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Outline

Rydberg atoms as strongly interacting
quantum many-body system

- quantum phase transition with critical region
- universal scaling

Crystalline phase in one-dimension

- floating solid in one-dimension

Tool for designing interactions

- Rydberg dressed interactions for
  cold atomic gases

Overview on Rydberg atoms
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Rydberg atoms
Rydberg atom

- one electron excited into a shell 
  with principal quantum number n

- wave function of the 
  Hydrogen atom

- large dipole moments

- quantum defect theory 
  for alkali atoms

- increased life time 
  for high n

electron
ion rn ∼ n2

nth : orbit
- relativistic corrections 
  are small
- 
- angular momentum 

En ∼ 1/n2

l < n− 1

d ∼ e a0 n2

electrical  field  (V/cm)

n
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Rydberg excitations

Rydberg-Rydberg interaction

- strong van der Waals interactions 
  for s-wave states

- dipole-dipole interactions in 
  presence of an electric field

- depending on n 
  attractive or repulsive

- C6 ∼ n11

d ∼ n2

Blockade phenomena

- once a Rydberg atom is excited,
  further excitatons are shifted out
  of resonance
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Dipole-dipole interactions
Cold atoms

+

−
dipole 

moment

- permanent dipole 
  moment:

- interactions are 
  increased by

- rotational energy

ea0 ≈ 2.5Debye

1/α2 ∼ 1372

Polar Molecules

Rydberg atoms

- magnetic dipole moments
  between electron spins:

- Cr with 6 electrons exhibits 
  strong magnetic dipole 
  moments  

-  electric dipole moment

- similar internal structure
  as polar molecules

- finite life time

principal quantum 
number

Wednesday, September 8, 2010



Quantum Information

- implementation of quantum gates

Jaksch, Cirac, Zoller, Rolston, Côté, Lukin, 
Zoller PRL 2000

Blockade regime
Dipole and van der Waals 
Blockade

- experimental observation of strong 
  Rydberg-Rydberg interactions

T. F. Gallagher, Charlottesville; M. Weidemüller, 
Freiburg; P. Pillet, Orsay; van den Heuvell, 
Amsterdam; P. Gould, Storrs; T. Pfau Stuttgart

nsat

(Heidemann et al, PRL 2007)
Coherent evolution

- dynamics of the sytem in the 
  blockaded regime

Robicheaux and Hernández, PRA 2005
Ates, Pohl, Pattard, Rost, PRA 2007
Stanojevic and Côté, arxiv 2008
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Setup
Rydberg excitation

- resonant excitation 
  of Rydberg states

- frozen motion of the atoms 
  during Rydberg excitation

Rydberg-Rydberg interaction

- strong van der Waals repulsion

- strong blockade regime:

C6 ∼ n11V (r) =
C6

r6

: blockade radius

: number of particles 
  within blockade radius

Nb =
�

C6n2/�Ω ∼ 1000

rb = 6
�

C6/�Ω ∼ 5 µm

: two photon 
  Rabi frequency
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Characteristic time evolution

- initial condition: 
  all atoms in ground state

- switching on of laser:

Saturation

single atom coherence

reversable Rydberg 
excitations

linear increase

saturation

Equilibrium state on 
long time scales

- single atom coherence 
  on short time scales
- intermediate regime with 
  Blockade effects
- saturation in a steady state

- relation to ground state of
  the Hamiltonian?
- “thermal” equilibrium state?
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Effective spin system

- rotating wave approximation (rotating frame)

- mapping to 
  spin-1/2 system

- number of excited Rydberg atoms

Hamiltonian

| ↓�i = |g�i
| ↑�i = |e�i

σx
i = |e��g|i + |g��e|i

σz
i = |e��e|i − |g��g|i

Hamiltonian

- dimensionless
  parameter

ne
i = (σz

i + 1)/2

ri : particle position

: averaged particle
  density

n
H =

C6

2

�

i�=j

n
e
i n

e
j

|ri − rj |6 + �Ω
�

i

σ
x
i + �∆

�

i

σ
z
i

α =
�Ω

C6n6/d
d : dimension of

  the system

ne =
�

i

ne
i
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Crystalline phase

- finite number 
  of excitation:

- crystalline structure:
  closed sphere packing

Paramagnet, “Vacuum”

- all particles in 
  the ground state:

- initial state of the experiment

∆ > 0,Ω = 0 ∆ < 0,Ω = 0

�ne� = 0
�ne� > 0

Phase Diagram

H =
C6

2

�

i�=j

P
e
i P

e
j

|ri − rj |6 +
�Ω
2

�

i

σ
x
i −

�∆
2

�

i

σ
z
i

Ground state

- classical Hamiltonian without
   quantum fluctuations

Ω = 0

Second order quantum
phase transition

�ne� ∼ ∆d/6
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Crystalline phase

- finite number 
  of excitation:

- crystalline structure:
  closed sphere packing

- diagonal long range order

Paramagnet, “Vacuum”

- all particles in 
  the ground state:

- initial state of the experiment

Second order quantum
phase transition

∆ > 0,Ω = 0

∆ < 0,Ω = 0

quantum 
critical region

�ne� ∼ ∆d/6

�ne� = 0

�ne� > 0

Phase Diagram  (          )Ω = 0
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Mean field theory

Approximation

- select a single atom
- surrounded by a bath of atoms
- interaction produces an 
  effective potential

- local Hamiltonian

- self-consistency

Hi =
α

2
σ

z
i + P

e
i hz =

α

2
σ

x
i +

hz

2
σ

z
i +

hz

2

hz =
�

j

g(ri, rj)�Pj�
n6/d

|ri − rj |6

g(ri − rj)

ar r

g(r)
1

0

ar

ar = 1/(nfe)1/d

fe = �P e
i � = �P e

j �
Mean-field solution
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: relaxation time

Phase Diagram

ν =
2d

12 + d

z = 6

ξ ∼ α−ν/d

τ ∼ ξz ∼ α−zν/d

�ne� ∼ n∆d/6

Crystalline phase

- Rydberg density:

- Open questions:

Paramagnet, “Vacuum”

- fluctuations of the excited 
  Rydberg number

- independent Rabi oscillations: 
  large detuning 
  

∆ < 0,Ω� ∆

∆ > 0,Ω� ∆

- does the crystalline phase survive?
- phonon spectrum?
- melting transition? 

Quantum critical region

- dimensionless parameter 

- critical phenomena with scaling exponents
   (mean-field predictions)

∆ ≈ 0,Ω� ∆

�ne� ∼ n αν

quantum 
critical point experimental 

situation

α =
�Ω

C6nd/6

�ne� ∼
Ω2

∆2

: diverging length 
  scale

Rabi frequency

detuning
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Solution

- independent on 
  equilibrium state

Mean-field theory

ν =
2d

12 + d

3D system 1D system

Comparison mean-field vs. numerics 
(coherent evolution)

ν ≈ 0.15ν ≈ 0.40

5

5

6

5

4

3

5

f

1D numerical analysis

3D numerical analysis

ν ≈ 0.40

ν ≈ 0.15

Numerics:

Mean-field: ν =2/5=0.4 ν =2/13≈0.154

fe ∼ αν =
�

�Ω
C6n6/d

�ν
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Scaling function 

- valid close to the quantum critical point

- two exponents

- two exact results from perturbation theory
  and classical limit

Scaling function

upper critical dimension

dc = 1

mean field 
exponents
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Local density

- harmonic trapping potential
- thermal gas with 
  density distribution

- smoothly varying trap

Local density approximation

x

mω2
ho

2
r2n(r)Gaussian density

distribution

aT =
�

T/mω2
ho � ar = 1/(nfe)1/d

n(r) ∼ exp
�
−mω2

ho

2T
r2

�

aT

{{ar

local density 
approximation

Ne =
�

dr n(r)fr (α) ∼
�

dr n(r)

�
�Ω

C6 (n(r))6/d

�ν

Ne

N
∼ αν : scaling exponent 

  remains invariant
density in 
trap center
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Comparison with experiments

R. Löw et al, (2009)

Universal scaling in a strongly interacting Rydberg gas

Robert Löw,1, ∗ Hendrik Weimer,2 Ulrich Raitzsch,3 Rolf Heidemann,1 Vera
Bendkowsky,1 Björn Butscher,1 Hans Peter Büchler,2 and Tilman Pfau1, †

1
5. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany

2
Institut für Theoretische Physik III, Universität Stuttgart, 70550 Stuttgart, Germany

3
Department of Physics, Durham University, Durham DH1 3LE, U.K.

(Dated: February 25, 2009)

We study a gas of ultracold atoms resonantly driven into a strongly interacting Rydberg state.

The long distance behavior of the spatially frozen effective pseudospin system is determined by a

set of dimensionless parameters, and we find that the experimental data exhibits algebraic scaling

laws for the excitation dynamics and the saturation of Rydberg excitation. Mean field calculations

as well as numerical simulations provide an excellent agreement with the experimental finding, and

are evidence for universality in a strongly interacting frozen Rydberg gas.

The concept of universality appears in many different
fields of physics [1], biology [2], economics [3] and vari-
ous other systems. It allows to describe the behavior of
a system without actually knowing all the microscopic
details of its state. A particular class of universal scaling
behavior can be found close to second order phase transi-
tions. The characterization of the corresponding critical
points in terms of universality classes [4] has become cru-
cial for the understanding of classical as well as quantum
phase transitions. Quantum degenerate gases can serve
as a well controlled model system for the exploration of
universal scaling behavior and quantum phase transitions
[5] in strongly interacting cold atomic systems. Here, we
show that the experimental data supports the appearance
of universal scaling in ultracold Rydberg gases, which is
in agreement with the recently predicted existence of a
quantum critical point [6].
The key ingredients of the described experiments are the
combination of a Rydberg gas in the ‘frozen’ regime [7]
with strong interactions among the Rydberg atoms [8],
and the ability to coherently drive the system [9] as a
pseudo spin. There exists a variety of interaction mecha-
nisms among Rydberg atoms giving rise to blockade phe-
nomena, which are intensively studied [8, 10, 11] experi-
mentally. Recently several groups also focused on the co-
herent properties of frozen Rydberg gases in the regime
of weak [12–14], as well as strong interactions [9, 15–18].
This unique combination of strong interactions with long
coherence times led to various proposals for quantum in-
formation processing using Rydberg atoms [19–22].

In this letter, we apply the theoretical framework of
a quantum critical behavior in strongly interacting Ryd-
berg gases [6] to experimental data (see Fig. 1a), which
has been previously analyzed with respect to coherent
and collective excitation of Rydberg atoms in the strong
blockade regime [8]. The relevant parameters of the
experiment are the density of particles n, the coupling
strength of the driving laser field Ω (see Fig. 1b), its de-
tuning from resonance δL, and the interaction strength
among the Rydberg states determined in our case by the

200

150

100

50

0
1018 1019 1020

Ω
/2

 (
kH

z)
π

n (m )-3

10-10 10-8 10-6 10-4 10-2 100

100

10-2

10-4

f
N

N
R

R
=

/

α C n= Ω/( )~ 6

2

0
2000
4000

6000
8000

10000

N
R

0 10 20
excitation time ( s)µ

(a) (b)

(c)

FIG. 1: (a) Saturated Rydberg excitation obtained with a

laser coupling strength of Ω=2π×154 kHz in dense ultracold

atomic clouds with densities n = [3.2×10
19

(�), 6.6×10
18

(�),

2.8×10
18

(�)] m
−3

[8]. (b) Scanned parameter space for the

individual excitation curves depicted in the n - Ω plane. (c)

Saturated Rydberg fraction fR as a function of the dimen-

sionless parameter α = �Ω/C6n
2

for a 3D-configuration (�)

and numerical simulations (•). The experimental and nu-

merical data are fitted (solid lines) to power laws of the form

fR ∼ α1/δ
from which the critical exponents 1/δ = 0.45±0.01

(exp.) and 1/δ = 0.404 (num.) are extracted.

van der Waals constant C6. On resonance (δL = 0), these
parameters can be merged into a single dimensionless pa-
rameter α = �Ω/C6n2. We find, that all experimental
data taken from [8] collapse to a simple power law as a
function of this parameter α, see Fig. 1c), which is in
agreement with the predicted universal scaling behavior.
Textbooks on statistical mechanics [1] often introduce

universal scaling as a critical phenomenon, which can be

Universal scaling in a strongly interacting Rydberg gas
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as well as numerical simulations provide an excellent agreement with the experimental finding, and
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This unique combination of strong interactions with long
coherence times led to various proposals for quantum in-
formation processing using Rydberg atoms [19–22].
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berg gases [6] to experimental data (see Fig. 1a), which
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laser coupling strength of Ω=2π×154 kHz in dense ultracold

atomic clouds with densities n = [3.2×10
19

(�), 6.6×10
18
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2.8×10
18
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individual excitation curves depicted in the n - Ω plane. (c)

Saturated Rydberg fraction fR as a function of the dimen-

sionless parameter α = �Ω/C6n
2

for a 3D-configuration (�)

and numerical simulations (•). The experimental and nu-

merical data are fitted (solid lines) to power laws of the form

fR ∼ α1/δ
from which the critical exponents 1/δ = 0.45±0.01

(exp.) and 1/δ = 0.404 (num.) are extracted.

van der Waals constant C6. On resonance (δL = 0), these
parameters can be merged into a single dimensionless pa-
rameter α = �Ω/C6n2. We find, that all experimental
data taken from [8] collapse to a simple power law as a
function of this parameter α, see Fig. 1c), which is in
agreement with the predicted universal scaling behavior.
Textbooks on statistical mechanics [1] often introduce

universal scaling as a critical phenomenon, which can be

numerical 
simulations

3

same result for 1/δ is obtained using standard mean-field

theory [6]. In addition, the mean-field solution leads to a

describtion of the full behavior of fR in terms of a general

scaling function

fR = α2d/(2p+d) χ

�
∆

α2p/(2p+d)

�
. (2)

As the system turns classical in the limit α → 0, the

behavior for χ(y) in the limit y → ±∞ is exactly known

to be χ(y) ∼ yd/p
and χ(y) = 1/y2

, respectively. It is

important to note that the mean-field result for δ is the

only consistent scaling exponent with these limits. This

indicates that the classical behavior of the system at

α = 0 fixes the exponent δ to its mean field value even for

low dimensions. In contrast to a classical critical point,

for a quantum critical point the dynamical behavior

is coupled to the static properties via the dynamical

critical exponent z, i.e. τ ∼ ξz
where τ describes the

characteristic time scale close to the critical point. Here,

we find the dynamical critical exponent to be z = p,

which implies that the relaxation is domitated by the

frequency
√

NbΩ in agreement with the above superatom

picture.

In the actual experiment, the atoms are well de-

scribed as a thermal gas trapped by a harmonic potential.

Then, the three-dimensional density distribution of the

N ground state atoms reads

n(r) =
N

(2π)3/2σxσyσz
exp

�
− x2

2σ2
x

− y2

2σ2
y

− z2

2σ2
z

�
, (3)

where the standard deviations σx,y,z =
�

kBT/2mωx,y,z

are determind by the trapping frequencies ωx,y,z, the

mass m, the temperature T of the cloud and Boltzmanns

constant kB . Note, that this temperature T associated

with the kinetic energy of the atoms is decoupled from

the dynamics of the Rydberg excitations in the frozen

Rydberg gas. Within the local density approximation,

we can describe the properties of the system by a local

parameter α(r) = �Ω/C6n(r)2 and the total Rydberg

fraction fR is given by (d = 3, p = 6)

fR =
1

N

�
dr3fR(r)n(r) ∼ 1

(−2/δ + 1)3/2
α1/δ. (4)

Here, α is the peak value in the trap center α0 =

�Ω/C6n(0)
2
. Consequently, we find that the critical ex-

ponent δ is not modified by the harmonic trapping poten-

tial within the local density approximation, and reduces

to the value given in the thermodynamic limit.

A detailed description of the experimental setup can

be found in [8, 25] and here only a rough outline of the

experimental procedure is given. First we prepare a mag-

netically trapped cloud of Rubidium atoms spin polarized

in the 5S1/2, F = 2,mF = 2 state. The atomic cloud has

g
R

C
N

n
R

6
=

/(
)

~
2

100

10-5

10-10

10-15

10-10 10-8 10-6 10-4 10-2 100

α C n= Ω/( )~ 6

2

FIG. 3: Universal scaling behavior of the rescaled exci-
tation rate gR for a three-dimensional density distribution
(experiment(�) and the corresponding numerical simulation
(•)). A linear fit to a power law gR ∼ αγ results in a critical
exponent of γ = 1.25± 0.03 (exp) and 1.15 (num).

a temperature of 3.4 µK and peak densities n0 close to

10
20

m
−3

. This corresponds to phase-space densities well

below quantum degeneracy to avoid a bimodal density

distribution [24]. To alter the atomic density without

changing size and shape of the cloud we use a Landau-

Zener sweep technique with which a desired number of

atoms is removed from the trap [9], here from a maxi-

mum atom number N = 1.5 × 10
7

to a minimum atom

number of N = 5× 10
5
. In this process the temperature

remains unchanged and consequently the physical dimen-

sions of the cloud. With the known harmonic oscillator

potential of the Ioffe-Pritchard type trap, all parameters

of the atomic clouds are known. The excitation to the

43S1/2 Rydberg state is done with a resonant two-photon

transition via the 5P3/2 state. To avoid population of the

intermediate 5P3/2 state the light is detuned with respect

to this state by δL=478 MHz to the blue. The coupling

strength Ω of this effective two-level system is altered by

adjusting the laser intensities from 2π×31 kHz to 2π×154

kHz. The excitation dynamics are investigated by a vari-

ation of the excitation time from 100 ns to 20 µs, which

is short compared to the excited state lifetime of 100

µs. After excitation the Rydberg atoms are field ionized

and the emerging ions are detected using a micro-channel

plate.

In the experiment α is changed non-adiabatically by

switching on abruptly the coupling laser field Ω. Then,

the number of excited Rydberg atoms NR(t) undergoes

a dynamical evolution, which saturates in NR. The re-

sulting excitation curves are shown in Fig. 1a) and the

scanned parameter in Fig 1b). The inital increase in the

number of Rydberg atoms is well described by a rate R,

and this relaxation time is experimentally deduced by a

fit of the time-evolution of the Rydberg excitation NR(t)
by an exponential saturation function

NR(t) = NR(1− e−R t/NR), (5)

time scale for saturation

saturated Rydberg fraction
- measurement of the excited 
  Rydberg atoms

- saturated number of 
  Rydberg atoms

- time scale for saturation
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Comparison with experiments

- data collapse

- scaling exponent

- quantitative agreement

- cigar shaped trap:
  cross-over between 
  3D and 1D

- open questions: 

- role of dimension?
- scaling function?
- experimental observation 
  of the crystalline correlations?

4

TABLE I: Comparison of the different results for the critical

exponents γ and 1/δ for a three dimensional (d = 3, p = 6)

as well a one dimensional (d = 1, p = 6) density distribution.

The theoretical values are given in Eq. (6) and Eq. (7). The

results of the numerical simulation have been achieved by in-

tegrating the Hamiltonian (1) for up to 100 particles [6]. The

experimental results are obtained by fitting power laws to the

data shown in Fig. 1 and Fig. 2.

γ (gr ∼ αγ
) 1/δ (fR ∼ α1/δ

)

experiment [1d] 1.08± 0.01 0.16± 0.01

theory γ 14/13 ≈ 1.08 2/13 ≈ 0.15

numerical simulation 1.06 0.150 [6]

experiment [3d] 1.25± 0.03 0.45± 0.01

theory γ 6/5 = 1.2 2/5 = 0.4

numerical simulation 1.15 0.404 [6]

which allows to extract both the initial excitation rate

R and the saturation level NR. In the strongly blocked

regime (α� 1) the rate R is determined by the collective

Rabi frequency
√

NbΩ and the saturation level NR, which

is close to that of the ground state of the system. Previ-

ously, we have examined the data and its dependence on

the ground state density n and the Rabi frequency Ω us-

ing a general expression R ∼ nκRΩλR and NR ∼ nκN ΩλN

[8]. The scaling behavior for a variation of the ground

state density n and the coupling strength Ω gave a strong

evidence for a coherent collective excitation dynamics in

the strong blockade regime.

In the following, we analyze these results in terms of

a universal scaling behavior. Rescaling the measured

quantities to a dimensionless rate gR and and a dimen-

sionless saturation level fR, and combining the density n
and the Rabi frequency Ω in the dimensional parameter

α = �Ω/Cpnp/d
, gives the following expected behavior

gR =
�R

Nnp/d
∼ αγ γ =

2(p + d)

2p + d
, (6)

fR =
NR

N
∼ α1/δ δ =

2p + d

2d
. (7)

The rescaled quantities for fR and gR shown in Fig. 1c)

and Fig. 3 assume a three dimensional density distribu-

tion with a van der Waals interaction (p = 6). First,

we would like to point out, that the data collapse to a

algebraic relations in agreement with the predicted scal-

ing laws. It is worth to mention that the numerical

simulations based on only 10
2

pseudospins scales up to

the experimental situation with atom numbers of up to

10
7
. For a more quantitative analysis of the experimental

data, it is important to point out that the radial Gaus-

sian radius of the cigar shaped cloud is σx,y = 8.6 µm.

This width is comparable to the blockade radius between

two Rydberg atoms of roughly 5µm and places by this

the geometry in a crossover regime between 1D and 3D.

Therefore we analyze the data wether whether the ex-

perimental setup is better described in 1D with a line

density or in 3D. Fitting the observed power laws of the

form ln gR ∼ γ lnα + cg and ln fR ∼ 1/δ lnα + cf we

extracted the individual exponents. The results are sum-

marized in table I and compared to the expected the-

oretical values as well as to numerical simulations; the

procedure for the numerical analysis is described in de-

tail in [6]. The relatively small error bars of the fitted

exponents 1/δ show the excellent agreement with simple

power laws over a large range in α. Both situations are

in qualitative agreement with the 1D and 3D analysis

and therefore it is not possible to assign the experimen-

tal situation unambiguously to one of them. In future

experiments it might be possible to create better defined

dimensionality by adjusting the shape of the atomic cloud

and/or the strength of the interaction by choosing ade-

quate Rydberg states.

In summary we have shown that the experimental re-

sults presented in [8] can be described with universal scal-

ing theories. This result confirms that the description

with the effective spin Hamiltonian given in this article

is correct to a large extent. Therefore the observation of

a quantum critical point in this system should be within

experimental reach. This could be done by measuring the

excited Rydberg fraction when approaching the quantum

critical point adiabatically starting from a non-critical re-

gion in the α −∆ parameter space. Another way would

be the observation of a crystalline correlation function

of the excited Rydberg atoms by either a spatial depen-

dent observation of the Rydberg atoms or in the Fourier

space by a Laue diffraction experiment with a four wave

mixing technique [26]. The measurement of the critical

exponent is not in complete accordance with a one- or

three-dimensional situation, which is most likely due to

finite size effects. The general form of the scaling ex-

ponents allows also to apply the simple model to dipo-

lar systems, which are widely realized in frozen Rydberg

gases and are also feasible in the context of ultra-cold

dipolar molecules [27].
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Crystalline phase?

Does the crystalline phase 
exist?

- adiabatic preparation

- nature of the phase transition?

- influence of underlying arrangement
  of atoms?
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One-dimension in optical lattice

Ground state atoms in an 
optical lattice

- one atom per lattice site

- one-dimensional chain

- Hamiltonian

- commensurate solids 
lattice spacing
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Devils staircase

Ground state (            )
(Bak et al, PRL, 1984)

- complete devils staircase

- Rydberg 
  density:

ground state

fractional  hole defect

- detuning for center of lobe

- width of the lobe

fractional  particle defect

commensurate solid is 
stable for finite

nucleation of 
particle defects

nucleation of 
hole defects - dominant lobes for 
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Commensurate lobes

Stability of lobes

- second order perturbation 
  theory in 

- energy shift for ground state 
  and defects

- effective hopping for
  defects 

energy shifts:

hopping energy:

Effective model for defects

- position of Rydberg atom

- defect number at i

- spin-1 system in a superlattice
  with spacing 

hoppinginteraction chemical
potential
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Tip of the lobe

- Kosterlitz-Thouless transition

- defects described by Luttinger 
  liquid with

- simultaneous nucleation of 
  particle/hole defects

Commensurate-Incommensurate 
transition

- nucleation of particles-defects

- defects behave as hard-core bosons/
  free fermions

- defects described by Luttinger 
  liquid with 

Novel phase with algebraic correlations

- spin-spin correlations

- what are the correlations in 
  the original model?

Phase transition

defects behave as 
free fermions

Kosterlitz-Thouless
 transition

- effective model remains correct close 
  to the lobe with low defect density
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Structure factor for Rydberg atoms

Correlation function

- mapping of the effective model
  to the physical quantity 

- determined numerically via Monte   
  Carlo with correlated random numbers

- long wave length approach within the 
  Luttinger liquid theory

averaged defect 
number:

defect number operator 
between site 0 and k:

distribution function:

Solid correlations for the 
Rydberg atoms:

floating solid
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Phase diagram

floating
solid

paramagnet

Commensurate lobes

- incompressible
- excitation gap
- long-range order in solid
  structure factor

commensurate 
lobes

Floating solid

- linear excitation spectrum
- algebraic correlations
  for solid structure factor

Paramagnet

- excitation gap
- solid correlations decay as

  due to slow decay of interaction
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Phase diagram

floating
solid

paramagnet

Quantum phase transition

- floating solid with 
  algebraic correlations 

- paramagnet with excitation gap

- break down of the effective model
  in terms of defects:

- include higher defects

- multiple defect hopping

- fluctuations of defects 
  per site larger than the 
  spacing

commensurate 
lobes

mean-field theory Phase transition to 
paramagnet:
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Rydberg dressing
- weakly dressing with a 
  Rydberg level

- design ground state interaction
  for cold atomic gases

- spontaneous 
  emission:

- allow for motion of the atoms

Effective interaction

- Born-Oppenheimer potential

- Blockade 
  radius

experimental 
regime
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Supersolid instability?

Roton instability

(T. Pohl, 2009, V. Liu, 2010)

- effective interaction
  negative for

- Roton instability within 
  Bogoliubov theory

Quantum Monte Carlo

(G. Pupillio, 2010)

- solid with many-particles
  on each lattice site

- superfluid coherence between
  the sites established by tunneling 

Influence on a Bose-Einstein condensate

-  realistic experimental parameters

- large atomic density

collective many-body 
interaction
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Many-body interactions
Two-body interaction

- s-wave scattering length

- validity of 1 Born approximation

Three-body interactions

- solving Born-Oppenheimer 
  with three-particles

- three-body interactions 
  suppressed by 

Collective blockade phenomena

- density of excited 
  Rydberg atoms:

- allowed distance 
  between Rydberg atoms:

- critical density
critical 
density

two-body
interaction 

collective
interaction 
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Low densities:

- two-body interaction 

High densities:

- saturation on chemical potential:
  all atoms are within the Blockade radius

Energy functional

Energy functional for interaction

- fixed density 

- Bose-Einstein condensate:
  homogenously distributioned

- effective energy of internal 
  degree of freedom

: mean field 
  theory

- Hamiltonian for internal structure

- ground state 

H =
C6
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Generalized Gross-Pitaevskii equation

Gross-Pitaevskii equation

- interaction described by energy functional

Parameters

- Rydberg level: 

- life-time:

- blue laser:

- two-photon Rabi frequency

- induced s-wave 
  scattering length:

Thomas-Fermi profile
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Conclusion
Van der Waals blockade

- strongly interacting quantum 
  many-body system

- critical phenomena with 
  universal scaling exponents

Crystalline phase

- floating solid in 
  one-dimension

- does the solid survive
  higher dimensions?

Tool for designing interactions

- Rydberg dressed interactions for
  cold atomic gases

- is a supersolid experimentally
  realizable?
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