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Outline
• Introduction: fluctuation relations
• Master equation with time-dependent rates

– Applies in semiclassical regime, quantum input: rates
– Current statistics & stochastic path integral 
– Quantum generalization

• Fluctuation relation for time-dependent voltage
protocol
– Must combine statistics for work and charge
– Jarzynski relation
– Cumulant relations for time-dependent transport

• Illustration: mesoscopic single-electron transistor
with time-dependent voltage protocol



Fluctuation relations
• Exact statements for nonequilibrium systems

– Near equilibrium: recover fluctuation-dissipation theorem
– Relate probability distribution of work, entropy production

rate, steady-state current, etc., to distribution function
under time-reversed force protocol

– Very active field, first experimental tests available
Marconi et al., Phys. Rep. 2008;

Esposito et al., Rev. Mod. Phys. 2009

• Steady-state vs transient fluctuation relations
– Transient: finite time interval, time-dependent force, 

initially: equilibrium distribution →  Crooks relation & 
Jarzynski relation

– Steady state: constant force, long time limit → Gallavotti-
Cohen & Evan-Searles fluctuation relation



Crooks relation

for work W done by time-dependent external force
in                     starting with equilibrium ensemble:

– Backward protocol:

– Free energy difference for equilibrium states with fixed
forces

– Relation between probability distribution functions under
forward vs backward protocol

– Work is stochastic quantity (initial equilibrium ensemble)

– Detailed balance condition (microreversibility)

– Classical and quantum versions exist
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Jarzynski relation

• Normalization of probability:

Crooks implies Jarzynski relation

– Jensen inequality:                     →   second law of
thermodynamics formulated as equality

– Rare fluctuations „violating“ second law necessary

– Free energy difference from nonequilibrium
statistics

• When initial & final force identical: „sum rule“
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Full counting statistics (FCS)

• Related question: statistics of „transferred
charge“ Q during long „counting interval“ 2τ

– Stationary current: 

• Fluctuation relation for FCS?

– Two-terminal setup, constant voltage bias V 

– Forward and backward protocol identical (B=0)

– „Counting field“

Levitov, Lee & Lesovik, J. Math. Phys. 1996
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Fluctuation relation for current

FCS generating function obeys „Crooks“ 
symmetry relation

– Consequence: nonlinear coefficients describing
response to voltage in order          of cumulant
obey hierarchy of relations

– FDT contained as special case:  thermal noise = linear 
conductance ∙ temperature
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Fluctuation relations for time-
dependent voltage?

Current response to time-dependent external
voltage protocol contains much more
information than for DC case!

– Formulation of fluctuation relation?

– How to make use of it?  

– Constraints on observable quantities due to such 
transient fluctuation relations?



Functional probability

• Information about current statistics now stored in 
functional probability for time-dependent current
profiles
– M reservoirs connected to „system“,  particle number

conservation

– Discreteness of particle exchange (integer „charge“ n): 
self-generated nonequilibrium shot noise

• Transport master equations
– capture low-energy physics in many applications

– assume (for now) classical long-time many-particle
dynamics →   stochastic path integral

Kubo et al., J. Stat. Phys 1973; Pilgram et al., PRL 2003 
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Schematic setup

Generic system exchanging
particles with M reservoirs

Concrete example: electric
RC circuit with time-dependent
voltage (M=2)

Generalization to many system variables straightforward…



Master equation
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Applications

system n U(n) fν,t

electric circuits charge charging energy bias voltage

molecular motors mechanochemical
state of motor
protein

load potential ATP concentration

chemical reaction
networks

number of reaction
partners

internal energy chemostat
concentrations

adaptive evolution allele frequencies log equilibrium
distribution

fitness gradients



Stochastic path integral (SPI)

Master equation formally identical to imaginary-
time Schrödinger equation:  path integral for
„partition function“

– Auxiliary „momentum“ integrated over imaginary axis

– Information about discreteness encoded in            
terms in Hamiltonian
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Counting fields

• To extract information, we need time-
dependent counting fields (minimal coupling
to vector potentials):

• Cumulants of currents:
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Generating functional as SPI
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Backward functional is computed in the same way
but for time-reversed protocol



Transient fluctuation relations for
currents

• SPI action has invariance property under time 
reversal

• This yields general fluctuation relation

– For constant voltage: previous „FCS expressions“ are
recovered

– Same result follows under quantum mechanical
Keldysh approach for mesoscopic quantum dot
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Connection to quantum theory

• Stochastic path integral follows from quantum
Keldysh nonequilibrium approach for

– Explicit derivation for Keldysh action of mesoscopic
dots available

– Quantum case can be studied from full Keldysh action

• Fully quantum case

– Current operators do not commute for different times

– Nonetheless the fluctuation relations stay valid!

0

Altland et al., arXiv:1007.1826
Campisi, Talkner & Hänggi, arXiv:1006.1542



Implications?

• Functional probabilities contain excessive
information (infinitely many degrees of freedom!)

– Reduction to practically useful statements necessary

• Derived relations

– Statistics of charge transport is linked to work

– Jarzynski relation

– Nonlinear Fourier coefficients

• Illustration for mesoscopic RC circuit



Example: RC circuit

System: central capacitor,  n: particle/charge number
M=2 reservoirs, symmetric barriers
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RC circuit: master equation

• Orthodox sequential tunneling regime: 
classical master equation with quantum rates

• Numerical simulation of master equation for
asymmetric voltage pulse

– RC time scale:
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Generalized Crooks relation

• Consider statistics of transmitted charge and
dissipated power

– constant voltage:   

– time-dependent voltage: there is no fluctuation
relation for only

• Consider joint probability for Q and W
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Time-dependent FCS fluctuation
relation

• Joint probability

• Now insert fluctuation relation & integrate

– integral over Q: Crooks relation for work statistics

– In general no fluctuation relation for charge alone
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Numerical test: RC circuit
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Fluctuations around Jarzynski relation

– Sum rule for exponentiated dissipated power

– How big are fluctuations around unit value?

– Useful „filter“ to detect nonequilibrium
fluctuations?

• Consider variance as specific case

– Order-of-magnitude estimate for variance follows
from stationary phase analysis of SPI

WeXX  ,1

Altland, De Martino, Egger & Narozhny, arXiv:1005.4662



Fluctuations: order of magnitude
estimate

• Shot noise dominated regime

– Fluctuations are astronomically large, Jarzynski 
relation then meaningless

• Thermal regime

– Fluctuations benign, unit average can be resolved
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Fluctuations in RC circuit

250

20000

01.0

0 











V

50 V



Nonlinear coefficients

• Expand current cumulants in powers of voltage
– Fourier expansion

• Schematically:

• Nonlinear expansion coefficient describe time-
dependent response

• Fluctuation relation implies relations between
different coefficients

• Here: two examples for general but time-
symmetric voltage protocol
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Examples

• Lowest order: recover spectral representation
of fluctuation dissipation theorem

• Example for genuine nonequilibrium relation:

– Connect leading nonlinear current response to
linear order in voltage for the current noise

• Benchmark criteria for time-dependent
nonequilibrium transport
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Conclusions

• Fluctuation relations provide benchmark
constraints for nonequilibrium transport

• Functional fluctuation relation allows to
extract derived relations for transport under
time-dependent forces

– Generalized Crooks relation: connect charge and
work statistics

– Cross-relations connecting different nonlinear
transport coefficients

References:  arXiv:1005.4662, arXiv:1007.1826



Transient fluctuation relations for
currents

• Invariance relation

• This yields general fluctuation relation

• For constant voltage: FCS expressions above are
recovered
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