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1. What does entanglement reveal about quantum critical states?

(a) how does better understanding of entanglement entropy connect 
to numerical methods for correlated quantum ground states?  “finite-
entanglement scaling”
Frank Pollmann, S. Mukerjee, Ari Turner, JEM, PRL 2009; F. Pollmann and JEM, NJP 2010

(b) dynamical results on 1D correlated systems
F. Pollmann, S. Mukerjee, A. Green, JEM, PRE 2010
Jonas Kjäll, F. Pollmann, JEM, arXiv 2010

2. What can we say about dynamics in disordered correlated 
systems and “many-body localization at infinite temperature”?
Jens Bardarson, F. Pollmann, JEM, in preparation

Outline

Quantum critical states have infinitely more 
entanglement than “typical” many-body states.
When is there universal behavior in entanglement?



Quantum entanglement
Sometimes a pure quantum state of a bipartite system AB is also a 
pure state of each subsystem separately:

Example: Sz=1 state of two s=1/2 spins, A and B

Sometimes a pure quantum state of a bipartite system AB is not a 
pure state of each subsystem separately:

Example: singlet state of two s=1/2 spins

|ΨAB〉 = | ↑A〉 ⊗ | ↑B〉

a “product” state

|ΨAB〉 =
1√
2

(| ↑A〉 ⊗ | ↓B〉 − | ↓A〉 ⊗ | ↑B〉)

an “entangled” state
“Maximal knowledge of the whole does not imply maximal knowledge of the parts”



Entanglement entropy

|ΨAB〉 =
1√
2

(| ↑A〉 ⊗ | ↓B〉 − | ↓A〉 ⊗ | ↑B〉)

an “entangled” state

In an entangled state, the state of subsystem A or B is not a pure 
quantum state, but rather a density matrix

For the singlet

ρA =

(

1

2
0

0
1

2

)

= ρB

A classical uncertainty or entropy has been created by the 
operation of looking at only part of the system.



Entanglement entropy
Definition: the entanglement entropy of a pure state,

with respect to a given partition into A and B,
is the von Neumann entropy of the partial density matrices

The singlet generates one bit of classical entropy when the two 
spins are separated

Note that the partial density matrix for subsystem A
gives the results of all experiments limited to A

�φ1|ρA|φ2� =
�

j

(�φ1| × �ψj |)|ψ��ψ|(|φ2� × |ψj�)

S(ρ) = −TrρA log2 ρA = −TrρB log2 ρB



To get some intuition for how entanglement behaves in statistical 
physics, consider “valence bond states” of s=1/2 systems:

Rule: every spin forms a singlet with some other spin

In these states, entanglement entropy S just counts singlets:
S = 1 bit for each singlet crossing the AB boundary.  (But real 
states are usually a bit more complicated.)

How much entanglement entropy occurs in 
ground states of local Hamiltonians?

Short-ranged VBS
(= “dimer covering”)

Long-ranged VBS



Consider partitions of a d-dimensional infinite system AB into a 
subregion A of linear size L and an infinite subregion B.

How should entanglement entropy scale with L?

If we can ignore entanglement between points farther apart than 
some length scale ξ, then entanglement entropy should be 
determined by a shell of thickness ~ ξ around the AB boundary:

If there is no notion of locality, any site in A is as likely to be 
entangled with a site in B as with another site in A, and 

How much entanglement entropy occurs in 
ground states of local Hamiltonians?

S ∼ Ld−1ξ ⇒ S ∼ Ld−1as L → ∞ with system parameters fixed

S ∼ L
d

the “area law”



In one dimension, the area law has been established for gapped 
systems (Verstrate&Cirac; Hastings; for a review, see Eisert et al., arXiv 2008)

This area law also explains why gapped systems in 1D are well 
approximated by “matrix product states” (to be introduced in a 
moment) and can be simulated efficiently on a classical computer.

We can go beyond the area law

1. by looking at gapless states (subject of this talk)

2. by looking at interesting subleading terms

In higher dimensions, there can be area laws even in gapless systems, with 
interesting subleading parts (Ryu-Takayanagi, Fradkin-JEM, Metlitski et al.)

What the area law tells us



How much entanglement entropy occurs in 
ground states of local Hamiltonians?

We start with “pure” (translation-invariant), local Hamiltonians in 
one dimension.

Consider a partition for which A is a contiguous set of N spins 
inside an infinite chain:

Away from critical points (i.e., when correlations are short-ranged), 
entanglement is localized in the vicinity of the boundary and the 
“area law” is satisfied:

But what about quantum critical states?  Is there qualitatively more entanglement?

( )
A BB

lim
N→∞

S = C < ∞



How much entanglement entropy occurs in critical 
states of local Hamiltonians?

Example of a quantum critical ground state: (c=1) Heisenberg AF

At criticality, the entanglement of a connected subset of N 
spins, with the remaining spins, is (note: violates area law)

At clean and conformally invariant quantum critical points in 
d=1, there is logarithmically divergent entanglement with a 
coefficient related to the “central charge” of associated CFT.
(Holzhey, Wilczek et al. 94, Vidal et al. 03, Calabrese and Cardy 
04).

H = J
∑

i

si · sj , J > 0

( )
A BB

lim
N→∞

S ∼

c

3
log N → ∞



Uses of entanglement entropy in d=1

For the subset of 1D quantum critical points that are described by 2D 
conformal field theories:

The appearance of the central charge in the ground-state 
entanglement is consistent with its appearance in other quantities 
related to entropy, such as the free energy at finite temperature

The central charge is an important quantity, but only defined for a 
subset of quantum critical points.

(Entanglement entropy can be defined at any quantum critical point.  
Does it still show similar behavior, with a universal coefficient?)

( )
A BB

f =
F

L
= f0 −

π

6
c(kT )2h̄v



What about “applications”?

We want to apply knowledge about entanglement to improve 
our understanding of old-fashioned condensed matter: 
correlations, phase diagrams, etc.

1. Quantum critical states have increased entanglement, 
sometimes with universal properties, both in 1D and higher 
dimensions.

2. It is believed that entanglement entropy underpins the best 
algorithms for correlated states and dynamics in 1D (and ground 
states in 2D) not amenable to quantum Monte Carlo.
Feiguin & White, Vidal, Verstraete & Cirac,Kollath, Schollwoeck, ...

Connection between (1) and (2): (1) Critical states of local 
Hamiltonians have “a moderate amount” of entanglement;
(2) efficient numerical methods should notice this property.



Studying quantum correlations with classical 
algorithms: applied entanglement entropy

Basic (hazy) concept: “Entanglement entropy determines how much 
classical information is required to describe a quantum state.”

Example:
how many classical real numbers are required to describe a product (not 
entangled) state of N spins?

Answer: ~ N    (versus exponentially many for a general state)

How do we efficiently manipulate/represent moderately entangled states?

|ψ〉 = As1
As2

As3
As4

|s1s2s3s4〉simple product



Applied entanglement entropy

The remarkable success of the density-matrix renormalization 
group algorithm in one dimension (White, 1992; Ostlund and 
Rommer, 1995) can be understood as follows:

DMRG constructs “matrix product states” that retain local 
entanglement but throw away long-ranged entanglement.

Graphical tensor network representation:

|ψ〉 = Aij
s1

Ajk
s2

Akl
s3

Ali
s4
|s1s2s3s4〉

|ψ〉 = As1
As2

As3
As4

|s1s2s3s4〉simple product

matrix product

Example states for four spins:

A
i j

A
j k

A
k l

s1 s2 s3

...



Application: finite-entanglement scaling
All numerical methods have difficulty with quantum critical points.
In DMRG-type approaches, this can be understood from the 
divergence of entanglement entropy at such points: the 
entanglement in a matrix product state is limited by dim A.

Quantitatively, it is found that dim A plays a role similar to imposing 
a finite system size:                             
     (Tagliacozzo et al., PRB 2008).

Finite matrix dimension effectively moves the system away from the 
critical point, just like a relevant field in the Hamiltonian.

What determines this “finite-entanglement scaling”?
Is it like “finite-size scaling” of CFT’s (cf. Blöte, Cardy, & Nightingale)

|ψ〉 = Aij
s1

Ajk
s2

Akl
s3

Ali
s4
|s1s2s3s4〉matrix product

Leff ∝ χκ, χ = dim A



Another way to picture the entanglement of a state

• Schmidt decomposition of the state (SVD):
•

with               and                        
• a natural measure of the entanglement is the entropy:

...
A B

λα ≥ 0

|ψ� =
NA�

i=1

NB�

j=1

Cij |i�A|j�B

=
min(NA,NB)�

α=1

λα|φα�A|φα�B

�
α λ2

α = 1

SA = SB = S = −
�

α

λ2
α log(λ2

α)



• equivalent to definition in terms of the reduced density 
matrices                            (von Neumann):

• entropy is maximal if all      are equal

• entropy is minimal if            (with                       )

• entanglement entropy is interesting because...

➡measure of the amount of classical information needed to 
represent the state (at least in DMRG, TEBD, ...)

➡basis-independent characterization of phase transitions

➡important more generally for quantum information theory

ρA = TrB |ψ��ψ|

λα

λ1 = 1 λα = 0, α > 1

SA = −TrρA log(ρA)



Efficient representation of quantum states?

• Hilbert-space dimension of many-body problems increases 
exponentially with number of sites
example: spin 1/2 system on “classical” computers 
(store one state in double precision)

• need an efficient way to “compress” quantum states so 
that the matrices studied remain finite-dimensional

➡slightly entangled 1D systems: Matrix Product States

➡DMRG, TEBD, ...

We will assume here that the optimal MPS description does 
not depend strongly on which algorithm is used.



χ = 4

χ = 16



χ = 64

χ = 256



• find the ground state of a system by using imaginary time 
evolution (almost unitary for small time steps)

• parallel updates for infinite/translational invariant 
systems: iTEBD [Vidal ‘07]

• example,  transverse Ising model:         
H =

�
i

�
Jσ

z
i σ

z
i+1 + gσ

x
i

�

−0.05 0 0.05

10−10

10−5

100

[g−gc]/J

[E
0−

E 0ex
ac

t ]/J

 

 
χ=4
χ=8
χ=12
χ=16

➡convergence of wave 
function is worst at the
critical point

➡conformal invariance



• scaling relation for the block entropy in critical systems 
with conformal invariance [Holzhey et al. ‘94]

➡entanglement entropy diverges logarithmically
as

➡ half chain entropy is
 

• entanglement entropy is finite away from criticality 
[Calabrese et al. ‘04]

S =
c

6
log ξ ......

A B

ξ

......
A BB

S =
c

3
log l

l→∞

l

S = c/6 log l



Physical picture for how “finite entanglement” 

determines a correlation length:

1. At the critical point, ordinary energetics (χ = ∞) favors maximizing ξ.

2. But there is a long tail of Schmidt eigenvalues for large ξ.
So the energy increase from truncating the SVD to keep only the lowest χ 
eigenvalues is largest for large ξ.

Balancing these two energies leads to a prediction for ξ.

S =
c

6
log ξ ......

A B

ξ

λi

i

i = χ



• Take “entanglement spectrum” [Calabrese, Lefebvre ‘08]
(see Pollmann, JEM, NJP ’10 for numerical tests; generally a good approximation)

continuum of Schmidt values

• at a critical point: all values are equal (            )

n(λ) = I0

�
2
�
−b2 − 2b log λ

�

with b =
S

2
=

c

12
log ξ = −2 log λmax

# of    ‘s greater

than
λ̂

λ

|ψ� =
�∞

α=1 λα|φα�A|φα�B

λα → 0

Finite    approximations at critical points will give

universal scaling forms, e.g. S = f(c) log(χ)

χ



Derive a universal scaling form for the entropy

• ground state of critical system at finite    has finite 
correlation length

• energy density
at finite 

•      still needs an infinite     to be represented exactly in 
terms of MPS: entanglement spectrum
[                                              ,                        ]

➡further corrections to the energy density

χ

E(T ) = F − T
�

∂F
∂T

�
L

= E0 + πcT 2

6u

E(ξ) = E0 +
A

ξ2
, ξ =

uν

Tπ

T

χ|ψξ�

n(λ) = I0(2
�
−b2 − 2b log λ) b = c/12 log ξ

ξ



• let’s look at the effect of the truncation at one bond 

• energy difference to the non-truncated wavefunction 

➡

|ψξ� =
∞�

α=1

λα|φα�A|φα�B |ψξ
χ,1� =

�χ
α=1 λα|φα�A|φα�B�χ

α=1 λ2
α

and
�
Eex

ξ − Eξ

�
= ∆ ∝ 1/ξ

       = measure of 
energy of the 
excited states 

Eex
ξδEχ,1 =

�
Eex

ξ − Eξ

� �
1 − |�ψξ|ψξ

χ,1�|2
�

δEχ =
B

ξ
Pr(ξ, χ), Pr(ξ, χ) =

∞�

n=χ+1

λ2
n



• energy density of a truncated state

•            is a non-monotonic function   

➡minimize the energy and find the optimal correlation length     
for a fixed matrix dimension

➡scaling relation                        yields the entropy, etc. 

• we can find the best approximation of the critical state 
for a given number of states we keep

S = (c/6) log ξ

Eχ(ξ) = E0 +
A

ξ2
+

B

ξ
Pr(ξ, χ)

Eχ(ξ)

E0

E(ξ)

Eχ(ξ)



• analytical solution for the asymptotic case
(using a continuum of Schmidt values and              )

➡universal finite-entanglement scaling relations

χ→∞

We believe this finite-entanglement scaling will result in any approach 
with finite matrix dimension, in the same way that finite-size scaling is 
“universal”.

Now we try to check this nonlinear c dependence:
(some more checks are in

[F. Pollmann, S. Mukerjee, A. Turner, and J.E. Moore, PRL 2009]

and we agree with Tagliacozzo et al. for the cases studied there)

κ =
6

c
��

12
c + 1

� ⇒ S =
1�

12
c + 1

log χ



• test the scaling relation on various critical points using the 
iTEBD method

• transverse Ising model:

➡critical at          with  

• XXZ model:

➡critical at           with  

• spin-1 model: 

c = 1/2
H =

�
i

�
σ

z
i σ

z
i+1 + gσ

x
i

�

g=1
H =

�
i

�
σ

x
i σ

x
i+1 + σ

y
i σ

y
i+1 + ∆σ

z
i σ

z
i+1

�

∆ =1 c = 1
H =

�
i

�
cos θ(�τi. �τi+1) + sin θ(�τi. �τi+1)2

�

θ = −π/4, SU(2)2 with c=3/2

c=2θ = π/4, SU(3)1with



• scaling of the energy and entanglement entropy: 

Eχ(ξ) = E0 +
A

ξ2
+

B

ξ
Pr(ξ, χ)

1 2 3 4 5 6 7
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∝ −1.97*ln(ξ)

∝ −1.84*ln(ξ)

ln(ξ)

ln
(E

(ξ
)−

E ex
ac

t)

 

 
Ising model at finite χ
xx model at finite χ
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−14
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∝ −1.96*ln(ξ)

detuned Ising m.

➡scales as
for   

∝ 1/ξ2

ξ = ξopt ✔

✔
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∝ 0.16*ln(χ)

∝ 0.24*ln(χ)
∝ 0.24*ln(χ)
∝ 0.28*ln(χ)

∝ 0.33*ln(χ)

crit. transv. Ising (c=1/2)
xx (c=1)
xxx (c=1)
spin−1 bq. θ=−1/4π (c=3/2)
spin−1 bq. θ=0.35π (c=2)
spin−1 bq. θ=0.45π (c=2)

➡                 and 
depends only on c

Sχ =
1�

12
c + 1

log χ

Sχ ∝ log χ



• reasonable agreement of the asymptotic theory and 
numerical results 

• Errors are no larger than differences between different 
definitions of entropy

• Another check: combine non-interacting copies; still get 
nonlinear dependence on total c

0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

c

 

 
asymptotic theory
iTEBD S= Tr  ln( )
iTEBD S=2b= 4*ln( max)



κ =
6

c
��

12
c + 1

� ⇒ S =
1�

12
c + 1

log χ

• new asymptotic scaling law for the finite-entanglement 
scaling of 1D quantum-critical systems 

➡reasonable agreement with numerical results for accessible

• future directions:

➡critical points with disorder (entanglement spectrum next)

➡higher dimensions (?)

➡can we improve on Calabrese-Lefebvre spectrum?



χ

κ =
6

c
��

12
c + 1

� ⇒ S =
1�

12
c + 1

log χ

• new asymptotic scaling law for the finite-entanglement 
scaling of 1D quantum-critical systems 

➡reasonable agreement with numerical results for accessible

• future directions:

➡critical points with disorder (entanglement spectrum next)

➡higher dimensions (?)

➡can we improve on Calabrese-Lefebvre spectrum?



• Applications: sweep across a 
quantum critical point (either 
integrable or non-integrable)

• Numerical spectral functions 
for E8 bound states in Ising-
like chains: motivated by 
Coldea et al., Science 2010

F. Pollmann, S. Mukerjee, A. Green, JEM, PRE 2010

J. Kjäll, F. Pollmann, JEM, arXiv 2010; Nordita
talk last month



Universality beyond conformal invariance:
Entanglement at random quantum critical points

It turns out that even at random quantum critical points, universal 
entanglement exists and defines a critical entropy.

Example: random Heisenberg antiferromagnet (same as before, but 
now J on each bond is drawn from a random distribution)

Almost all initial distributions flow to the same strongly random 
distribution of couplings, the random singlet phase.

These strongly random distributions have critical disorder-averaged 
correlations, but the system is not conformal in d+1-dim. spacetime.

J1

P(J) = random distribution over J > 0 (antiferromagnetic couplings)

J2 J3 J4



Entanglement entropy and random criticality

For entanglement entropy, we need to obtain the mean number of 
singlets that form across a boundary.

Answer: the coefficient of the log divergence is reduced by ln 2 
relative to the clean Heisenberg case (Refael & JEM, 2004; 
Laflorencie, 2005: numerical check on XX case).

But this similarity to the clean case is a little misleading: the full 
entanglement spectrum is rather different (Fagotti, Calabrese, JEM).

J1 J3 J4

. . .. . .
L



Many-body localization at infinite temperature

H = Jxx

�

i

�
S

x
i S

x
i+1 + S

y
i S

y
i+1

�
+ Jz

�

i

S
z
i S

z
i+1 +

�

i

hiS
z
i

Clean XXZ chain + random z-directed Zeeman field

hi ∈ (−∆,∆)

Claim: look at “infinite-temperature” dynamics but with no dephasing;
evolve an arbitrary initial state by the Schrödinger equation

Heisenberg phase diagram:

∆/J = 0 ∆/J =∞∆/J =?

extended localized



Many-body localization at infinite temperature

H = Jxx

�

i

�
S

x
i S

x
i+1 + S

y
i S

y
i+1

�
+ Jz

�

i

S
z
i S

z
i+1 +

�

i

hiS
z
i

Heisenberg phase diagram:

level statistics: (Wigner-Dyson vs. Poisson) Oganesyan & Huse, 2008

dynamical correlation functions
correlation distributions Pal & Huse, 2010
entanglement growth

∆/J = 0 ∆/J =∞∆/J =?

extended localized

Transition should be detectable in:

This spin chain problem is a numerically easier reformulation of many-body 
localization in Fermi systems at nonzero T (Basko, Aleiner, Altshuler 2007)



Many-body localization at infinite temperature

H = Jxx

�

i

�
S

x
i S

x
i+1 + S

y
i S

y
i+1

�
+ Jz

�

i

S
z
i S

z
i+1 +

�

i

hiS
z
i

“Extended phase”: expect S grows linearly with t (Calabrese and Cardy)

“One-particle localized phase”: (Jz = 0) eigenstates are Slater determinants 
of localized one-particle states; S saturates to a finite value.

What happens if we add interactions to the localized phase?

Note: this is efficiently simulable because for early times the system has small entanglement (Prelovsek et al., 
2007)

Numerical experiment: start with an arbitrary product state (local Sz 
eigenstate) and evolve under H.  Can view as a “global quench”.



Many-body localization at infinite temperature

H = Jxx

�

i

�
S

x
i S

x
i+1 + S

y
i S

y
i+1

�
+ Jz

�

i

S
z
i S

z
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�

i

hiS
z
i

Numerical experiment: start with an arbitrary product state (local Sz 
eigenstate) and evolve under H.  Can view as a “global quench”.
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Free fermion, h=5J, L=40 (x 1/2)
Free fermion, h=5J, L=20 (x 1/2)
iTEBD, h=5J, Δ=0.0, L=80
iTEBD, h=5J, Δ=0.0, L=50
iTEBD, h=5J, Δ=0.5, L=100
iTEBD, h=5J, Δ=0.5, L=50
iTEBD, h=5J, Δ=1.0, L=80
iTEBD, h=5J, Δ=1.0, L=50

S(t) ≈ f(Jz) log t

In an “excitation” picture, 
this looks like sub-diffusive 
but delocalized transport.

This occurs naturally in rate-equation 
models (e.g., Amir, Oreg, Imry (2010)).



Many-body localization at infinite temperature

S(t) ≈ f(Jz) log t

In an “excitation” picture, 
this looks like sub-diffusive 
but delocalized transport.

Conclusion: the entanglement growth, which is one measure of 
how fast the system returns to equilibrium, has a phase that is 
between strong localization and delocalization.

Speculation: If we assume S results from excitation motion, go to 
frequency f and use fluctuation-dissipation, this becomes 1/f noise, 
as empirically observed in many quantum and classical systems.



Entanglement entropy and understanding criticality

Numerical confirmation of modified coefficient for one case (XX 
chain->free fermions) by N. Laflorencie (PRB 2005)

HXXZ = J!
j
"1

2
#Sj

+Sj+1
− + Sj

−Sj+1
+ $ + !Sj

zSj+1
z % , #5$

the noncritical regime #achieved if &!&"1$ can be investi-
gated using the corner transfer matrices of the corresponding
two-dimensional #2D$ classical problem.11,12 On the other
hand, along the critical line #−1#!#1$, an analytical com-
putation of S#x$ is more difficult and conformal field theory
#CFT$ tools are then required.6 Another alternative consists
in performing numerical exact diagonalizations #ED$ of finite
lengths spin chains, but it is limited to Lmax'40 spins 1

2
when !!0.13 Nevertheless, the XX point !=0 is special
because the spin Hamiltonian can be rewritten using the
Jordan-Wigner transformation as a free-fermions model

HXX =
J

2!
j

(cj
†cj+1 + cj+1

† cj) #6$

for which the density matrix can be expressed as the expo-
nential of a free-fermion operator.14 It turns out that the re-
duced density matrix is completely determined by the x$x
correlation matrix C#x$, defined by

C#x$ =*+c1
†c1, +c1

†c2, ¯ +c1
†cx,

+c2
†c1, +c2

†c2, ! ]
] !

+cx
†cx,
- . #7$

The matrix elements Cij = +ci
†cj, can be calculated either nu-

merically by diagonalizing the free-fermion Hamiltonian in
momentum space or analytically in some special cases.15 The
entanglement entropy of a subsystem of size x embedded in
a larger system is then given by

S#x$ = − !
k

(%k ln %k + #1 − %k$ln#1 − %k$) , #8$

where the %k are the eigenvalues of C#x$.
Let us now concentrate on the disordered XX spin-1

2
chain, governed by the random hopping Hamiltonian on a
periodic ring of length L

HXX = !
j=1

L−1

Jj(cj
†cj+1 + cj+1

† cj) + JL exp#i&N$#cL
†c1 + c1

†cL$ ,

#9$

where Jj are positive random numbers chosen in a flat uni-
form distribution within the interval (0,1),16,17 and the second
term in the right-hand side ensures that periodic boundary
conditions are imposed in the spin problem. The total num-
ber of fermions is N=L /2 in the ground-state #GS$. The way
to diagonalize HXX is straightforward and has already been
explained by several authors.18,19 As a check, we have first
computed the entanglement entropy #8$ for clean systems
#i.e., Ji is a constant$ of total sizes L=500 and L=2000.
Technically, this only involves computing the elements +ci

†cj,
by diagonalizing the free-fermions Hamiltonian #6$, and then
one needs to diagonalize C (Eq. #7$) using standard linear
algebra routines.20 The results are shown in Fig. 2 where we
can see that S#L ,x$ is perfectly described by the CFT pre-
diction Eq. #3$. Note also that the constant term is found to
be s1'0.726, in excellent agreement with the recent analyti-
cal prediction of Jin and Korepin.21

For the random case, the same technique has been used
but a bigger computational effort was necessary to average
over a large number of independent random samples. Practi-
cally the number of samples used was 2$104 for L=100,
200, 300, 400, and 104 for L=500,1000,2000 which re-
quired 2000 h of CPU computational time. The results for

FIG. 2. #Color online$ Entanglement entropy of a subsystem of size x embedded in a closed ring of size L, shown vs x in a log-linear plot.
Numerical results obtained by exact diagonalizations performed at the XX point. For clean nonrandom systems with L=500 and L=2000
#open circles$, S#x$ is perfectly described by Eq. #3$ #red and blue curves$. The data for random systems have been averaged over 104

samples for L=500, 1000, 2000, and 2$104 samples for 100#L#400. The expression 0.8595+ #ln 2 /3$ln x #dashed line$ fits the data in the
regime where finite size effects are absent.
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But strictly that only checks one number...

The key step in the RSRG is a memory (non-Poissonian) effect in RG 
time: the new bond created after a decimation is on average weaker 
than a typical bond.

This non-Poissonian picture can be checked by computing the full 
entanglement spectrum, or analytically the average x^N where N is 
the number of singlets and x is a parameter, for all x.

J1 J3 J4

g(t) =
1√
5

�
e−(3−

√
5)t/2 − e−(3+

√
5)t/2

�
.

�xN �t ≡ h(t) =
� ∞

t
g(t�) dt� + x

� t

0
h(t�)g(t− t�) dt�.



Numerics on spectrum in XX chain:
(Fagotti, Calabrese, JEM, unpublished)

Details: what is shown is the “modified Renyi entropy”

The RG calculation predicts that all these moments 
are simply related via the renewal equation.

S∗
α =

1
1− α

log Tr[ρα]



Conclusions:

1. Finite-entanglement scaling: estimating the 
correlation length that emerges from finite matrix 
size in MPS leads to the unusual expression

Does this actually help make better extrapolations to 
infinite size and infinite entanglement?

2. We can compute the entanglement spectrum for 
random-singlet critical points and check it numerically 
in the XX model.

Can we use this to understand dynamics or other 
topical questions about random 1D models?

κ =
6√

12c + c



• We want to control how far a system is excited out of the 
instantaneous ground state of H(t).

Application II: Dynamics near quantum critical points
Our motivation:

We sweep the Hamiltonian slowly through a 1D quantum 
critical point separating two gapped phases.  

The closing of the gap ∆ means that deviations from the ground state are 
power-law in the sweep rate: e.g.,

rather than being exponentially small if ∆ > 0 everywhere.

EF − E0 ∼ Γα

gc

∆

g(t) = gi + Γt

g(0) = gi < gc

g(tf ) = gi + Γtf > gc



We compare states using the spatial decay rate of the 
overlap (N = # of sites)

which is easily computed from the matrix product state 
representation, and can be found exactly for the quantum 
Ising case.

• Sometimes we want to study quantities that are well-
defined in the infinite system, and independent of a 
particular observable.

Application 2: Dynamics near quantum critical points

|�ψ0|ψ1�|2 ∼ exp(−αN).



• We would like to distinguish integrable and chaotic 
quantum dynamics, and spontaneous symmetry breaking 
from explicit symmetry breaking.

Application 2: Dynamics near quantum critical points

Our starting point: cross through the well-studied quantum 
Ising critical point at various angles in the phase diagram

H =
�

i

�
σz

i σz
i+1 + gσix + hσz

i

�

sin θ =
h

g − gc
, gc = 1

g

h

θ

θ = π/2
(E8, Zamolodchikov)



We sweep g through the critical point at a constant rate.

How different is the resulting state from the ground state?

Case 1: quantum Ising sweep

The energy difference and “number of 
excitations” are predicted to be related to 
the sweep rate by a simple scaling law

(Dziarmaga, Polkovnikov, ....)

E�
0[g(t)]− E0[g(t)] ∼ nex∆[g(t)] ∼ Γdν/(zν+1)∆[g(t)],
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We sweep g through the critical point at a constant rate, 
then pause at a fixed final value gf to observe evolution.

Case 1: quantum Ising sweep

The quantum Ising model has well-
defined linearly propagating excitations 
(“domain walls”).  The propagation of 
these excitations leads to linearly 
increasing entanglement, even after 
the sweep has stopped.
(cf. Calabrese and Cardy)

This “light-cone” effect depends on the 
number of excitations created, and 
hence on the sweep rate.
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(a)
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What causes these oscillations?



We sweep g through the critical point at a constant rate, 
then pause at a fixed final value gf to observe evolution.

Case 1: quantum Ising sweep

The oscillations result because, after a slow sweep, the final state 
consists of a ground state plus excitations at multiples of the final gap.

The small dispersion in final energy leads to a slow decay of the 
oscillations.



We sweep g through the critical point at a constant rate, 
then pause at a fixed final value gf to observe evolution.

Case 1: quantum Ising sweep

We can use the overlap integral to 
focus on the oscillations and check 
the TEBD method.

Puzzle: why the nonanalytic dips at 
certain points in time?

For the quantum Ising model, can 
compute these exactly using a 
picture of Landau-Zener tunneling 
at each k independently (theory 
curves shown)...

0 10 20 30
0.04

0.03

0.02

0.01

0
gi=1.40J  gf=0.50J

0 10 20 30
0.04

0.03

0.02

0.01

0
gi=1.40J  gf=0.70J

t/J

 

 

=0.05
=0.10
=0.15

theory



The nonanalytic dips result from a special k value where the 
tunneling probability is exactly 1/2.  Since this model is 
integrable, the excitations at this k have sharp energy.

Integrable versus non-integrable models

Leads to universal 1/t “equilibration” (power-law rather than exponential), 
in an integrable system, resulting just from the continuum of excitation 
frequencies.

(Final state has a diagonal density matrix but is not thermal.)
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.



We see similar behavior with different exponents along the 
other integrable line (2D Ising model in a field).

Along other directions, the model is expected to be non-
integrable.  For a slow sweep, we see:

Integrable versus non-integrable models

at short times the system looks like the integrable case;

beyond some time determined by theta and the sweep rate, the 
“excitations” begin to interact strongly and the cusps are washed out.  

This leads to an “entanglement catastrophe” that makes the model 
difficult to study with our method.

Our current priority: understand what is universal in this process (and 
whether there can be violations of the energy scaling law given earlier).



We studied how entanglement and other quantities behave 
near quantum critical points in one dimension.

Some results (e.g., the energy scaling formula for sweeping through a quantum 
critical point; cf. Polkovnikov) are believed to be general to any dimension.  
Others will require some nontrivial development to reach d>1.

Conclusions

1. The finite-entanglement scaling at a conformally invariant critical point 
in 1D has a universal nonlinear dependence on the central charge.

2. Dynamics near a quantum critical point can show a weak type of 
“equilibration” (damped oscillations) in an infinite system even for an 
integrable system.

3. Entanglement growth, numerical accuracy, and physical properties 
such as oscillations all seem sensitive to non-integrability.


