Quantum critical behavior in driven and strongly interacting Rydberg gases

H.P. Büchler

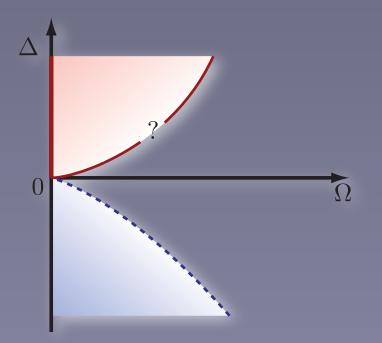
Theoretische Physik III, Universität Stuttgart, Germany

Collaboration:

H. Weimer, J. Honer

T. Pfau, R. Löw, B. Butscher, V. Bendkowsky, U. Raitzsch, R. Heidemann

SFB TRR21: Tailored quantum matter



Outline

Overview on Rydberg atoms

Rydberg atoms as strongly interacting quantum many-body system

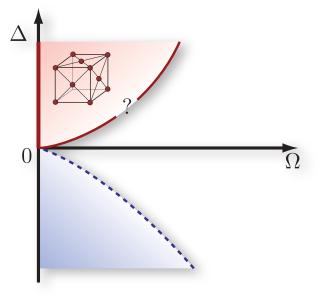
quantum phase transition with critical regionuniversal scaling

Crystalline phase in one-dimension

- floating solid in one-dimension

Tool for designing interactions

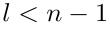
- Rydberg dressed interactions for cold atomic gases



Rydberg atoms

Rydberg atom

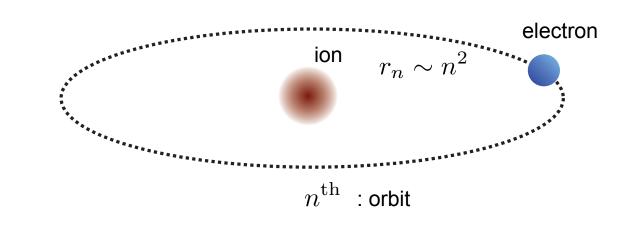
- one electron excited into a shell with principal quantum number n
- wave function of the Hydrogen atom
 - relativistic corrections are small
 - $E_n \sim 1/n^2$ angular momentum

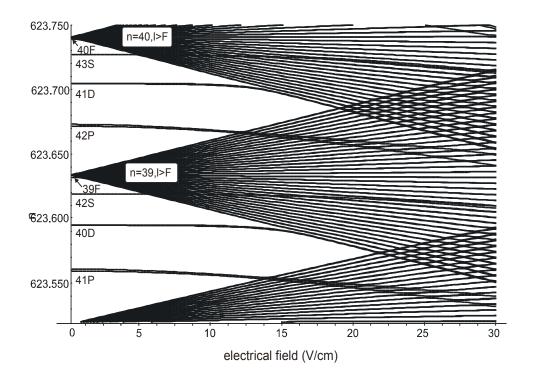


- large dipole moments

$$d \sim e \ a_0 \ n^2$$

- quantum defect theory for alkali atoms
- increased life time for high n





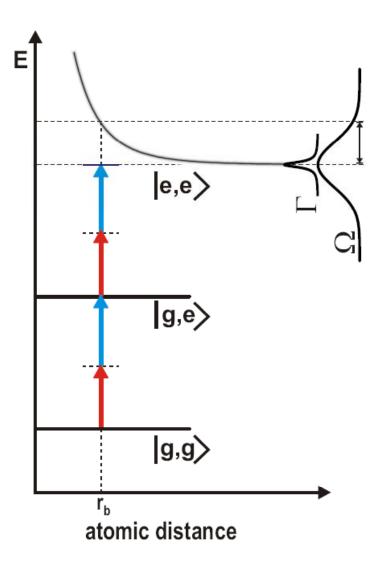
Rydberg excitations

Rydberg-Rydberg interaction

- strong van der Waals interactions for s-wave states
 - depending on n attractive or repulsive
 - $C_6 \sim n^{11}$
- dipole-dipole interactions in presence of an electric field $d \sim n^2$

Blockade phenomena

 once a Rydberg atom is excited, further excitatons are shifted out of resonance



Dipole-dipole interactions

Cold atoms

- magnetic dipole moments between electron spins:

$$\sim \mu_{\rm B} = \frac{e\hbar}{2m_ec}$$

d

- Cr with 6 electrons exhibits strong magnetic dipole moments
- **Polar Molecules**
 - permanent dipole moment:
 - interactions are increased by
 - rotational energy

Rydberg atoms

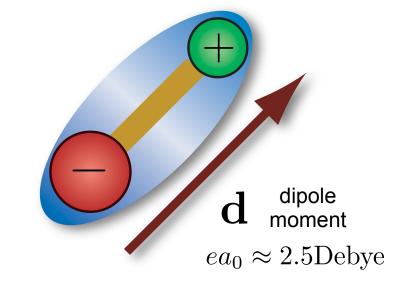
- electric dipole moment
- similar internal structure as polar molecules
- finite life time

Wednesday, September 8, 2010

$$d \sim ea_0 = \frac{e\hbar}{m_e c\alpha}$$

$$1/\alpha^2 \sim 137^2$$

 $d \sim n^2 e a_0$



 $n \sim 10 - 100$

> principal quantum
number

Blockade regime

Dipole and van der Waals Blockade

 experimental observation of strong Rydberg-Rydberg interactions

T. F. Gallagher, Charlottesville; M. Weidemüller, Freiburg; P. Pillet, Orsay; van den Heuvell, Amsterdam; P. Gould, Storrs; T. Pfau Stuttgart

Quantum Information

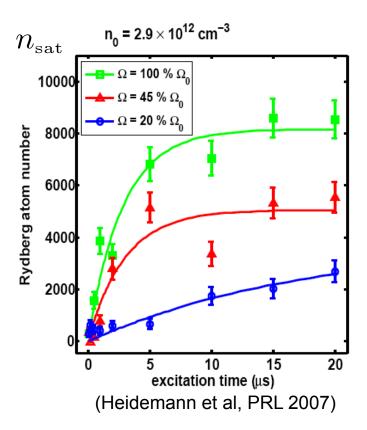
- implementation of quantum gates

Jaksch, Cirac, Zoller, Rolston, Côté, Lukin, Zoller PRL 2000

Coherent evolution

- dynamics of the sytem in the blockaded regime

Robicheaux and Hernández, PRA 2005 Ates, Pohl, Pattard, Rost, PRA 2007 Stanojevic and Côté, arxiv 2008



Outline

Overview on Rydberg atoms

Rydberg atoms as strongly interacting quantum many-body system

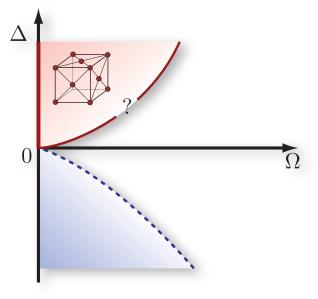
quantum phase transition with critical regionuniversal scaling

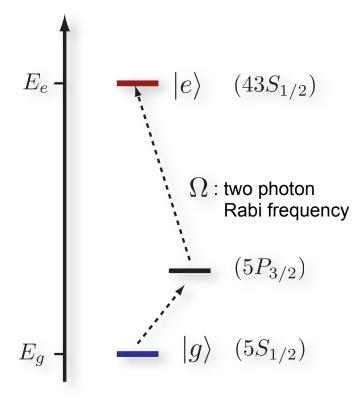
Crystalline phase in one-dimension

- floating solid in one-dimension

Tool for designing interactions

- Rydberg dressed interactions for cold atomic gases

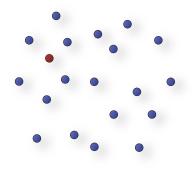


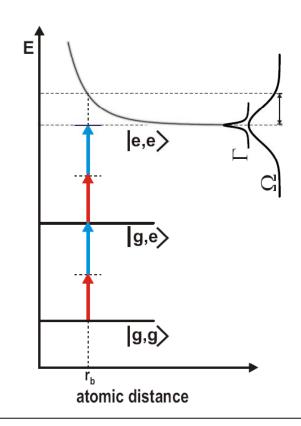


Setup

Rydberg excitation

- resonant excitation of Rydberg states
- frozen motion of the atoms during Rydberg excitation





Rydberg-Rydberg interaction

- strong van der Waals repulsion

$$V(r) = \frac{C_6}{r^6} \qquad C_6 \sim n^{11}$$

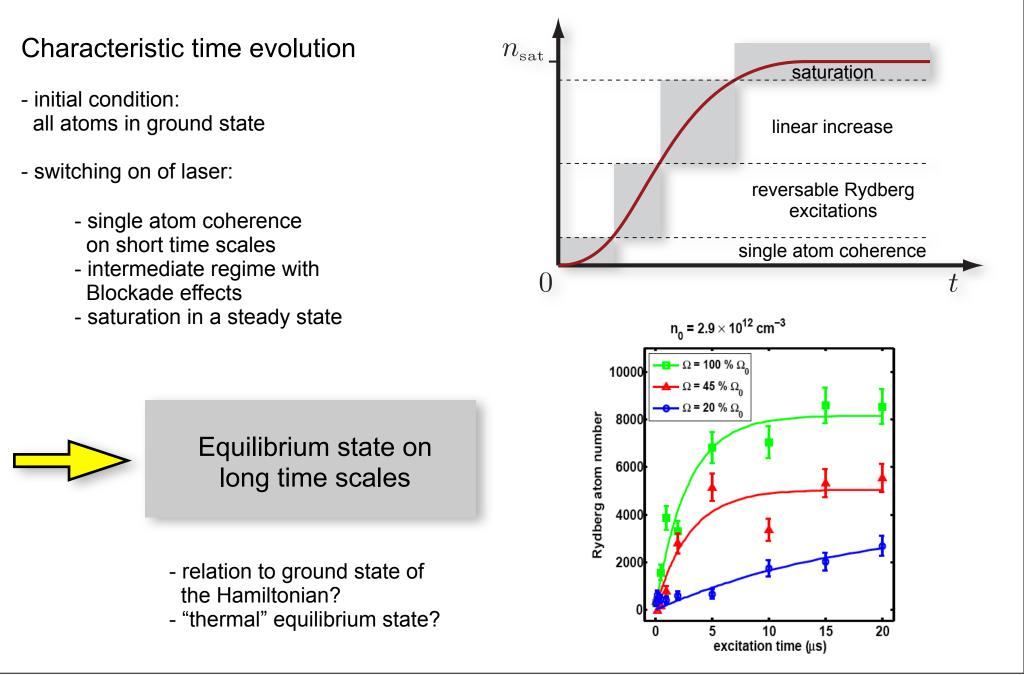
- strong blockade regime:

 $r_b=\sqrt[6]{C_6/\hbar\Omega}\sim 5~\mu{
m m}$: blockade radius

$$N_b = \sqrt{C_6 n^2 / \hbar \Omega} \sim 1000$$

: number of particles within blockade radius

Saturation



Hamiltonian

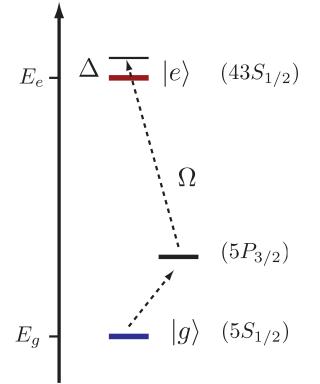
Effective spin system

- rotating wave approximation (rotating frame)
- mapping to spin-1/2 system $\begin{aligned} |\uparrow\rangle_i &= |e\rangle_i \\ |\downarrow\rangle_i &= |g\rangle_i \\ \sigma_i^z &= |e\rangle\langle e|_i - |g\rangle\langle g|_i \end{aligned}$
 - $\sigma_i^x = |e\rangle \langle e|_i |g\rangle \langle g|_i$ $\sigma_i^x = |e\rangle \langle g|_i + |g\rangle \langle e|_i$
- number of excited Rydberg atoms

$$n_i^e = (\sigma_i^z + 1)/2$$
$$n_e = \sum_i n_i^e$$

Hamiltonian

$$\begin{split} H &= \frac{C_6}{2} \sum_{i \neq j} \frac{n_i^e n_j^e}{|\mathbf{r}_i - \mathbf{r}_j|^6} + \hbar \Omega \sum_i \sigma_i^x + \hbar \Delta \sum_i \sigma_i^z \\ \text{dimensionless} \\ \text{parameter} \quad \alpha &= \frac{\hbar \Omega}{C_6 n^{6/d}} \end{split}$$



- \mathbf{r}_i : particle position
- *n* : averaged particle density
- d: dimension of the system

Phase Diagram

Ground state $\Omega = 0$

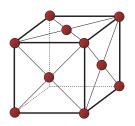
- classical Hamiltonian without quantum fluctuations

$$H = \frac{C_6}{2} \sum_{i \neq j} \frac{P_i^e P_j^e}{|\mathbf{r}_i - \mathbf{r}_j|^6} + \frac{\hbar \Omega}{2} \sum_i \sigma_i^x - \frac{\hbar \Delta}{2} \sum_i \sigma_i^z$$

Crystalline phase

 $\Delta > 0, \Omega = 0$

- finite number of excitation: $\langle n_e \rangle > 0$
- crystalline structure: closed sphere packing



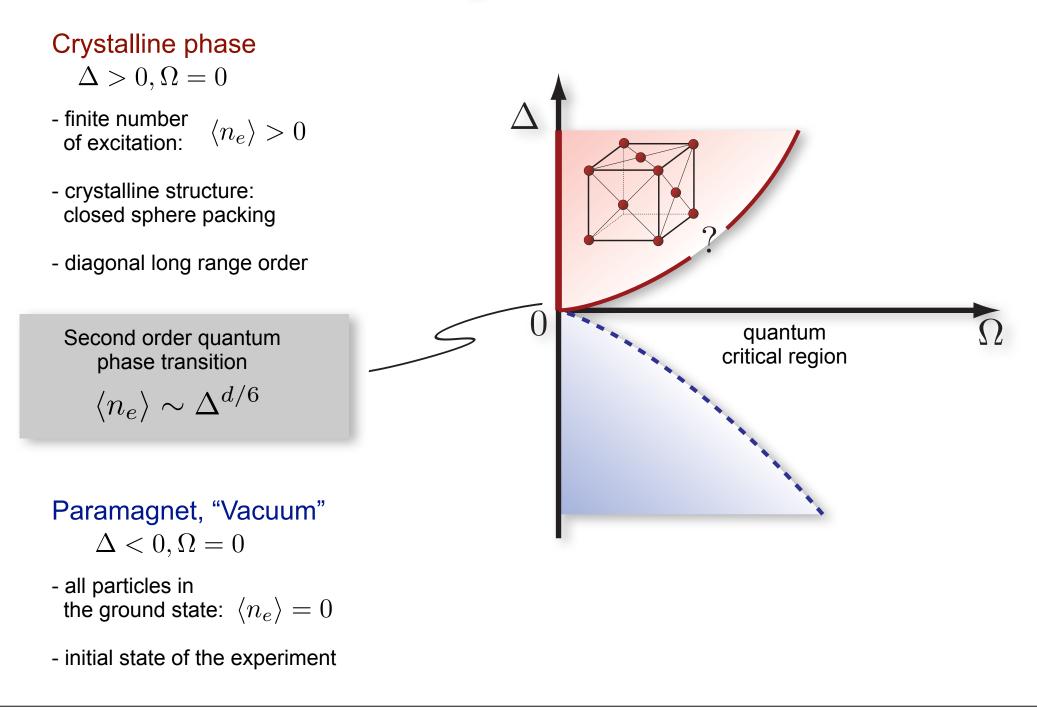
Second order quantum phase transition $\label{eq:rescaled} \hline & $\langle n_e \rangle \sim \Delta^{d/6} $$

Paramagnet, "Vacuum" $\Delta < 0, \Omega = 0$

- all particles in the ground state: $\langle n_e
angle = 0$

- initial state of the experiment

Phase Diagram ($\Omega = 0$)



Mean field theory

Approximation

- select a single atom
- surrounded by a bath of atoms
- interaction produces an effective potential

$$h_z = \sum_j g(\mathbf{r}_i, \mathbf{r}_j) \langle P_j \rangle \frac{n^{6/d}}{|\mathbf{r}_i - \mathbf{r}_j|^6}$$

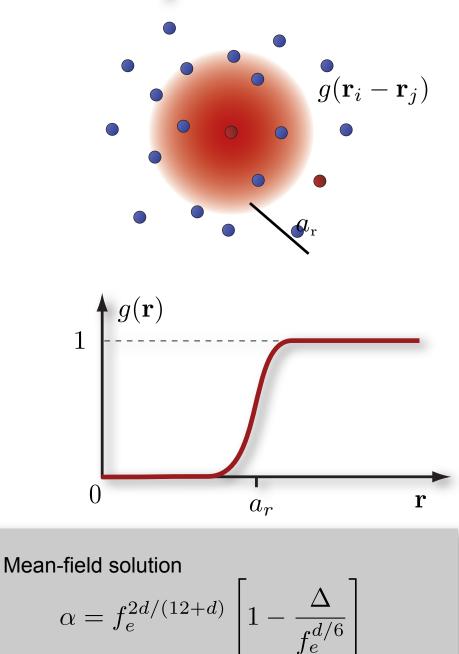
- local Hamiltonian

$$H_i = \frac{\alpha}{2}\sigma_i^z + P_i^e h_z = \frac{\alpha}{2}\sigma_i^x + \frac{h_z}{2}\sigma_i^z + \frac{h_z}{2}$$

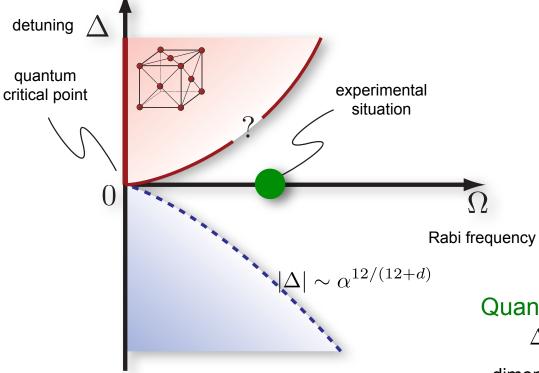
- self-consistency

$$f_e = \langle P_i^e \rangle = \langle P_j^e \rangle$$

 $a_r = 1/(nf_e)^{1/d}$



Phase Diagram



Crystalline phase

- $\Delta>0, \Omega\ll\Delta$ Rydberg density: $\langle n_e\rangle\sim n\Delta^{d/6}$
- Open questions:
 - does the crystalline phase survive?
 - phonon spectrum?
 - melting transition?

Quantum critical region

 $\Delta\approx 0,\Omega\gg\Delta$

- dimensionless parameter

$$\alpha = \frac{n\Omega}{C_6 n^{d/6}}$$

to

- critical phenomena with scaling exponents (mean-field predictions)

$$\langle n_e \rangle \sim n \, \alpha^{\nu} \qquad \nu = \frac{2d}{12+d}$$

$$\xi \sim \alpha^{-\nu/d} \qquad : \text{diverging length}$$

$$z \sim \xi^z \sim \alpha^{-z\nu/d} \qquad : \text{relaxation time}$$

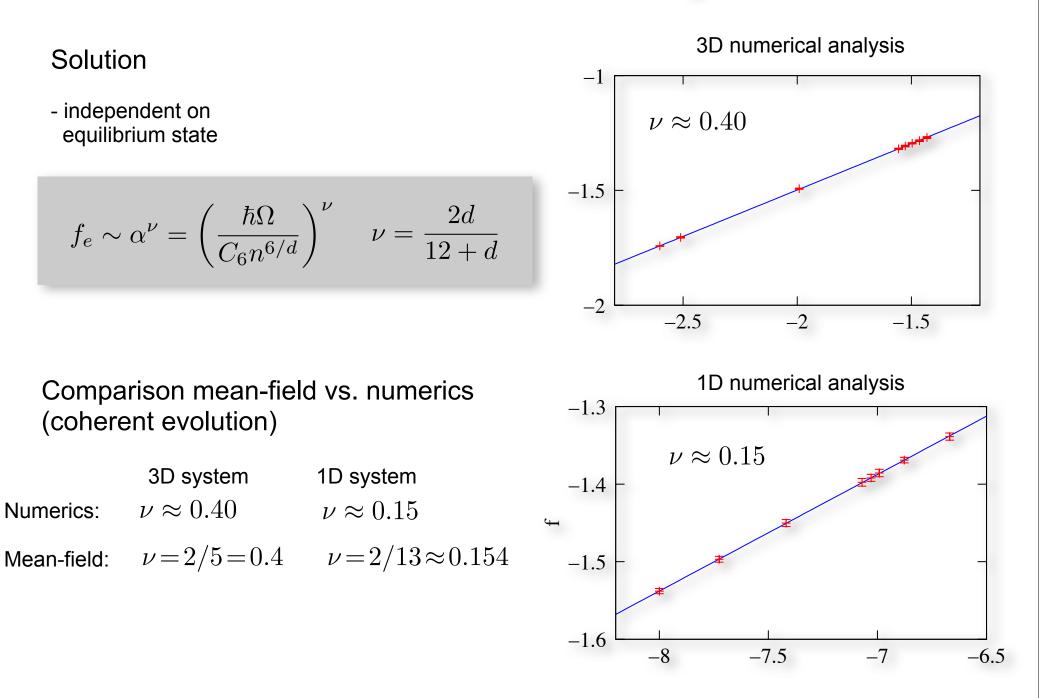
$$z = 6$$

Paramagnet, "Vacuum"

 $\Delta < 0, \Omega \ll \Delta$

- fluctuations of the excited Rydberg number
- independent Rabi oscillations: large detuning $\langle n_e \rangle \sim \frac{\Omega^2}{\Lambda^2}$

Mean-field theory



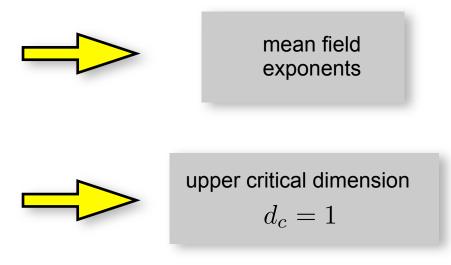
Scaling function

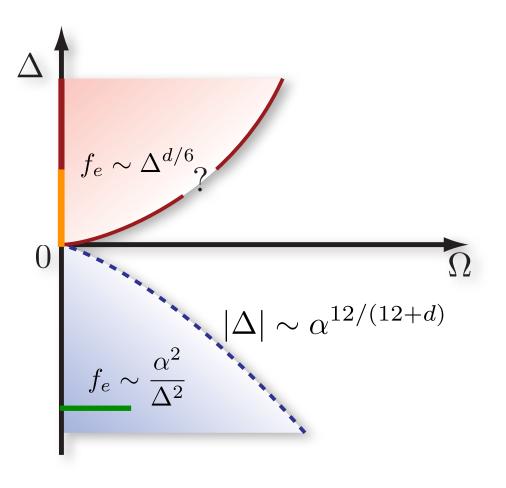
Scaling function

- valid close to the quantum critical point

$$\alpha = f_e^{1/\delta} \, \chi \left(\frac{\Delta}{f_e^{1/\beta}} \right)$$

- two exponents δ β
- two exact results from perturbation theory and classical limit





Local density approximation

Local density

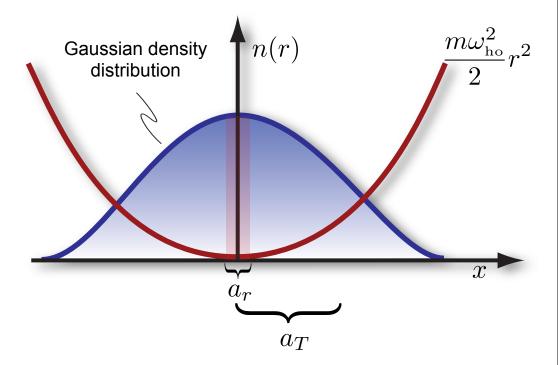
- harmonic trapping potential
- thermal gas with density distribution

$$n(r) \sim \exp\left(-\frac{m\omega_{
m ho}^2}{2T}r^2\right)$$

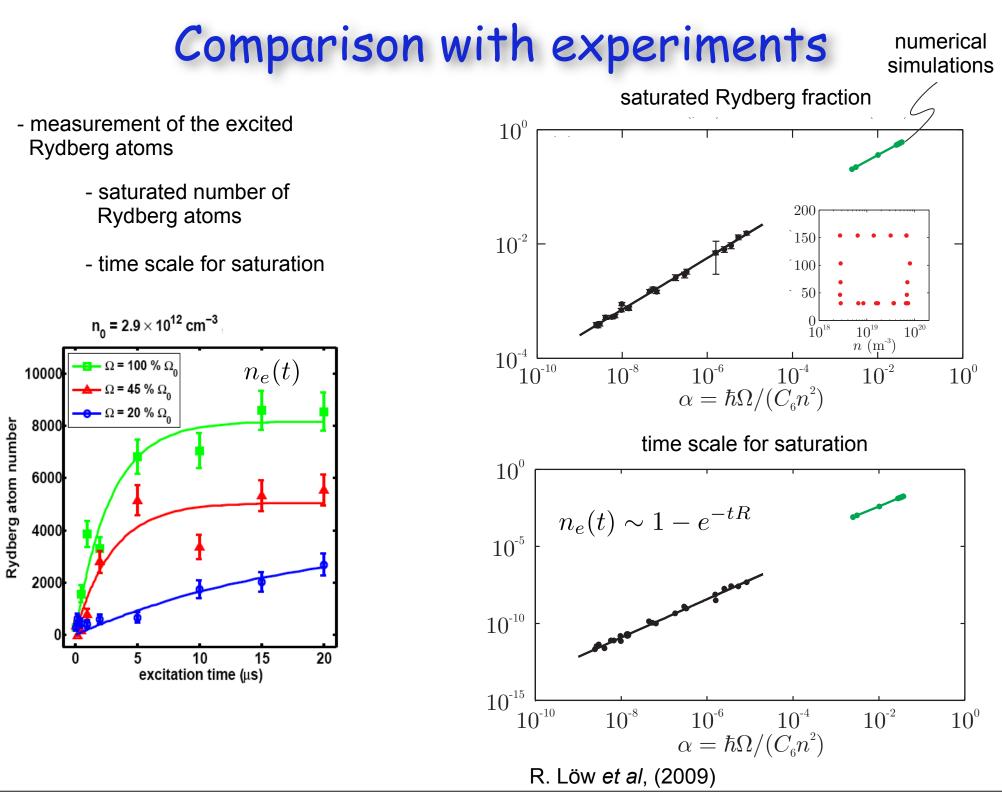
- smoothly varying trap

local density

$$a_T = \sqrt{T/m\omega_{\rm ho}^2} \gg a_r = 1/(nf_e)^{1/d}$$

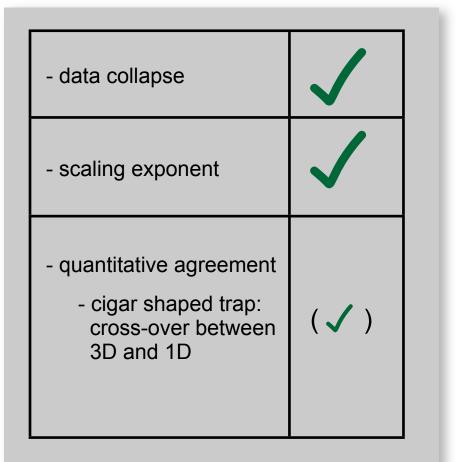


$$N_{e} = \int d\mathbf{r} \ n(\mathbf{r}) f_{r}(\alpha) \sim \int d\mathbf{r} \ n(\mathbf{r}) \left[\frac{\hbar\Omega}{C_{6} (n(\mathbf{r}))^{6/d}} \right]^{\nu}$$
local density
approximation
$$\frac{N_{e}}{N} \sim \alpha^{\nu} \qquad : \text{scaling exponent} \text{ remains invariant}$$



Wednesday, September 8, 2010

Comparison with experiments

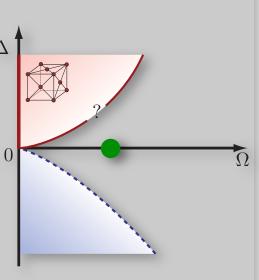


- open questions:

- role of dimension?
- scaling function?
- experimental observation of the crystalline correlations?

	$\gamma (g_r \sim lpha^\gamma)$	$ 1/\delta (f_R \sim \alpha^{1/\delta})$
experiment [1d]	1.08 ± 0.01	0.16 ± 0.01
theory γ	$14/13 \approx 1.08$	$2/13 \approx 0.15$
numerical simulation	1.06	0.150~[6]
experiment [3d]	1.25 ± 0.03	0.45 ± 0.01
theory γ	6/5 = 1.2	2/5 = 0.4
numerical simulation	1.15	0.404 [6]

- experimental ² observation of critical behavior due to a quantum phase transition
- new universality class



Outline

Overview on Rydberg atoms

Rydberg atoms as strongly interacting quantum many-body system

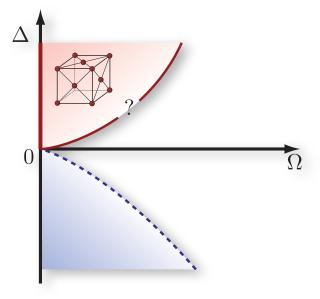
quantum phase transition with critical regionuniversal scaling

Crystalline phase in one-dimension

- floating solid in one-dimension

Tool for designing interactions

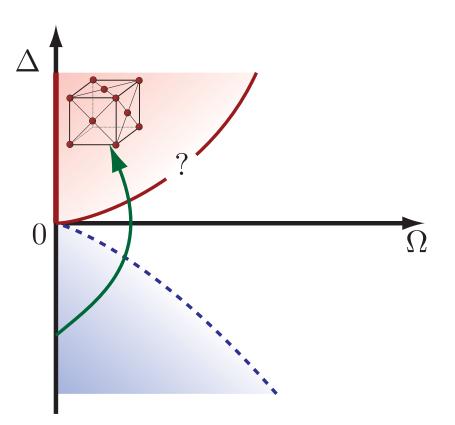
- Rydberg dressed interactions for cold atomic gases



Crystalline phase?

Does the crystalline phase exist?

- adiabatic preparation
- nature of the phase transition?
- influence of underlying arrangement of atoms?



One-dimension in optical lattice

Ground state atoms in an optical lattice

- one atom per lattice site
- one-dimensional chain
- Hamiltonian

$$H = -\frac{\hbar\Delta}{2} \sum_{i} \sigma_{z}^{(i)} + \frac{\hbar\Omega}{2} \sum_{i} \sigma_{x}^{(i)} + \frac{C_{6}}{a^{6}} \sum_{i < j} \frac{P_{ee}^{(i)} P_{ee}^{(j)}}{(i-j)^{6}}$$

- commensurate solids $\ \Delta > 0$

Devils staircase

Ground state ($\Omega=0\,$) (Bak et al, PRL, 1984)

- complete devils staircase

- Rydberg density: $f = \frac{p}{q}$ Δ nucleation of particle defects Δw nucleation of hole defects

- detuning for center of lobe

$$\Delta_0 = 7\zeta(6) \frac{C_6}{a^6} \left(\frac{p}{q}\right)^6$$

- width of the lobe

$$\Delta_w = 42\zeta(7) \frac{C_6}{a^6} \frac{1}{q^7}$$

- dominant lobes for p=1

 \rightarrow

commensurate solid is stable for finite $\ \Omega$

Commensurate lobes

Stability of lobes - second order perturbation theory in Ω/Δ_w - energy shift for ground state and defects - effective hopping for defects hopping energy: x_i x_i x_i x_{i+1}

Effective model for defects

- position of Rydberg atom
- defect number at i

$$S_i^z = x_{i+1} - x_i - q$$

- spin-1 system in a superlattice with spacing $\ q$

$$H_{\rm eff} = \sum_{i} \left[U(S_i^z)^2 - JS_i^+ S_{i+1}^- + \text{h.c.} - \mu S_i^z \right]$$

hopping

 $U \approx f \Delta_w / 2$ $J \approx \frac{7}{5} \frac{\hbar \Omega^2}{\Delta}$

interaction

chemical potential

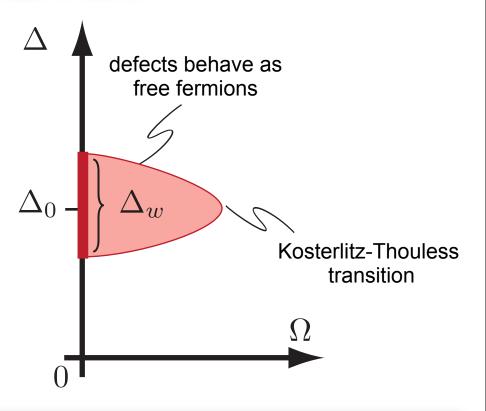
$$\mu = \hbar(\Delta - \Delta_0)$$

Phase transition

- effective model remains correct close to the lobe with low defect density

Commensurate-Incommensurate transition

- nucleation of particles-defects
- defects behave as hard-core bosons/ free fermions
- defects described by Luttinger liquid with $\ K=1$



Tip of the lobe

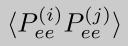
- Kosterlitz-Thouless transition
- defects described by Luttinger liquid with $\,K=2\,$
- simultaneous nucleation of particle/hole defects

Novel phase with algebraic correlations

- spin-spin correlations

$$\langle S_i^z S_j^z \rangle \sim 1/|i-j|^{2K}$$

- what are the correlations in the original model?



Structure factor for Rydberg atoms

Correlation function

- mapping of the effective model to the physical quantity

$$\langle P_{ee}^{(0)} P_{ee}^{(j)} \rangle = \frac{1}{q+n} \left\langle \sum_{k} \delta_{j,N_k+kq} \right\rangle$$

$$=\sum_{k}\frac{P_k(j-kq)}{q+n}$$

- determined numerically via Monte Carlo with correlated random numbers
- long wave length approach within the Luttinger liquid theory

$$P_k(m) = \frac{1}{\sqrt{2\pi\kappa^2}} e^{-\frac{(m-nk)}{2\kappa^2}}$$

$$\kappa^2 = \langle (N_k - nk)^2 \rangle = \frac{K}{\pi^2} \log(k/b)$$

averaged defect $n = \langle S_i^z \rangle$ number:

mhar anaratar

defect number operator between site 0 and k:

$$N_k = \sum_{i=0}^{k-1} S_i^z = x_k - x_0$$

distribution function: P

 $P_k(m)$

Solid correlations for the Rydberg atoms:

$$\frac{\langle P_{ee}^{(0)} P_{ee}^{(j)} \rangle - \langle P_{ee}^{(0)} \rangle^2}{\langle P_{ee}^{(0)} \rangle^2} = \cos\left(\frac{2\pi j}{n+q}\right) \left[\frac{b(n+q)}{j}\right]^{\frac{2K}{(n+q)^2}}$$

floating solid

Phase diagram

Commensurate lobes

- incompressible
- excitation gap
- long-range order in solid structure factor

Floating solid

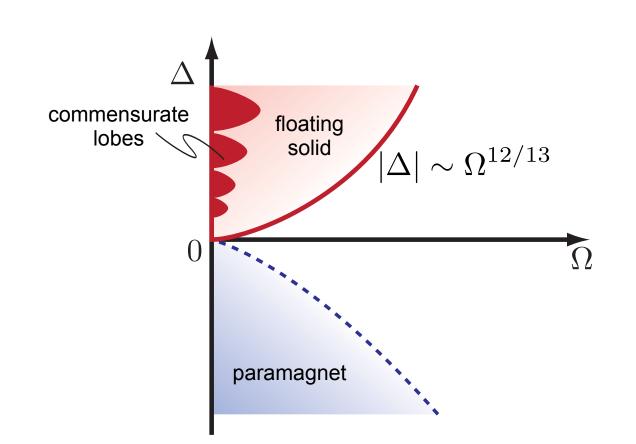
- linear excitation spectrum
- algebraic correlations for solid structure factor

Paramagnet

- excitation gap
- solid correlations decay as

$$\langle P_{ee}^{(0)} P_{ee}^{(j)} \rangle - \langle P_{ee}^{(0)} \rangle^2 \sim \frac{1}{|j|^6}$$

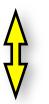
due to slow decay of interaction



Phase diagram

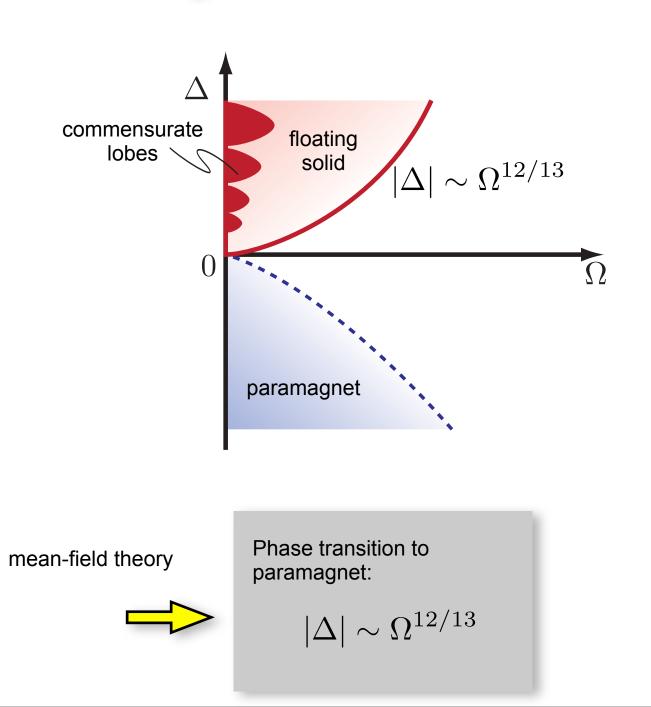
Quantum phase transition

- floating solid with algebraic correlations



- paramagnet with excitation gap
- break down of the effective model in terms of defects:
 - include higher defects
 - multiple defect hopping
 - fluctuations of defects per site larger than the spacing

 $\langle n_i^2 \rangle \sim \left(\frac{J_c}{U}\right)^2 \sim q^2$



Outline

Overview on Rydberg atoms

Rydberg atoms as strongly interacting quantum many-body system

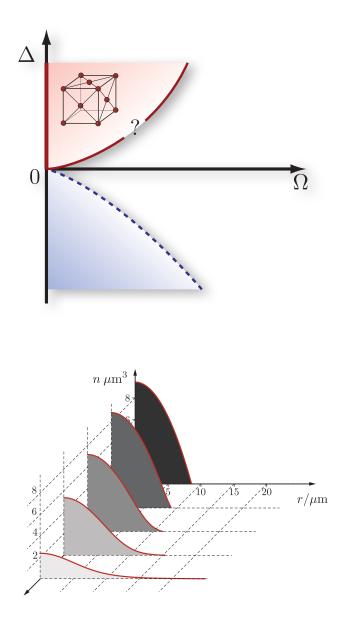
quantum phase transition with critical regionuniversal scaling

Crystalline phase in one-dimension

- floating solid in one-dimension

Tool for designing interactions

- Rydberg dressed interactions for cold atomic gases



Rydberg dressing

- weakly dressing with a **Rvdberg** level $(43S_{1/2})$ E_e – - design ground state interaction for cold atomic gases Ω $|d\rangle = \alpha |g\rangle + \beta |e\rangle$ $\beta \approx \frac{\Omega}{2\Delta}$ $(5P_{3/2})$ - spontaneous $\Gamma_{\rm eff} = \frac{\Omega^2}{4\Lambda^2}\Gamma_e$ E_g emission: - allow for motion of the atoms Effective interaction - Born-Oppenheimer potential $V_{\rm eff}(\mathbf{r}) = \frac{\hbar\Omega^4}{|\Delta|^3} \frac{1}{1 + (r/\xi_0)^6}$ experimental regime - Blockade $\xi_0 = (C_6/2\hbar|\Delta|)^{1/6}$ radius

 Ω

Supersolid instability?

Roton instability

- (T. Pohl, 2009, V. Liu, 2010)
- effective interaction $V_{\rm eff}({\bf q})$ negative for $~~q\sim 1/\xi_0$
- Roton instability within Bogoliubov theory

Quantum Monte Carlo

(G. Pupillio, 2010)

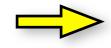
- solid with many-particles on each lattice site
- superfluid coherence between the sites established by tunneling

Influence on a Bose-Einstein condensate

- realistic experimental parameters

 $\xi_0 \sim 2\mu \mathrm{m}$

- large atomic density



collective many-body interaction

Many-body interactions

Two-body interaction

- s-wave scattering length

$$g_{\rm eff} = \frac{4\pi\hbar^2 a_{\rm eff}}{m} = \frac{\pi^2}{12} \frac{\hbar\Omega^4}{|\Delta|^3} \xi_0^3$$

- validity of 1 Born approximation
 - $\Omega^4/|\Delta|^3 \ll \hbar/m\xi_0^3$

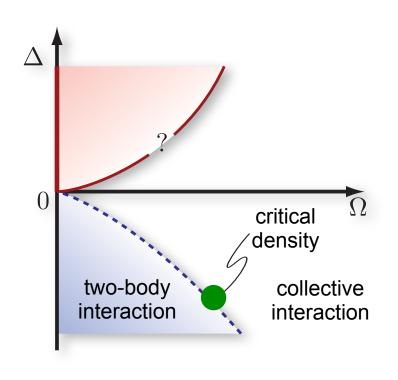
Collective blockade phenomena

- density of excited $\frac{\Omega^2}{4\Delta^2}n$
- allowed distance between Rydberg atoms: ξ_0
- critical density

$$\square \qquad n_c = 4 \frac{\Delta^4}{\Omega^4 \xi_0^3}$$

Three-body interactions

- solving Born-Oppenheimer with three-particles
- three-body interactions $$\Omega/\Delta$$ suppressed by



Energy functional

Energy functional for interaction

- fixed density n
- Bose-Einstein condensate: homogenously distributioned
- effective energy of internal degree of freedom

 $E_{\mathrm{eff}}[n] = \langle 0 | H | 0 \rangle$: mean field theory

Low densities: $n \ll n_c = 4 \frac{\Delta^4}{\Omega^4 \xi_0^3}$

- two-body interaction

$$E_{
m eff}[n] = rac{g_{
m eff}n^2}{2}$$

High densities: $n \gg n_c = 4 \frac{\Delta^4}{\Omega^4 \xi_0^3}$

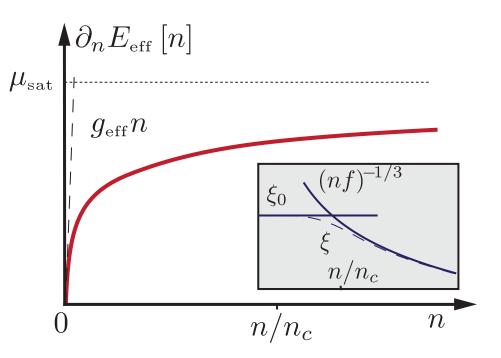
- saturation on chemical potential: all atoms are within the Blockade radius

$$E_{\rm eff}[n] = \mu_{\rm sat} n$$

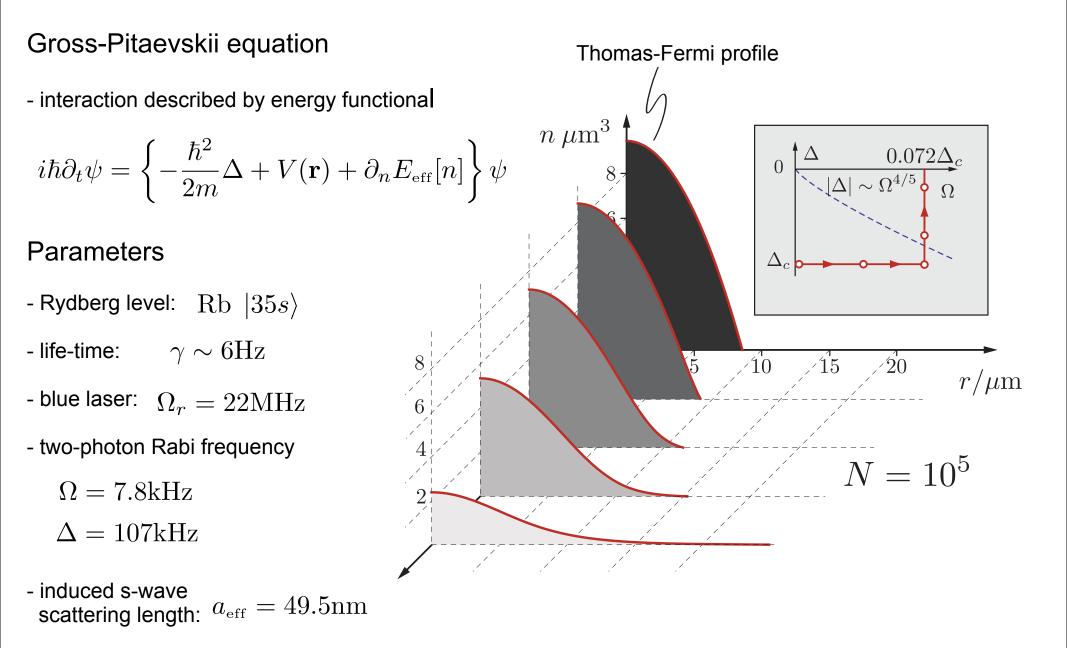
- Hamiltonian for internal structure

$$H = \frac{C_6}{2} \sum_{i \neq j} \frac{n_i^e n_j^e}{|\mathbf{r}_i - \mathbf{r}_j|^6} + \hbar\Omega \sum_i \sigma_i^x + \hbar\Delta \sum_i \sigma_i^z$$

- ground state |0
angle



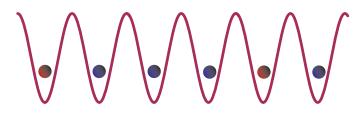
Generalized Gross-Pitaevskii equation



Conclusion

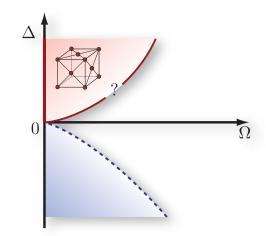
Van der Waals blockade

- strongly interacting quantum many-body system
- critical phenomena with universal scaling exponents



Tool for designing interactions

- Rydberg dressed interactions for cold atomic gases
- is a supersolid experimentally realizable?



Crystalline phase

- floating solid in one-dimension
- does the solid survive higher dimensions?

