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Incompressibility, Quantum Geometry and
Hall viscosity in the FOHE.

F. D. M. Haldane, Princeton University.

® some new light on incompressibility in FQHE

® a“‘metric’ that measures the “shape” of the
“Mott-Hubbard-like” structures that underly
FQHE incompressibility.

® “Hall viscosity” as fundamental FQHE property.

® see FDMH,arXiv:0906:1854, and “in preparation”



previous history

the dissipationless antisymmetric term in the viscosity tensor has been discussed in

classical magnetic fluids, plasmas in magnetic fields (e.g. Lifschitz and Pitaevskii text
“Physical Kinetics”)

Zograf,Avron and Seiler (1995) considered the “odd viscosity” in integer QHE

Tokatly and Vignale (2008) called it “Lorentz shear modulus” but treated it
incorrectly in FQHE.

Read (2009) gives a corrected formulation for rotationally-symmetric FQHE
states, calls it “Hall viscosity”, emphasizes cft conformal block model wavefunctions

This work

generalizes discussion to FQHE fluids without rotational invariance (e.g. with
“tilted” magnetic fields)

obtains a clear separation between integer QHE (cyclotron motion) and FQHE
(guiding center fluid) parts

finds surprising relations to other aspects of FQHE



FQHE states are incompressible topologically-
ordered states of 2D electrons in a magnetic field

® Analogous to Mott-Hubbard physics on a

lattice, an energy gap prevents adding more
electrons to an “already occupied” resion.

® This incompressibility is a consequence of
SHORT-RANGE components of the Coulomb
interaction, analogous to Hubbard “U”.

Can be viewed as a consequence of “non-
commutative geometry” of electron “guiding
centers’ moving on the “quantum plane”

R* RY] = —il%




® Much work on FQHE emphasizes topological
properties:

e edge states (described by (1+1)-D conformal field theories,

cft) and

® vortex-like excitations with fractional and non-Abelian
braiding statistics(described by (2+1)-D topological
quantum field theories (TOQFT))

® These aspects do not depend on any metric
or short-distance lengthscale, and take the
incompressibility as given.

® New results on “Hall viscosity”’ of FQHE
states give new insight into lengthscales,
shapes, and short-distance properties of
incompressible states.



some questions

® many properties of FQHE depend on a fundamental
quantum area, the area through which a quantum h/e of
magnetic flux passes.

® clementary unit of FQHE state is a droplet of p
particles in an area containing q flux quanta. What is
the shape of this droplet (if rotational symmetry is
present, it must be circular; if not, what determines it?)

® “shape” involves lengthscales, and hence a metric
(note, topological properties and areas are metric-
independent). VVhat determines this metric?

pe pe ?
area: 2mql% o 2l



summary of new results
ab

The “Hall viscosity” is defined by a rank-2 symmetric tensor N = 77H0 + nH

it is the sum of two distinct parts, one associated with cyclotron motion and
the integer QHE, the other with guiding centers and the FQHE

The guiding-center part is odd under particle-hole transformations of
the Landau level

: : L . —ab _ 12 a
It defines a metric associated with incompressibility: Ng = 3NHY

the discontinuity of the Hall viscosity at QHE edges gives an intrinsic electric dlpole
per unit length on the boundary. dp® 6(A77ab (3 )€b dL°
T C

The magnitude of the guiding center part provides a lower bound to the O(q?)
behavior of the “guiding-center structure factor”, a fundamental property of
incompressibility identified by Girvin, Macdonald and Platzman, 1986.

The inequality is satisfied as an equality for cft-based model wavefunctions
(Laughlin, Moore-Read, Read-Rezayi).

It is related to a SO(2,1) Lie algebra of area-preserving deformations, can be
numerically calculated by adiabatic variation of pbc’s (torus) on finite-size systems.

77?_,[ _ %<Aab>0 [Aab,ACd] _ %Zh (EacAbd 4+ EadAbC 4+ EbCACLd + EbdAaC)



some applications

® The Pfaffian and anti-Pfaffian (next talk) are
distinguished by opposite signs of their guiding-
center Hall ViSCOSit)’ (they are related by particle-hole

transformation)

® This leads to an intrinsic electric dipole moment
on domain walls between these states. (excitations of the

neutral CFT modes on these wall are fluctuations of this dipole moment around its
ground-state value)

® Can be used to investigate the mysterious “non-
unitary cft” models (Haidane-Rezayi, “Gafnian erc) Which appear
to represent systems at transitions between FQHE
states with same filling, different Hall viscosity.



Laughlin state for 1/m FQHE

holomorphic form symmetric gauge

VY™ (01, or) = [ (20r) = ()™ [[ e (20 / 405

1<J ) \

\
L . magnetic area
2(r) = 2 + iy P

® Has rotational invariance under

z = (x+1y) — e'? 2

® rotational invariance implies a “hidden”
dependence on a “metric” derived from the
cyclotron effective mass tensor of the Landau levels




Landau levels 7 = p; — eA(T;)

E : dynamical momentum
H = 9 7T7,a7T7,b Y
RY = 1% — €105

gU|d|ng Centerx 2D Levi-Civita

antisymmetric symbol

[R?C;L, 7T7;b] =0

“metric” (det|g|=1) derived from
Galileian mass tensor

Euclidean covariant notation

__ :h° a pb /% cab
[T‘-’I:aj T‘-’I,b] — /LgEa’b [?/L ’ R’L] ZZ
A o
lower 2D indices g = 1.2 upper 2D indices a = 1,2

° generator of rotations is defined by metric:

ac _ ca
— 2h Zg TiaT4b 2_171 Zgabe’Rf g Gbc — 5b
)




cyclotron motion around guiding center

ho|Y? —&
_ r I~ coordinates have
eB,, )'< “upper” indices
momenta have
“lower” indices
® guiding center R . -
gulding \ antisymmetric symbol
a __ pa 2 a
/r = R+ (/)T dynamical
| momentum
electron | (of cyclotron
coordinate R m =0  motion)



factorizing a 2D metric

Hermitian generalized eigenproblem

b . b
Jab = WaWp + Wpw,, We = GapW’ = 1€qpw

. xa, b
L€qb = WaWp, — Whl Japw " "w” =1

a complex normalized 2D (2 component) vector

® for example

(4 D))

W -r=2z=2+1y



Another look at the Laughlin state:
14
a;r(g) = Fw(9)Tia

® landau-level raising operator [u;(g),ai(9)'] =1

® guiding center “z” operator

bl (g) =

metric defined by
cyclotron, effective mass

az'(gl)|0> =0

|\I!1/m ) X H (bT
®  Laughlin sztjtje is an eigenstate of b - ( /) ‘O> — O

LZ( — 2@2 ZgabRaRb
This “metric” ¢’ is a

freely-choosable

L? = gNNorb

Norpb = mN — (m — 1)

~ variational parameter!

The number of orbitals < 1 or
occupied by the N particles The “shift

/




holomorphic form
= (st (=5 ) ) T

1<J

N =

Yr(a) = H e

1
o) < 5



N-particle Laughlin droplet with “metric” ¢’
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""""""" T/O . electron-density
14 3
3 : profile
27T€B \ \1\ R

e clliptical shape, with “fuzzy edges” along the
nominal boundary 1g.,r%r’ = Nowl?

® This is NOT just a change of edge shape; the
“elementary droplets” of this FQHE fluid are
also elliptical regions of m orbitals containing

1 particle each.



What fixes the shape of elementary droplet?

® |[f there is rotational symmetry around the normal to the 2D
“Hall surface”, the elementary droplet has the same (circular)
shape as the cyclotron orbits

® |[f not (e.g., if the magnetic field is “tilted”) it is a compromise
between the shape of the cyclotron orbit (through a form
factor) and the shape of equipotentials of the Coulomb
potential of a point charge (determined by the dielectric

tensor)

Pq - |
e :/ ( SV (@)f(a)? Y e )

2




Hall viscosity

drift velocity
flow lines along
equipotentials

droplet of incompressible “Hall fluid”
® dissipationless flow means that in steady state, stress forces are
normal to flow lines

® ‘“viscosity” is linear response of stress tensor to non-uniform drift
velocity field

e “Hall viscosity” is dissipationless part of viscosity tensor, just as
“Hall conductivity” is dissipationless part of conductivity tensor



Isotropic fluid (special case, earlier work only considered this)

® Use Cartesian coordinates with indices i =
1,2, don’t distinguish upper and lower

indices, metric gj = & ﬁ »3 (ﬁé Y ¢ $
\k

(e.g., fluid of spinning molecules
has a “Hall viscosity”contribution
to the stress tensor)

® stress tensor Q0j = Jj, symmetric
® viscosity 0ij = Pdij + Mijki Vv + 0(02)
_ L S H
Mijkl = Mijkt T Mijkt T Mijki

nil_;'kl — nL(Sij(gkl longitudinal, vanishes if

incompressible, dissipative
S _ .9
nijkl =T (5ik5jl — 5il5jk — 5ij5kl) shear, dissipative

Hall, non-dissipative
odd under time-reversal
€4 — —€4j

H __1.H
ikt = 37 (Oik€j1 + 0a€jk + Ojk€i + 0ji€ik)

,,,’H lgz <€——_internal” angular momentum

of fluid per unit area
(Read 2009)




® stress tensor is not symmetric, has indices
of opposite type: force across a boundary
line element in a fluid is

dF, = 0l€p.dL°

® continuity relation for momentum transport
in a translationally-invariant fluid:

at’l'rag )-I-Vb(f (r,t) =0

momentum enS|ty stress tensor (momentum current density)

_ [ 29 _iqr-
’/Ta(T') _/(27_[_) € ﬂ-a(Q)

-t 1q-7T;/2 1q-7T;/2 i
Ta (q) — g e q-ri/ D€ q-r;/ Fourier transform of

momentum density

)



Long-wavelength expansion..
Ta (Q) = P, + %iQaD - ieabAbcqc + O(q2)

® generator of translations P, = Zpia

. . 1
® generator of dilatations D = 3 Z{T?,pz‘a}

® S0O(2,l) generators of area- Aab — Aba — ( Aab)
preserving deformations _ %Z( ac,.b | _be a

€T, +€ET; ) Pic
[D,A%°] =0
[Aab,ACd] _ %’Lh (eacAbd + 6a,dAbc + 6bcAa,d + 6bdAac)

® The quadratic Casimir is: “ (g) — gabAa
Cy = —det |A| = — ;6(1.(;61)(1/\01)1\6(! generator of

rotations, if isotropic



Can derive the general relation for 2D Hall viscosity;

® stress tensor in presence of fluid flow
(covariant form):

oy = pdy — NpgVev? + O(v?)
® Dissipationless Hall viscosity term (A = total
area covered by fluid):
(ne)eq = —ﬁebeedf([z\“, A¥])y  antisymmetric!

A AT = (¢t + b+ ety + )

® Defines a new symmetric rank-2 Hall-viscosity tensor:

= 297(€%(9))o

in the case of
rotational invariance

(c.f. Read 2009)




application to FQHE

® The SO(2,]) deformation algebra splits into
two independent pieces: cyclotron orbits
and guiding centers:

cyclotron motion guiding centers

| |

Results of zograf et al
for integer QHE case
(cyclotron-motion
form factors)

(not so interesting)

relates to
incompressibility,
new FQHE results!



summary of new results:

® The guiding-center Hall viscosity defines the natural
metric ¢*° associated with incompressibility through

ab —

Ng = 77H9

® The Hall viscosity gives an intrinsic electric dipole

moment per unit length on the (unreconstructed)
boundary of a Hall fluid:

dp® = %n}‘f}’ebchcézB

® The guiding-center Hall viscosity provides a lower bound to
a fundamental measure of incompressibility provided by the
“guiding-center structure function”, which is satisfied as
an equality by ideal model FQHE states such as Laughlin,
Moore-Read, Read-Rezayi...
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Collective-Excitation Gap in the Fractional Quantum Hall Effect

S. M. Girvin
Surface Science Division, National Bureau of Standards, Gaithersburg, Maryland 20899

and

A. H. MacDonald
National Research Council of Canada, Ottawa, K14 OR6, Canada

and

P. M. Platzman
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
(Received 25 October 1984)

We present a theory of the collective excitation spectrum in the fractional quantum Hall-effect
regimes, in analogy with Feynman’s theory for helium. The spectrum is in excellent quantitative
agreement with the numerical results of Haldane. Within this approximation we prove that a finite
gap is generic to any liquid state in the extreme quantum limit and that in this single-mode approxi-
mation gapless excitations can arise only as Goldstone modes for ground states with broken transla-
tion symmetry.

® crucial point: for an incompressible FQHE

state, the “guiding center structure factor” s(k)
vanishes as k*as k = 0
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(behavior of mode at small k disagrees with recent prediction by Vignale and Toklaty
based on a conjectured property involving “Hall viscosity” that appears to be false)
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guiding-center algebra 1=1
Fourier components of

fling facl guiding-center density

(9)) =>7T‘w52(q€)
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® guiding-center structure factor
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Figure 8.8 Same quantities as Fig. 8.7, but calcu-
lated for the true ground state of the lowest-Landau-
level Coulomb interaction rather than the Laughlin
state.
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Girvin et al. 1985:

In order to evaluate Eq. (5) using (10) and (11) we
need a specific model for the ground state. We have from a
chosen to use the Laughlin ground state (LGS) for
v=+,%.2 For the LGS 5(k) does vanish as |k|* with  classical

a coefficient which may be calculated exactly, i.e..%?

plasma sum
E(k)=lk|4(l—v)/8v, (16) rule'
“~what determines '
® |aughlin state: this coefficient?
1 ) (m — 1) -« This will be
V — — So = identified as the
T 2 “guiding center
spin” of the
k2€2 2 “elementary
/ droplet” of
S(k) — ‘SO ‘ vV T Laughlin state.




e example 1/3 Laughlin state: sp = 1

L3 5 7
m-— 5 3 3 3 l
. 3
Laughlin {O(O|1[{O|O[I]O|O L7 =3 =
state
uniform 1 [t [t ]|t frf]1]1]1 LZ:§
reference |3 | 3 | 3|3 | 3] 3|3 ]3] 3 2
state —
elementary
droplet
€¢ o o 9 /
e example:2/3 “anti-Laughlin” state:  sj; = —1
011011011011

Odd under particle-hole
transformation!
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Magneto-roton theory of collective excitations in the fractional quantum Hall effect

S. M. Girvin
Surface Science Division, National Bureau of Standards, Gaithersburg, Maryland 20899

A. H. MacDonald
National Research Council of Canada, Ottawa, Canada, K14 OR6

P. M. Platzman
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
(Received 16 September 1985)

We present a theory of the collective excitation spectrum in the fractional quantum Hall effect
which is closely analogous to Feynman’s theory of superfluid helium. The predicted spectrum has a
large gap at k=0 and a deep magneto-roton minimum at finite wave vector, in excellent quantita-
tive agreement with recent numerical calculations. We demonstrate that the magneto-roton
minimum is a precursor to the gap collapse associated with the Wigner crystal instability occurring
near v::%. In addition to providing a simple physical picture of the collective excitation modes,

this theory allows one to compute rather easily and accurately experimentally relevant quantities
such as the susceptibility and the ac conductivity.

In order to evaluate (4.12) it is convenient to note that
the projected density operators obey a closed Lie algebra
defined by

[ProPql=(eX 92 _ek* 25 (4.13)




The fundamental Lie algebra:

p(a),p(q")] = 2isin(5q x ¢'0*)p(q + ¢q')

® The regularized form (in the thermodynamic limit) is the
fluctuation relative to uniform background density:

op(a) = p(q) — (p(q)) lim dp(Ag) =0
6p(q),0p(q")] = 2isin(5q x q'¢*)op(q + q')

obeys same Lie algebra as unregularized form!

® The momentum (generator of translations):

h
T —1 b
P, = )1\1r% A 7 eabvq(Sp()\q)

Py, Pl =0 [Pa,0p(q@)l = hqadp(q)

components how commute!



(components of unregularized momentum do not commute)

unregularized  _ regularized _  center-of-mass

momentum momentum momentum




SO(2,1) deformation algebra:
Aab _ Aba,
[Aab,ACd] _

1

5 (Aacebd 4+ Aadeac 4 Abdeac 4 Abceac)
i 1 ab A cd

Casimir: CQ — det ‘A‘ — §eacebd/\ A

{All A12 _ A21 A22}

Three generators

4@2 Z{R“ Rb quadratic.:,

symmetric

° unregularized form:

® regularized form (center-of-mass part removed):

1 a b




® The SO(2,]) “deformation algebra” is the Lie
subalgebra of generators of linear area-
preserving deformations of the guiding
centers.

® The full Girvin-MacDonald-Platzman Lie
algebra is the full algebra of arbitrary area-
preserving deformations of the guiding
centers.



Rotational symmetry

® requires a metric

® angular momentum is sum of guiding center
and dynamical momentum part:
z ab T 2 Tz 62 ab
L® = gap A" — L L th TaTh

metric
cyclotron motion kinetic energy = w.L?

(separately conserved in high-field limit)

Not present when field is tilted!




® In the absence of rotational symmetry, (e.g. with a tilted field):

lim s(Aq) — 4>\4F“b‘3dqaqchqd€4

® new result, derived using translational invariance
without assuming rotational invariance:

1
2—]\forb

Fabcd

<{Aab7 Acd}> . <Aab> <Acd>

symmetric in ab < cd

4t _rank tensor




Fluid dynamics of the incompressible state

guiding-center density
H= [ d°r V(r /

\

(quasi)-local translationally- |nvar|ant Slowly-varying “external” potential
Hamiltonian that gives rise to (including Hartree potential from
incompressibility long-range part of Coulomb force).
Oip + Vo JY =0  continuity equation for particle density Drift VelOCit)’ field
a a o s .
— definition of flow velocity field €
J pu Y ’Ua(’r’) — h abv V( )

__— V(r) violates

O 5 — | momentum
— T, + befa -+ pvav — () conservation

stress tensor

d*q _.
Tq :/(2 )Qe_zq'r(ﬁa(q» momentum density
T




Viscosity (linear response)

stress

,0p :;p(sg + 7}?5 0% 4+ O(v?

™~

tensor hydrostatic Viscosity gradient of
sressure  tensor flow velocity field

Stress tensor

force across boundary:
dF, = o dA,

N Vo

’ AF \
_» di vanishing hydrostatic pressure!
AN é/ﬁ i area element &Y P

3 A
AFy-

There is no “symmetry” of the
Stress tensor because it has one
(position-type) upper index and
one (momentum-type) lower
index

® special feature of an incompressible Hall fluid:

p=20

IF rotational invariance with metric gq is present

ab — g O' ba (symmetric) (no such relation

without rotational

invariance)



supports
different
chemical
potentials
at inner
and outer
edges

edge-currents screen
interior from forces
applied at the edge v

M&/Z_Q@;;; = i

—_———

no change
® apply pressure to outer edge

® the edge current increases, generating a balancing force that
compensates the applied “pressure”

® no transmission of force to interior (unlike a classical
incompressible fluid which is gapless and transmits pressure)




® rewrite viscosity tensor as a dimensionless
rank-4 tensor with 4 upper indices:

h
ac __ acef P
= — €€ F d __ tpB _de
Nvd 523 be dff X Vdrift — 3 € V.V
, A
P\
dimensions Sym Sym
of viscosity I' is symmetric in the first pair
dimensionless and in the second pair of indices

SO N)gq = 0 (p = 0)

no dissipation: O_gvajb — 0

Ve
i = =i |— [L2°! = —Dede?
“Hall viscosity” “dimensionless Hall viscosity”

Oodd!



® after a little work, | obtain

1

Fabcd _
A
Norb

<\If0 | % [A/xab7 ACd] ‘\IJO> unperturbed (uniform)

ground state

a b ba generators of linear deformations
52 § j{R R'} = A e

of the guiding centers

[Aab,ACd] _ % (eacAbd + Ea,dAbc + 6bcAaal + 6balAa,c)

® This is the SO(2,1) Lie algebra (like the Lorentz group in
2+1| dimensions)

® |t has three generators A/, A*and A~*. Casimir is

11 A22\ 2 11 22\ 2
Com e = o (R AR) T (A A)

A
27 l?

number of electron orbitals N1, =



Structure factor:
new result (without invoking rotational invariance):

. At e
lim S()()\CI) — _Fsb anQchQd -+ O()‘6)
A—0 4

PE! = 5= ((Wol5{A", A} Wo) — (Wo|A®[To) (W] A% W)

Combines naturally with Hall viscosity iI‘aAde

1
abcd -Tmabed ab A cd ab cd

or
can be calculated from can write as a POSItIVG
adiabatic variation of 3x3 Hermitian matrix

periodic boundary _ %
condition geometry! M(ab),(cd) - (M(cd),(ab))

(ab) = (11),(12), (22)




Fabcd Fabcd — 27‘(‘ (eachd 4 eadec 4 Echad 4 6balc2ac)

antlsymmetrlc \
Fa cd '__ FC dab

A symmetric
rank-2 tensor

® Read (2009) defines a scalar Hall viscosity
of rotationally-invariant Hall fluids as

(A) — 1 p=
L h ab Y — 3P ¢
- 62 Q . / \ intrinsic Lz
B fluid angular momentum Galilean metric
density per particle (from mass tensor)

® then

Avron et al result:

/Q“’b = (£ gab = (3 2n V”S”) N

constant in aﬁncompressible
region with translational
invariance

| n + )
metric defined by filling of nth
rotational invariance Landau level



significance of Q%"

1/3; e Discontinuity of Q% across
Q% §7 Qs boundary means stress force
from | to Il does not balance that

fromlltol! (V,V,V is

, : continuous
static boundary (must be an )

equipotential = a flow line)
® get an intrinsic dipole moment at

dL -VV =0 the boundary so the stress
anomaly is balanced by the force

dp® = eAQ¢p,.dL°
1% 4 Q bc X (GECL — _vav)
electric \ length of
dipole boundary element
electron dimensionless tensor

charge AQab: ?b_ ??



two separate contributions to edge dipole...

(v ,

0 ——

O

[ntege qie edge =
® smearing of electron density relative to guiding-

center density by cyclotron-motion gaussian form-
factor: (= the Avron et al. Hall viscosity term)

® non-trivial structure of guiding-center occupations
near FQHE edges, required by conformal field
theory.. e

b

The two effects - B o

just add.

0
Laughlin Y3 Stake edga



relation of edge dipole to “shift”

The dipole at a segment of the
edge has a momentum

dP, = %eabdpb

momentum dP,_  Jy.le momentum dipole

[ £
i R
\5 doesn’t contribute

to total momentum:

circular droplet §dP, =0

it does contribute an extra term
to total angular momentum:

AL*(g)=h¢ e gper¢dP, # 0




specialize to rotationally invariant case

® elementary droplet of Hall fluid has p
particles in q orbitals and angular
momentum L° = 2pq — (s + )

® In the high-field limit, -s is the total Landau-
orbit angular momentum of the droplet,
and -s’ is the intrinsic guiding center
angular momentum (a modified “shift”),
(both are quantized)

® s is odd under particle-hole conjugation of
a Landau level, and vanishes when all
Landau levels are filled or empty (Integer

QHE case).




For the guiding-center structure factor
252 : ‘S/|

1 q
= gE\ ) 12T

absolute value of
Hall viscosity term,
which can have either sign

for the known results for the Laughlin states, the bound is
an equality.

Numerical results for the Moore-Read state (adiabatic
variation of periodic bc) shows that the Hermitian matrix
M {ab,cd} has a single eigenvalue, even for sizes too small
for convergence to the quantized value given by the
(modified) shift in rotationally-invariant geometries,
showing that the bound is satisfied as a equality for model
wavefunctions derived from conformal field theory.

This is not true when corrections due to e.g. Coulomb
interactions are included.



Two possibilities

for the generic rotationally-

invariant models

® the bound is

an inequality, because the

RPA-like dressing of the ground state by
zero-point fluctuations of the collective
mode make the system more compressible
than the ideal model cft reference
wavefunction.

® or, perhaps,t
again in the t
but not rulec

ne bound becomes an equality
nermodynamic limit (unlikey,

out yet).



numerical exact finite-size calculation of the fourth-rank tensors

/3, Coulomb

3(q)

Hall visc.

\

1111 0.0938448048 0.0000000000
1112 -0.0000000134 0.0875134467
1121 -0.0000000134 0.0875134467
1122 -0.0938448412 0.0000000002
1211 -0.0000000134 -0.0875134467
1212 0.0938448139 0.0000000000
1221 0.0938448139 0.0000000000
1222 -0.0000000146 0.0875134466
2111 -0.0000000134 -0.0875134467
2112 0.0938448139 0.0000000000
2121 0.0938448139 0.0000000000
2122 -0.0000000146 0.0875134466
2211 -0.0938448412 -0.0000000002
2212 -0.0000000146 -0.0875134466
2221 -0.0000000146 -0.0875134466
2222 0.0938448098 0.0000000000
0.093844 > 0.087513
N=11 particles in 33 orbitals, on torus

with 6-fold discrete rotational symmetry

NDMNPDMNPDMNPDMNDMNDMNDN 2 2

1
1
2
2
1
1
2
2
1
1
2
2
1
1
2
2
0

y
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2

|/3, Laughlin

0.0834031589
0.0000000043
0.0000000043
-0.0834031496
0.0000000043
0.0834031570
0.0834031570
0.0000000013
0.0000000043
0.0834031570
0.0834031570
0.0000000013
-0.0834031496
0.0000000013
0.0000000013
0.0834031526

0.0000000000
0.0834031566
0.0834031566
0.0000000002
-0.0834031566
0.0000000000
0.0000000000
0.0834031565
-0.0834031566
0.0000000000
0.0000000000
0.0834031565
-0.0000000002
-0.0834031565
-0.0834031565
0.0000000000

083403 = 0.083403

0.0833333....in

thermodynamic

limit

*there is a simple analytic proof that Laughlin etc.
satisfy bound as an equality even in finite periodic systems



summary (Hall viscosity)

add momentum continuity equation to supplement charge
continuity of incompressible Hall fluids. Rotational invariance
not assumed.

linear response of stress tensor to non-uniform drift velocity

unexpected relation to FQHE structure factor, gives lower
bound that is an equality for cft model wavefunctions.

significance of SO(2,1) deformation algebra.

provides a natural “incompressibility metric”, distinct from metrics
derived from long coulomb interaction or cyclotron effective mass,
gives length scale at which incompressibility is established in different
directions.

more in arXiv: 0906:1854



