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1D defects abound in graphene devices, e.g. … 

1D defects in graphene:  
many-body interactions 

de Heer (2008) 

… step edges 

1 µm 

Oezyilmaz, et al., PRL (2007) 

… gates, sample edges… 

Many-body interactions strong in unscreened graphene; dramatic effects in 1D … 

MK, arXiv:10032414 



Interacting electrons in 1D 

•  universal low-energy description by the Luttinger liquid        Haldane, JPC (‘81) 

noninteracting prediction 

experiment 

Yao et al., Nature (‘99); 
Bockrath et al., Nature (‘99) 

interacting prediction 

experiment (carbon nanotubes):  

•  drastic effects of electron-electron interactions on scattering:  



Friedel oscillations 

Friedel oscillations: interference of incoming & backscattered waves 
  Hartree and exchange potentials  

 Log. divergent scattering at 
 Current blocked at T=0 (Luttinger liquid)  

π/2kF 

Vex 

|ψ|2: 

Lowest order Born approximation at k≈kF: 

π/2k 

Re ψ: 

Matveev, Yue, Glazman, PRL (1993) 
  extra scattering 



Scattering from 1D defects in 2D conductors 

1D scatterer  in a 2D electron gas: 

1/kx’ 

Scattering state producing a Friedel oscillation: |ψ|2: 

 In 2D: kx≠kx’ even at k=k’=kF in generic directions   
Re ψ: Wave at at k=kF: 

1/kx Similarly: point defects 
Stauber, Guinea, Vozmediano, PRB (‘05); Foster, Aleiner, PRB (’08)  

 oscillations suppress  
Shekhtman, Glazman, PRB (‘95); Alekseev, Cheianov, PRB (’98) 



If        is k’-independent:   

Scattering from 1D defects in intrinsic graphene 

Not at kF=0  the Dirac point of graphene: 

lFriedel≈1/kx’ 

  divergent interaction effects at low T if Hartree potentials are absent   



Model 

 no Hatree potential  

Dirac Hamiltonian 

 particle-hole symmetry 
H purely pseudospin-off-diagonal 

 expect logarithmically divergent interaction corrections 

with 1D vector potential  



Implementation (1): Strain 

Strain u  vector potential 

… and can be engineered: 

Pereira, Castro Neto, PRL (2009) 

Strain appears at steps in the substrate, …  

60 nm 

de Heer (2008) 

Fogler, Guinea, Katsnelson, PRL (2008); Guinea, Katsnelson, Geim, Nat. Phys (2010) 

  1D vector potentials in strips under strain:  



Implementation (2): electrical currents 

Two wires, carrying anti-parallel currents produce 1D vector potentials: 



Single-Particle Physics 

Characterize low energy scattering by the transfer matrix:   

M 

Ay induces scattering states, … 

Fogler, Guinea, Katsnelson, PRL (2008) 

Find: 

… and bound states: 

Conductance: 



Electron-electron interactions 

Interaction parameter 

Unscreened Coulomb interaction (insulating substrate or suspended sample): 

At rs<<1 many-body scattering (inelastic processes) is suppressed at  
low T (inelastic:           ; elastic:                           )   

 Characterize interaction effects at  rs<<1 by renormalizing   

M 

Single-particle, low-energy scattering still described by M;  
By parity, particle-hole symmetry, current conservation: 



First order in rs  

Compute  

and obtain                                             in Born approximation. 

But: the non-locality of Vex produces the same divergence as in LL:    

ii) e.g. x>0, x’<0: 

from the scattering                                 and bound states 

       Luttinger liquid (LL):  

Find: i) x=x’: 

 no low-energy divergence due to the local part of Vex   



,  

Interaction correction 

Diagrammatically: extract              from 

(symmetry) 

Find: 



Discussion 

•  minus sign 

 (similar to the Kondo effect in 1D)     

- 

- 

- 

- 

Note:  

Origin: exchange with electrons in bound states 

  interactions suppress scattering Luttinger liquid 

  increase transmission amplitude by   

•  exponential enhancement at 

•  logarithmic divergence at low T, 



1-loop RG 

Find: - IR-divergent interaction correction to 

         - no IR-divergence of the polarization 

Sum them up by the RG eqs.  

 - IR-divergent correction to velocity  correction to rs=e2/κv 
Gonzalez, Guinea, Vozmediano, PRB (‘99) 

 - no IR-divergence of the first vertex correction 
Kotov, Uchoa, Castro Neto, PRB (‘08) 

  at                                  , but                                     the corrections 

+ + …  are dominant. 



i)             :                                     ,                                                                     

Results (1) 

Luttinger liquid (LL)  

 

  no scattering at T=0 (w/o bulk instabilities) 

     marginally irrelevant scattering    in LL 

 Much slower scaling than in the LL  



ii)              : 

- 

- 

- 

- 

Results (2) 

 Strong signatures: 

 “unitary transport” below temperature  

  exponential renormalization by bound states                       ,                                                                              
  cut-off at 



Thermal desorption of Si at high temperatures to form graphene: 

4H-SiC 

Si Face 

C Face 

Courtesy of Walt de Heer, GT 

Berger et al., J. Phys Chem B (2004), Science (2006), First et al., MRS Bulletin (2010) 

Epitaxial Graphene on SiC: 
Mass Generation 
Miller, Kubista, Rutter, Ruan, de Heer, MK,  
First, Stroscio, Nature Physics (2010) 



•  Layer stacking 

R30 

R31.5 
R-3.6 

R7 
R31.5C 

R30C 

Alternating between: 
NEAR 30˚ & NEAR 0˚ 

Hass et al., PRL (‘08)  

Multilayer Graphene on C-face SiC 



θ 

Electronic “decoupling” 
Sadowski et al., PRL, 97, 266405 (2006) 

Multilayer Graphene on C-face SiC 

STM 



Experiment epitaxial graphene: 

Miller et al., Science (2009) 

STS in a B-field                 

Theory parabolic band: 

Theory Dirac cone: 

Observe: splitting Δ≈10 meV of LL0 

Δ 

 Electron-electron interactions??  



Spatially resolved STS  

Find: spatially inhomogeneous 
         splitting Δ of LL0 

Line scan of STS spectra in B=5T; Miller et al., Science (2009): 

weak space-dependence 
of higher LL. 

Conjecture: spatially inhomogeneous mass term? 

LL0 



Mass in the Dirac Equation 

  m: potential with opposite sign on the sublattices 
          (“staggered potential”) 

 (A-sublattice): V=m 
A B 

recall: 

Dirac equation with mass m:  

 (B-sublattice): V=-m 

 consistent with experiment for a space-dependent   

LL spectrum: 



LL0 in single layer graphene 

LL0 wavefunction: sublattice-polarized 

valley K’: 

A B 

valley K: 

A B 

A B A B 

LLn (n>0): unpolarized 



LL0–splitting 

“Staggered potential” m (with sublattice-dependent sign): 

: V=m 
: V=-m 

 splitting of LL0 by Δ=2m  

 weak perturbation on LLn (n>0)   

A B 



Interlayer interaction 

For short range interaction between top (red) and bottom (blue) layer:  

VA>VB 
A B 

AB-stacking  

VA<VB 

m>0 
  staggered potential 

m<0 

BA-stacking  

A B 

 mass in the top layer:  

 stacking order-dependent mass  



: m<0 : m>0 

Local sublattice symmetry breaking 

Spatially varying stacking order: 

AB-stacking  
 m>0 

BA-stacking  m<0 

 space-dependent mass m 

AA-stacking  m=0 

AB 

BA 

AA 

commensurate rotations:  
m has trigonal superlattice  



BA BA 

AA l 

Postulate an m oscillating  
on the scale                 :  

Experiment & Phenomenological Theory (I) 

Compare to STS line scan (8T): 

€ € 

2lBLL wavefunctions have spatial  
extent   

 qualitative agreement 

Have                   the wavefcts. 
are confined to AB/BA regions 
 expect splitting of LL0 at AB/BA   

Miller, Kubista, Rutter, Ruan, de Heer, MK, First, Stroscio, Nature Physics (2010) 



Observe: anticorrelation on lattice scale 

Experiment & Phenomenological Theory (II) 

✔ 
Observe: 

Theory:   sublattice polarization of LL0 

✔
Theory:   suppression of LL0 splitting for             (weak B): 



2D STS 

2D map of LL0 splitting: 

✔

 hexagonal superlattice ✔ 
B=8T 

≠ Wigner crystal, other correlation effects 
 superlattice B-independent ✔ 

 hints at continuation of  
    superlattice 



Microscopic Theory 

i) starting point: tight-binding model of  
   bilayer graphene fitted to experiment 

Dresselhaus, Dresselhaus, Adv. Phys. (2002) 

layer 1 

layer 0 

interlayer hopping 

•  ω-dependence of          may be neglected  
 Phenomenological theory if if                              i  is a (vector) potential, i.e.    

Single-layer graphene 

ii) integrate out layer 1  effective theory for layer 0: 

•  spatial non-locality of         may be neglected   

 Quantitative agreement with experiment. 



Large Interlayer Bias 

 local Hamiltonian for layer 0: 



Dirac Mass 

Yao et al., PRL (2008);  
Semenoff, et al., PRL (2008);  
Martin, et al., PRL (2008). 

 topologically confined states  

Doping of the layer closest to the substrate:  

Expect:  

  qualitative agreement with numerics on 
     twisted bilayers (velocity suppression, …)   
    Trambly de Laissardière et al.,  
    Nano Lett. (2009) 

  local                                         for some pairs of layers               
     (next-nearest layer coupling                     ,                          in exp.)                         )         

  Dirac electrons with space-dependent mass. 



Summary  

•  Space-dependent splitting of LL0  

•  exponential renormalization  

Graphene with 1D vector potentials:  

- 

- 

- 

- 

•  many-body scattering resonance  

Epitaxial Multilayer Graphene:  

•  Local sublattice symmetry breaking –  
  spatially inhomogeneous mass generation 


