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• see  FDMH, arXiv: 0906:1854, and “in preparation”

• some new light on  incompressibility in FQHE

• a “metric” that measures the “shape” of the 
“Mott-Hubbard-like” structures that underly 
FQHE incompressibility.

• “Hall viscosity” as fundamental FQHE property.



previous history
• the dissipationless antisymmetric term in the viscosity tensor has been discussed in 

classical magnetic fluids, plasmas in magnetic fields (e.g. Lifschitz and Pitaevskii text 
“Physical Kinetics”)

• Zograf, Avron and Seiler (1995) considered the “odd viscosity” in integer QHE

• Tokatly and Vignale (2008) called it “Lorentz shear modulus” but treated it 
incorrectly in FQHE.

• Read (2009) gives a corrected formulation for rotationally-symmetric FQHE 
states, calls it “Hall viscosity”, emphasizes cft conformal block model wavefunctions 

This work
• generalizes discussion to FQHE fluids without rotational invariance (e.g. with 

“tilted” magnetic fields)

• obtains a clear separation between integer QHE (cyclotron motion) and FQHE 
(guiding center fluid) parts

• finds surprising relations to other aspects of FQHE



FQHE states are incompressible topologically-
ordered states of 2D electrons in a magnetic field

• Analogous to Mott-Hubbard physics on a 
lattice, an energy gap prevents adding more 
electrons to an “already occupied” region.

• This incompressibility is a consequence of 
SHORT-RANGE components of the Coulomb 
interaction, analogous to Hubbard “U”.

• Can be viewed as a consequence of “non-
commutative geometry” of electron “guiding 
centers” moving on the “quantum plane”

[Rx, Ry] = −i�2B



• Much work on FQHE emphasizes  topological 
properties: 

• edge states (described by (1+1)-D conformal field theories, 
cft) and 

• vortex-like excitations with fractional and non-Abelian 
braiding statistics(described by (2+1)-D topological 
quantum field theories (TQFT))

• These aspects do not depend on any metric 
or short-distance lengthscale, and take the 
incompressibility as given.

• New results on “Hall viscosity” of FQHE 
states give new insight into lengthscales, 
shapes, and short-distance properties of 
incompressible states.



some questions
• many properties of FQHE depend on a fundamental 

quantum area, the area through which a quantum h/e of 
magnetic flux passes.

• elementary unit of FQHE state is a droplet of p 
particles in an area containing q flux quanta.  What is 
the shape of this droplet (if rotational symmetry is 
present, it must be  circular; if not, what determines it?)

• “shape” involves lengthscales, and hence a metric 
(note, topological properties and areas are metric-
independent).   What determines this metric?

pe
2πq�2B

pe
2πq�2Barea:

or ?



• The “Hall viscosity” is defined by a rank-2 symmetric tensor 

• it is the sum of two distinct parts, one associated with cyclotron motion and 
the integer QHE, the other with guiding centers and the FQHE

• The guiding-center part is odd under particle-hole transformations of 
the Landau level

• It defines a metric associated with incompressibility:

• the discontinuity of the Hall viscosity at QHE edges gives an intrinsic electric dipole 
per unit length on the boundary.

• The magnitude of the guiding center part provides a lower bound to the O(q4) 
behavior of the “guiding-center structure factor”, a fundamental property of 
incompressibility identified by Girvin, Macdonald and Platzman, 1986.

• The inequality is satisfied as an equality for cft-based model wavefunctions 
(Laughlin, Moore-Read, Read-Rezayi).

• It is related to a SO(2,1) Lie algebra of area-preserving deformations, can be 
numerically calculated by adiabatic variation of pbc’s (torus)  on finite-size systems. 

summary of new results
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some applications

• The Pfaffian and anti-Pfaffian (next talk) are 
distinguished by opposite signs of their guiding-
center Hall viscosity (they are related by particle-hole 
transformation)

• This leads to an intrinsic electric dipole moment 
on domain walls between these states.   (excitations of the 
neutral CFT modes on these wall are fluctuations of this dipole moment around its 
ground-state value)

• Can be used to investigate the mysterious “non-
unitary cft” models (Haldane-Rezayi, “Gaffnian,” etc.) which appear 
to represent systems at transitions between FQHE 
states with same filling, different Hall viscosity.



Laughlin state for 1/m FQHE

• Has rotational invariance under

z = (x+ iy) → eiφz

Ψ1/m
L (r1, r2, . . . , rN ) =

�

i<j

(z(ri)− z(rj))
m
�

i

e−z∗(ri)z(ri)/4�
2
B

z(r) = x+ iy

• rotational invariance  implies a “hidden” 
dependence on a “metric” derived from the 
cyclotron effective mass tensor of the Landau levels

2π�2B = e
�B · n̂

magnetic area

symmetric gaugeholomorphic form



Landau levels

• generator of rotations is defined by metric:

πi = pi − eA(ri)
dynamical momentum

“metric” (det|g|=1) derived from 
Galileian mass tensor

Ra
i = rai − �ab�−1πib�

2
B

guiding center 2D Levi-Civita
antisymmetric symbol

[πia,πib] = i �
2

�2B
�ab

lower 2D indices a = 1,2

[Ra
i , R

b
i ] = −i�2B�

ab

upper 2D indices a = 1,2

Euclidean covariant notation

Lz(g) = �2B
2�

�

i

gabπiaπib +
1
2�

�

i

gabR
a
iR

b
i

gacgbc = δab

H =
�

i

1
2mg

abπiaπib

[Ra
i ,πib] = 0



• guiding center R

ra = Ra + (�2/�)�abπ̃b

electron
coordinate

dynamical 
momentum

(of cyclotron 
motion)

antisymmetric symbol

coordinates have 
“upper” indices

momenta have 
“lower” indices

[Ra, π̃b] = 0

cyclotron motion around guiding center

� =

����
�

eBn

����
1/2

B

B



factorizing a 2D metric

• for example

gab = ωaω
∗
b + ωbω

∗
a

i�ab = ωaω
∗
b − ωbω

∗
a

ωa = gabω
b = i�abω

b

gabω
∗aωb = 1

gabω
aωb = 0

g =

�
1 0
0 1

�

Hermitian generalized eigenproblem

ω · r = z = x+ iy

ω(g) = 1√
2

�
1
i

�

a complex normalized 2D (2 component) vector



This “metric” g′  is a
freely-choosable

variational parameter!

Another look at the Laughlin state:

• Landau-level raising operator

a†i (g) =
�B
� ωa(g)πia

b†i (g) =
1
�B

ωa(g)R
a
i

• guiding center “z” operator

[ai(g), ai(g)
†] = 1

[bi(g), bi(g)
†] = 1

Lz(g�) = �
2�2B

�

i

g�abR
a
iR

b
i

• Laughlin state is an eigenstate of

Lz = �
2NNorb

Norb = mN − (m− 1)

The number of orbitals 
occupied by the N particles The “shift”

bi(g
�)|0� = 0

ai(g)|0� = 0

metric defined by
cyclotron effective mass

|Ψ1/m
L (g�)� ∝

�

i<j

�
b†i (g

�)− b†j(g
�)
�m

|0�



holomorphic form

|α| < 1
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N-particle Laughlin droplet with “metric” g′

• elliptical shape, with “fuzzy edges” along the 
nominal boundary

ν
2π�2B

ρ
electron-density 
profile

ν = 1
m

1
2g

�
abr

arb = Norb�
2

• This is NOT just a change of edge shape; the 
“elementary droplets” of this FQHE fluid are 
also elliptical regions of m orbitals containing 
1 particle each.



What fixes the shape of elementary droplet?

• If there is rotational symmetry around the normal to the 2D 
“Hall surface”, the elementary droplet has the same (circular) 
shape as the cyclotron orbits 

• If not (e.g., if the magnetic field is “tilted”) it is a compromise 
between the shape of the cyclotron orbit (through a form 
factor) and the shape of equipotentials of the Coulomb 
potential of a point charge (determined by the dielectric 
tensor)

H
eff =

�
d
2q

(2π)2
Ṽ (q)f(q)2

�

i<j

e
iq·(Ri−Rj)



edge

droplet of incompressible “Hall fluid”

drift velocity
flow lines along
equipotentials

• dissipationless flow means that in steady state,  stress forces are 
normal to flow lines

• “viscosity” is linear response  of stress tensor to non-uniform drift 
velocity field

• “Hall viscosity” is dissipationless part of viscosity tensor, just as 
“Hall conductivity” is dissipationless part of conductivity tensor

Hall viscosity



Isotropic fluid (special case, earlier work only considered this)

• Use Cartesian coordinates with indices i = 
1,2, don’t distinguish upper and lower 
indices, metric gij =  δij.

• stress tensor   σij =  σji, symmetric

• viscosity σij = pδij + ηijkl∇kvl +O(v2)

ηijkl = ηL
ijkl

+ ηS
ijkl

+ ηH
ijkl

longitudinal, vanishes if
 incompressible, dissipative

shear, dissipative

Hall, non-dissipative
odd under time-reversal  

“internal” angular momentum 
of fluid per unit area

(Read 2009)

(e.g., fluid of spinning molecules
has a “Hall viscosity”contribution 
to the stress tensor)



Without isotropy.......

• stress tensor is not symmetric, has indices 
of opposite type: force across a boundary 
line element in a fluid is

• continuity relation for momentum transport 
in a translationally-invariant fluid:

momentum density stress tensor (momentum current density)

Fourier transform of 
momentum density



Long-wavelength expansion..

• generator of translations

• generator of dilatations

• SO(2,1) generators of area-
preserving deformations

• The quadratic Casimir is:

generator of
rotations, if isotropic



Can derive the general relation for 2D Hall viscosity;

• stress tensor in presence of fluid flow 
(covariant form):

• Dissipationless Hall viscosity term (A = total 
area covered by fluid):

• Defines a new symmetric rank-2 Hall-viscosity tensor:

in the case of  
rotational invariance
(c.f. Read 2009)

antisymmetric!



application to FQHE

• The SO(2,1) deformation algebra splits into 
two independent pieces: cyclotron orbits 
and guiding centers:

cyclotron motion guiding centers

Results of zograf  et al 
for integer QHE case
(cyclotron-motion 
form factors)
(not so interesting)

relates to 
incompressibility, 
new FQHE results!



summary of new results:
• The guiding-center Hall viscosity defines the natural 

metric gab associated with incompressibility through

• The Hall viscosity gives an intrinsic electric dipole 
moment per unit length on the (unreconstructed) 
boundary of a Hall fluid: 

• The guiding-center Hall viscosity provides a lower bound to 
a fundamental measure of incompressibility provided by the 
“guiding-center structure function”, which is satisfied as 
an equality by ideal model FQHE states such as Laughlin, 
Moore-Read, Read-Rezayi...

�2B



• crucial point:  for an incompressible FQHE 
state, the “guiding center structure factor”  s(k) 
vanishes as k4 as k →  0
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E

Collective mode with short-range V1 pseudopotential, 1/3 
filling (Laughlin state is exact ground state in that case)

“roton”
(quasiparticle + quasihole)

(2 quasiparticle 
+ 2 quasiholes)

goes into
continuum

(behavior of mode at small k disagrees with recent prediction by Vignale and Toklaty  
based on a conjectured property involving “Hall viscosity” that appears to be false)

gap incompressibility



• guiding-center structure factor

[Ra, Rb] = i�ab�2 ρ(q) =
N�

i=1

eiq·Ri

�ρ(q)� = 2πνδ2(q�)

�ρ(q)ρ(q�)� − �ρ(q)��ρ(q�)� = 2πs(q)δ2(q�)

guiding-center algebra
Fourier components of
guiding-center density

s(q) =
1

Norb

�

ij

�eiq·Rie−iq·Rj � − �eiq·Ri��e−iq·Rj �

filling factor
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s(q) = νS0(q)

(per flux , instead of per particle)

0 < ∆E(k) <
O(k4)

s(k)

variational upper bound to
collective excitation energy

ν =
N

Norb

number of orbitals = 
number of flux quanta 
through 2D surface

must be O(k4) if gapped

Note:
smaller  O(k4) term 
means
more incompressible



Girvin et al. 1985:

• Laughlin state:

ν =
1

m
s0 =

(m− 1)

2

This will be 
identified as the 
“guiding center
spin” of the 
“elementary 
droplet” of 
Laughlin state.

from a 
classical 

plasma sum 
rule!

 ´

what determines
this coefficient?

s(k) = |s�0|ν
�
k2�2

2

�2



• example 1/3 Laughlin state:

Lz =
3

2

Lz =
3

2
− s�0

s�0 = 1

01 0 01 001 0
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elementary

 droplet

uniform 
reference 

state

 Laughlin 
state

• example:2/3 “anti-Laughlin” state: s�0 = −1

Odd under particle-hole 
transformation!

011011011011





The fundamental Lie algebra:

• The regularized form (in the thermodynamic limit) is the 
fluctuation relative to uniform background density:

δρ(q) = ρ(q)− �ρ(q)�

• The momentum (generator of translations):

Pa = lim
λ→0

λ−1 �
�2
�ab∇b

qδρ(λq)

[Pa, Pb] = 0 [Pa, δρ(q)] = −i�qaδρ(q)

lim
λ→0

δρ(λq) = 0

[ρ(q), ρ(q�)] = 2i sin( 12q × q��2)ρ(q + q�)

components now commute!

[δρ(q), δρ(q�)] = 2i sin( 12q × q��2)δρ(q + q�)
obeys same Lie algebra as unregularized form!



• without regularization, we just get

Pa =
�
�2
�ab

�

i

Rb
i

[Pa, Pb] =
�2
�2

�abρ(0) �= 0

ρ(0) = N

(components of unregularized momentum do not commute)

unregularized 
momentum

= regularized 
momentum

+ center-of-mass 
momentum



SO(2,1) deformation algebra:

• unregularized form:

Λab = Λba

[Λab,Λcd] =
1

2

�
Λac�bd + Λad�ac + Λbd�ac + Λbc�ac

�

Casimir: C2 = det |Λ| = 1

2
�ac�bdΛ

abΛcd

Λab =
1

4�2

�

i

{Ra
i , R

b
i}

Λab = lim
λ→0

1

2λ2
∇a

q∇b
qδρ(λq)

{Λ11,Λ12 = Λ21,Λ22}
Three generators

• regularized form (center-of-mass part removed):

quadratic,
symmetric



• The SO(2,1) “deformation algebra” is the Lie 
subalgebra of generators of linear area-
preserving deformations of the guiding 
centers.

• The full Girvin-MacDonald-Platzman Lie 
algebra is the full algebra of arbitrary area-
preserving deformations of the guiding 
centers.



Rotational symmetry

• requires a metric

• angular momentum is sum of guiding center 
and dynamical momentum part:

L̄z =
�2

2�g
abπ̃aπ̃bLz = gabΛ

ab − L̄z

cyclotron motion kinetic energy = ωcL̄
z

metric

(separately conserved in high-field limit)

Not present when field is tilted!



• In the absence of rotational symmetry, (e.g. with a tilted field):

• new result, derived using translational invariance 
without assuming rotational invariance:

lim
λ→0

s(λq) → 1

4
λ4Γabcd

S qaqbqcqd�
4

symmetric in ab ↔ cd

4th-rank tensor

Γabcd
S =

1

2Norb
�{Λab,Λcd}� − �Λab��Λcd�



• This derivation involved the edge.  Can we get a 
“bulk” derivation of  σab  even though it is no longer 
defined by the rotationally-invariant-system formula

σab = σa
c g

bc =
1
A

�Ψ| δH

δgab
|Ψ�“derivative of energy 

density w.r.t. metric”

• Yes,  it can be derived from the continuity relation
V(r) violates
momentum

conservation

πa =
�

d2q

(2π)2
e−iq·r�π̃a(q)� momentum density

∂

∂t
πa +∇bσ

b
a + ρ∇aV = 0

π̃a(q) =
�
�2
B

�ab

N�

i=1

(ei 1
2q·Ri)Rb

i (e
i 1
2q·Ri)

Viscosity (linear response)

σa
b = pδa

b + ηac
bd∇cv

d + O(v2)
hydrostatic
pressure

viscosity
tensor

gradient of
 flow velocity field

stress
tensor

∂tρ +∇aJa = 0
Ja = ρva

p = 0

continuity equation for particle density

definition of flow velocity field

• special feature of an incompressible Hall fluid:

vanishing hydrostatic pressure!

v = ẑ×E
ẑ·B

eE = −∇V

Slowly-varying “external” potential 
(including Hartree potential from 
long-range part of Coulomb force).

         has no Fourier 
components except those with

ρelectron � ρ̄guiding−center

(form-factors = 1 in this limit)

(quasi)-local translationally-invariant
Hamiltonian that gives rise to 
incompressibility

Fluid dynamics of the incompressible state

H =
�

d
2r (h0(r) + V (r)ρ̄(r))

guiding-center density

va(r) =
�2
B

� �ab∇bV (r)

Drift velocity field

|q| < qc, qc�B � 1

Ṽ (q)

v = ẑ×E
ẑ·B

eE = −∇V

Slowly-varying “external” potential 
(including Hartree potential from 
long-range part of Coulomb force).

         has no Fourier 
components except those with

ρelectron � ρ̄guiding−center

(form-factors = 1 in this limit)

(quasi)-local translationally-invariant
Hamiltonian that gives rise to 
incompressibility

Fluid dynamics of the incompressible state

H =
�

d
2r (h0(r) + V (r)ρ̄(r))

guiding-center density

va(r) =
�2
B

� �ab∇bV (r)

Drift velocity field

|q| < qc, qc�B � 1

Ṽ (q)

stress tensor



Viscosity (linear response)

σa
b = pδa

b + ηac
bd∇cv

d + O(v2)
hydrostatic
pressure

viscosity
tensor

gradient of
 flow velocity field

stress
tensor

∂tρ +∇aJa = 0
Ja = ρva

p = 0

continuity equation for particle density

definition of flow velocity field

• special feature of an incompressible Hall fluid:

vanishing hydrostatic pressure!

There is no “symmetry” of the 
Stress tensor because it has one 
(position-type) upper index and 
one (momentum-type) lower  
index

Stress tensor

dFa = σb
a dAb

force across boundary:

area element

dV = dAad�a

dFa

dAa

σb
a

lower index

lower index

one upper index, 
one lower index

IF rotational invariance with metric gab is present

σab ≡ gacσb
c = σba (symmetric) (no such relation

without rotational
invariance)

There is no “symmetry” of the 
Stress tensor because it has one 
(position-type) upper index and 
one (momentum-type) lower  
index

Stress tensor

dFa = σb
a dAb

force across boundary:

area element

dV = dAad�a

dFa

dAa

σb
a

lower index

lower index

one upper index, 
one lower index

IF rotational invariance with metric gab is present

σab ≡ gacσb
c = σba (symmetric) (no such relation

without rotational
invariance)

Viscosity (linear response)

σa
b = pδa

b + ηac
bd∇cv

d + O(v2)
hydrostatic
pressure

viscosity
tensor

gradient of
 flow velocity field

stress
tensor

∂tρ +∇aJa = 0
Ja = ρva

p = 0

continuity equation for particle density

definition of flow velocity field

• special feature of an incompressible Hall fluid:

vanishing hydrostatic pressure!

-



|µ2 − µ1| < ∆

edge-currents screen 
interior from forces 
applied at the edge

• the edge current increases, generating a balancing force that 
compensates the applied “pressure”

• no transmission of force to interior (unlike a classical 
incompressible fluid which is gapless and transmits pressure)

• apply pressure to outer edge

supports 
different 
chemical 
potentials 
at inner 

and outer 
edges

no change

ρ =
ν

2π�2
B



• rewrite viscosity tensor as a dimensionless 
rank-4 tensor with 4 upper indices:

no dissipation: σa
b∇aJb = 0

ηac
bd = −ηca

db Γabcd = −Γcdab

“Hall viscosity”

so ηac
ad = 0 (p = 0)

vd
drift = �2B

� �de∇eV

“dimensionless Hall viscosity”

dimensionless

ηac
bd =

�
�2
B

�be�dfΓacef

dimensions
of viscosity

sym sym
! is symmetric in the first pair 
and in the second pair of indices

• rewrite viscosity tensor as a dimensionless 
rank-4 tensor with 4 upper indices:

no dissipation: σa
b∇aJb = 0

ηac
bd = −ηca

db Γabcd = −Γcdab

“Hall viscosity”

so ηac
ad = 0 (p = 0)

vd
drift = �2B

� �de∇eV

“dimensionless Hall viscosity”

dimensionless

ηac
bd =

�
�2
B

�be�dfΓacef

dimensions
of viscosity

sym sym
! is symmetric in the first pair 
and in the second pair of indices

Odd!



• after a little work, I obtain

Γabcd
A =

1
Norb

�Ψ0| 1
2i [Λ

ab, Λcd]|Ψ0�

Λab =
1

4�2
B

N�

i=1

{Ra
i , Rb

i} = Λba

unperturbed (uniform)
ground state

generators of linear deformations
 of the guiding centers

[Λab, Λcd] = i
2

�
�acΛbd + �adΛbc + �bcΛad + �bdΛac

�

• This is the SO(2,1) Lie algebra (like the Lorentz group in 
2+1 dimensions)

• It has three generators  !11,  !21 and  !22 .  Casimir is

C2 = − det |Λ| = (Λ12)2 +
�

Λ11 − Λ22

2

�2

−
�

Λ11 + Λ22

2

�2

number of electron orbitals Norb =
A

2π�2



Structure factor: 
new result (without invoking rotational invariance):

lim
λ→0

S0(λq) =
λ4

4
Γabcd
S qaqbqcqd +O(λ6)

For non-rotationally-invariant states, 
I find the new tensor result

Γabcd
S = 1

Norb

�
�Ψ0| 12{Λ

ab,Λcd}|Ψ0� − �Ψ0|Λab|Ψ0��Ψ0|Λcd|Ψ0�
�

Combines naturally with Hall viscosity iΓabcd
A

Γabcd
S + iΓabcd

A =
1

Norb

�
�ΛabΛcd� − �Λab��Λcd�

�

can write as a positive
 3x3 Hermitian matrix

M(ab),(cd) = (M(cd),(ab))
∗

(ab) = (11), (12), (22)

can be calculated from 
adiabatic variation of 
periodic boundary 
condition geometry!



• Hall viscosity can also be represented as a symmetric (definite) rank-2 tensor:

Γabcd = Γabcd
A = 2π 1

2

�
�acQbd + �adQbc + �bcQad + �bdQac

�

antisymmetric

A symmetric
rank-2 tensor

Γabcd
A = −Γcdab

A

• Read (2009) defines a scalar Hall viscosity 
of rotationally-invariant Hall fluids as

η(A) = 1
2ρ�̄z

fluid
density

• then

Qab = η(A) �2

� gab

constant in an incompressible
region with translational 
invariance

metric defined by
rotational invariance

Avron et al result:

Qab =
�

1
4π

�
n νnsn

�
gab

intrinsic Lz

angular momentum
 per particle

Galilean metric 
(from mass tensor)

n + 1
2

filling of nth 
Landau level

ηab
H

=
�
�2
B

Qab



significance of Qab:
Physical significance #1

dpa = e∆Qab�bcdLc

∇a∇bV

dFa = dP b∇bEa

(eEa = −∇aV )

• Discontinuity of Qab across 
boundary means stress force 
from I to II does not balance that 
from II to I !  (               is 
continuous)

• get an intrinsic dipole moment at 
the boundary so the stress 
anomaly is balanced by the force

static boundary (must be an 
equipotential = a flow line)

dL · ∇V = 0

electric 
dipole

electron 
charge

dimensionless tensor

length of
boundary element

∆Qab = Qab
I −Qab

II



two separate contributions to edge dipole...

• smearing of electron density relative to guiding-
center density by cyclotron-motion gaussian form-
factor:  (= the Avron et al.  Hall viscosity term)

• non-trivial structure of guiding-center occupations 
near FQHE edges, required by conformal field 
theory..

The two effects  
just add.



dPa = �
e�2B

�abdpb

momentum dP

The dipole at a segment of the
edge has a momentum

momentum dipole 

�
dPa = 0

doesn’t contribute
to total momentum:

∆Lz(g) = �
�

�abgbcrcdPa �= 0

it does contribute an extra term 
to total angular momentum:

circular droplet

relation of edge dipole to  “shift”



specialize to rotationally invariant case

• elementary droplet of Hall fluid has p 
particles in q orbitals and angular 
momentum 

• In the high-field limit, -s is the total Landau-
orbit angular momentum of  the droplet, 
and -s′  is the intrinsic guiding center 
angular momentum (a modified “shift”), 
(both are quantized)

• s′ is odd under particle-hole conjugation of 
a Landau level, and vanishes  when all 
Landau levels are filled or empty (Integer 
QHE case).

Lz = 1
2pq − (s+ s�)



S0(q) →
1

2π�2
γ

�
q2�2

2

�2

γ ≥ |s�|
q

For the guiding-center structure factor

• for the known results for the Laughlin states, the bound is 
an equality.

• Numerical results for the Moore-Read  state (adiabatic 
variation of periodic bc) shows that the Hermitian matrix 
M_{ab,cd} has a single eigenvalue, even for sizes too small 
for convergence to the quantized value given by the 
(modified) shift in rotationally-invariant geometries, 
showing that the bound is satisfied as a equality for model 
wavefunctions derived from conformal field theory.

• This is not true when corrections due to e.g. Coulomb 
interactions are included.

absolute value of
Hall viscosity term,

which can have either sign



Two possibilities for the generic rotationally-
invariant models

• the bound is an inequality, because the 
RPA-like dressing of the ground state by 
zero-point fluctuations of the collective 
mode make the system more compressible 
than the ideal model cft reference 
wavefunction.

• or, perhaps, the bound becomes an equality 
again in the thermodynamic limit (unlikey, 
but not ruled out yet).



  1  1  1  1        0.0834031589        0.0000000000
  1  1  1  2        0.0000000043        0.0834031566
  1  1  2  1        0.0000000043        0.0834031566
  1  1  2  2       -0.0834031496        0.0000000002
  1  2  1  1        0.0000000043       -0.0834031566
  1  2  1  2        0.0834031570        0.0000000000
  1  2  2  1        0.0834031570        0.0000000000
  1  2  2  2        0.0000000013        0.0834031565
  2  1  1  1        0.0000000043       -0.0834031566
  2  1  1  2        0.0834031570        0.0000000000
  2  1  2  1        0.0834031570        0.0000000000
  2  1  2  2        0.0000000013        0.0834031565
  2  2  1  1       -0.0834031496       -0.0000000002
  2  2  1  2        0.0000000013       -0.0834031565
  2  2  2  1        0.0000000013       -0.0834031565
  2  2  2  2        0.0834031526        0.0000000000

1/3, Coulomb 1/3, Laughlin 
S(q) Hall visc.

0.0833333.... in 
thermodynamic

limit
*there is a simple analytic proof that Laughlin etc.

satisfy bound as an equality even in finite periodic systems

  1  1  1  1        0.0938448048        0.0000000000
  1  1  1  2       -0.0000000134        0.0875134467
  1  1  2  1       -0.0000000134        0.0875134467
  1  1  2  2       -0.0938448412        0.0000000002
  1  2  1  1       -0.0000000134       -0.0875134467
  1  2  1  2        0.0938448139        0.0000000000
  1  2  2  1        0.0938448139        0.0000000000
  1  2  2  2       -0.0000000146        0.0875134466
  2  1  1  1       -0.0000000134       -0.0875134467
  2  1  1  2        0.0938448139        0.0000000000
  2  1  2  1        0.0938448139        0.0000000000
  2  1  2  2       -0.0000000146        0.0875134466
  2  2  1  1       -0.0938448412       -0.0000000002
  2  2  1  2       -0.0000000146       -0.0875134466
  2  2  2  1       -0.0000000146       -0.0875134466
  2  2  2  2        0.0938448098        0.0000000000
 nup=  11 fermions ndn=   0 fermions nflux=  33 P/Q =  1/ 3 NN =    11
 coulomb coupling =   1.0000 number of layers=    1
 layer 1:  landau index=  0 Howard-Fang width=  0.0000 position=  0.0000
  1-body terms:
 layer     1: layer potential =     0.000000
 layer     1: fixed charges    11    0
 layer-1 to layer-1 pseudo-potentials:
 V( 0) =  0.000000 V( 1) =  0.000000 V(
 PBC lattice type:            hexagonal  
 cosine=      0.50000000 ratio=      1.00000000
 L1 = (  15.473,   7.737)   L2 = (   0.000,  13.400)

 ------------------------------------------------------------------------
  E0 =        -4.5191854386  E0/N =        -0.4108350399

numerical exact finite-size calculation of the fourth-rank tensors

0.093844 > 0.087513 0.083403 = 0.083403

N=11 particles in 33 orbitals, on torus
with 6-fold discrete rotational symmetry



summary (Hall viscosity)
• add momentum continuity equation to supplement charge 

continuity of incompressible Hall fluids. Rotational invariance 
not assumed.

• linear response of stress tensor to non-uniform drift velocity

• unexpected relation to FQHE structure factor, gives lower 
bound that is an equality for cft model wavefunctions.

• significance of SO(2,1) deformation algebra.

• provides a natural “incompressibility metric”, distinct from metrics 
derived from long coulomb interaction or cyclotron effective mass, 
gives length scale at which incompressibility is established in different 
directions.

• more in arXiv: 0906:1854


