(k)v∗(k)

=
−i

π2

∫ π

−π

d(akx)

∫ π

−π

d(aky) sin(aky)u(k)v∗(k),

(B4)

where u(k) and v(k) are the electron and hole coefficients
of the plane wave solutions of the bulk lattice Hamilto-
nian with E > 0.

In the particular case of a system that is translationally
invariant in x-direction, as is the case for an infinitely
extended line defect, the gap equations can be written
as:

γx(r) =
4g

Nx

∑

En>0,kx

un(kx, y)v∗n(kx, y) sin(akx)

γy(r) =
g

Nx

∑

En>0,kx

(

(un(kx, y + a) − un(kx, y + a)) v∗n(kx, y)

− un(kx, y) (v∗n(kx, y + a) − v∗n(kx, y + a))

)

,

(B5)

summing over Nx longitudinal momenta kx, and solving
the tight-binding problem for each kx individually.

The self-consistent solution of the tight-binding Hamil-
tonian and the gap equation (B5) is obtained in an itera-
tive procedure. In the iteration, we neglect the influence
of the vector potential arising from local currents [29] as
those effects are expected to be minor for the examples
considered in this work. Furthermore, we also avoid ad-
justing the chemical potential U0 to obtain a fixed num-
ber of electrons in the system and instead use a large unit
cell so that the bulk value of ∆ is recovered away from
the defect.

Appendix C: Line defect in the continuum limit

We calculate the closing and reopening of the exci-
tation gap upon introduction of a line defect in the
Hamiltonian (1), which is the continuum limit (a → 0)
of the Wilson fermion lattice model of App. A 1. The
mode matching calculation presented here is the one-
dimensional version of the two-dimensional calculation
in Refs. [31, 50, 51].

The line defect, of width W , is formed by the electro-
static potential profile

U(r) =

{

U0 if |y| > W/2,

U0 + δU if |y| < W/2.
(C1)

A zero-mode ψ = (u, v) is a (doubly degenerate) eigen-
state of the Hamiltonian (1) at E = 0, px = 0. The
zero-mode should thus satisfy

(U + p2y/2m)u = i∆pyv, (C2a)

(U + p2y/2m)v = i∆pyu. (C2b)

For uniform U the solution is a plane wave,

ψss′ = eikss′
y

(

1
s

)

, s, s′ = ±1, (C3)

with transverse wave vector

kss′ = (m/~)
(

is∆ + s′
√

−∆2 − 2U/m
)

. (C4)

In the region |y| < W/2 the zero-mode ψ is a superposi-
tion of the four states ψ++, ψ+−, ψ−+, ψ−−. For y > W/2
two decaying states with Im kss′ > 0 appear in the super-
position, while for y < −W/2 the other two states with
Im kss′ < 0 appear. In total ψ has eight unknown coef-
ficients, which we determine by demanding continuity of
ψ and dψ/dy at y = W/2 and y = −W/2. The deter-
minant of this set of equations should vanish, in order to
have a nontrivial solution. There is only a zero-mode for
U0 > 0, U0 + δU < −m∆2/2, determined by

tan qW =
2qq0
q2 − q20

. (C5)

We have defined

q = (m/~)
√

−∆2 − (2/m)(U0 + δU), (C6)

q0 = (m/~)
√

∆2 + 2U0/m. (C7)

The MS states exist in between subsequent gap closings,
as indicated in Fig. 7 (shaded regions).

FIG. 7: The red solid curves are the solution of Eq. (C5) for
W = 4~/m∆. The MS states exist in the shaded regions.
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