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QFT in curved spaces

Quantum Field Theory in Curved Spacetime:
Semiclassical Gravity studies the quantum effects due to the
propagation of quantum field in the presence of strong
gravitational fields

Gravity treated classically (Einstein Theory)
Matter fields are quantized

Important and amazing results:
Hawking Radiation
Cosmological particle production
Super-radiance
Moving Mirror particle production
....

Yet no experimental observation!
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Analog Models of Gravity in Hydrodynamics

. W.G. Unruh, PRL 46 (1981)

Field propagation in curved background is geometrical
(metric)
Sound-phonon propagation → massless scalar field in
curved space-time
Hydrodynamical fluids → curved space-time
HOMOGENEOUS SYSTEM −→ FLAT SPACETIME
INHOMOGENEITIES −→ CURVED SPACETIME
Tool to investigate effects otherwise NOT accessible



Analog Models : . W.G. Unruh, PRL 46 (1981)

ANALOGY WITH HYDRODYNAMICS
Continuity and Bernoulli Eqs.
for irrotational, inviscid fluid
n= density, ~v = ~∇θ= flow velocity, µ(n)= specific enthalpy

ṅ + ~∇ · (n~v) = 0 θ̇ + 1
2v2 + µ(n) = 0

Fluctuations on top of mean field solution: n + n1 , θ + θ1
Linearized Eqs:

ṅ1 + ~∇ · (n~v1 + n1~v) = 0 θ̇1 + ~v · ~v1 + c2

n n1 = 0

with the sound velocity: c2 = ndµ/dn.
Putting n1 into the first eq....
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Analog Models

....one gets:

{
−∂t

[ n
2c2 (∂t + ~v · ~∇)

]
+ ~∇ ·

[
~vn
c2 (∂t + ~v · ~∇) + n~v · ~∇

]}
θ1 = 0

−→ tuθ1 = ∂µ
(√
−ggµν∂ν

)
θ1= 0

tu: D’Alembertian in curved space
described by the "acoustic metric" gµν :

gµν ≡
n

mc

(
−(c2 − v2) −~vT

−~v 1

)



Analog Models

Core of the Analogy: tuθ1 = 0

Acoustic metric:

gµν ≡
n

mc

(
−(c2 − v2) −~vT

−~v 1

)

Sound propagates along null geodesics of gµν .
Geometrical analogy
θ1 massless scalar field propagating on curved spacetime
with c, v,n functions of (t,~x).
Choosing different space-time profiles for c, v,n → different
metrics
For v = c → gµν black hole metric.



ANALOG MODELS OF GRAVITY IN CONDENSED
MATTER

POWERFUL TOOL TO THEORETICALLY AND
EXPERIMENTALLY INVESTIGATE QFT IN CURVED
SPACES PROBLEMS (and not only)
EXPERIMENTAL:

Black Holes evaporation: Hawking Effect
Cosmological expansion
Dynamical Casimir effect
...

THEORETICAL:
Trans-Planckian problem: Effects of non-linear dispersion
relations
Emergent Gravity
Black Holes thermodynamics



GRAVITATIONAL BLACK HOLES

Geometrical Objects
Curvature so high that even light cannot escape
Trapped regions





What is an acoustic Black Hole ?



Hawking Radiation

Hawking Radiation
. S.W. Hawking, Nature 248 (1974)
Semiclassically, black holes are not "black" objects,
but radiate particles after the horizon fomation.
Thermal flux of particles detected asymptotically far from a
black hole.

Quantum effect
Stationary emission
Thermal spectrum
Pure geometrical effect → independent on dynamics
Still unobserved: 10−8 K (CMB: ∼ 3 K)

Since the analogy with fluids is both classical and
quantum, in acoustic black holes Hawking radiation is
expected as a thermal phonons emission
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Acoustic Black Holes

Possible candidates:
Atomic Bose-Einstein condensates
. Garay, Anglin, Cirac, Zoller, PRL 85(2000)
Quasi-particle excitations in superfluid Helium
. Jacobson, Volovik, PRD 58(1998)
Fermi gases . Giovanazzi, PRL 94 (2005)
Slow-light . Leonhardt, Piwnicki, PRL 85(2000)
Nolinear electromagnetic waveguides
. Schutzhold, Unruh, PRL 95 (2005)
. Philbin et al., Science 319 (2008)
Ion rings . Horstmann, Reznik, SF, Cirac, PRL 104 (2010)
...



Analog Models

Ultra-Cold Atoms
Bose Einstein Condensates – Ion Rings
probably the most promising candidates to observe
gravitational quantum effects:

. Garay, Anglin, Cirac, Zoller, PRL 85 (2000)

. Horstmann, Reznik, SF, Cirac, PRL 104 (2010)

Bose Einstein condensates:
Pure quantum systems
Ultra-cold temperature (< 100 nK)
→ Hawking temperature ∼ 10 nK
Huge technological improvement
Hydrodynamical description
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Hydrodynamical Description for BEC

Gross-Pitaevskii Equation

i~∂ψ
∂t =

(
− ~2

2m∇
2 + Vext + g(a)|ψ|2

)
ψ (1)

Madelung representation: ψ =
√

ne−iθ/~

|ψ|2 = n, a =scattering length

Continuity and Bernoulli Eqs.
n= density, ~v = ~∇θ/m= flow velocity,

ṅ + ~∇ · (n~v) = 0 θ̇ + 1
2v2 + Vext + gn − ~2

2m
∇2√n√

n = 0



Bose Einstein Condensates

Hawking Radiation’s direct detection
is still very difficult

In BEC: THawking ∼ few nK
impossible to separate it from finite temperature contributions

New Idea: Non-local Correlations
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PARTICLES PRODUCED IN PAIRS !!



Correlations

Non-local Density Correlations
Acoustic Black Hole using supersonic BEC

Diluted BEC: n (density) and θ (phase) solution of the GP eqs.
Fluctuations: n + n̂1 ; θ + θ̂1

G2(x, x ′) = 〈n̂(x)n̂(x ′)〉 − 〈n̂(x)〉〈n̂(x ′)〉 = 〈n̂1(x)n̂1(x ′)〉
→ x and x ′ on opposite sides of the horizon



Correlations

Technical details: Density Correlations
G2(x, x ′) = 1

g(x)g(x ′) lim
t′→t
Dxx′〈θ̂1(x, t)θ̂1(x ′, t ′)〉

Dxx′ =
[
∂t∂t′ + v(~x)~∇~x∂t′ + v(~x ′)∂t ~∇~x′ + v(~x)v(~x ′)~∇~x · ~∇~x′

]
.

FIND G(x, x ′) = 〈θ̂1(x)θ̂1(x ′)〉!
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Correlations : Technical details

QFT in curved space - Black Holes

In 1D: 〈θ̂1(x)θ̂1(x ′)〉 ∝ ln
[
∆X−(x, x ′)∆X+(x, x ′)

]
∆X−,∆X+: light-cone distance
Motion of downstream modes unaffected: X+ = ct + x
Distortion of upstream propagating modes is
UNIVERSAL: X− = ±1/k e−kx−

Surface gravity on the sonic horizon: k = 1
2

d
dx (c2 − v2)|H

. Balbinot, SF, Fabbri, Procopio, PRL 94 (2005)

. Balbinot, SF, Fabbri, PRD 71 (2005)



BEC Setup Proposal



Hawking correlations in BEC

Non-Local IN/OUT Density Correlations

〈n̂1(x)n̂1(x ′)〉 = ~2

16πg1g2

1
n
√
ξ1ξ2

c1c2
(c1 − v0)(c2 − v0)

× k2

cosh2
[

k
2

(
x

c1−v0
− x′

c2−v0

)] + O(x − x ′)−2.

. Balbinot, Fabbri, SF, Recati, Carusotto, PRA 78 (2008)



Hawking correlations in BEC

Non-Local IN/OUT Density Correlations
〈n̂1(x)n̂1(x ′)〉 ∝

T2
Hawking

cosh2(k(x+x ′)/2v0)

Peak for x ′ = −x!
The Hawking and the partner particles are exactly opposite

with respect to the horizon

No Black Hole: 〈n̂1(x)n̂1(x ′)〉 ∝ (x − x ′)−2
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Hawking correlations in BEC

Open issues:
Role of high-frequency modes (beyond the analogy)
. Brout et al, PRD 52 (1995)
. Corley, Jacobson, PRD 54 (1996),

. Unruh, Schutzhold, PRD 71 (2005) and 0804.1686 (2008)

Role of the back-scattering of the modes across the horizon
Role of finite temperature fluctuations
(Here T = 0.)
Actual experimental difficulties to measure so tiny effects.



Numerical Simulations

TIME DEPENDENT FORMATION OF AN
ACOUSTIC HORIZON

FULL MICROSCOPIC MANY-BODY PHYSICS
TAKEN INTO ACCOUNT

IN A BOGOLIUBOV-LIKE NUMERICAL
SIMULATION

. Carusotto, SF, Recati, Balbinot, Fabbri,
New J. Phys. 10 (2008)

Semi-analytical analysis:
. Recati, Pavloff, Carusotto, 0907.4305



Numerical simulation - Initial: G2(x , x ′)/n2



Numerical simulation - Results: G2(x , x ′)/n2

System parameters: v0/c1 = 0.75, v0/c2 = 1.5,
Horizon width= σ/ξ1 = 0.5, T0 = 0



Numerical simulation Results

The result does NOT depend on:
UV cutoff kmax

Box size L
time-dep switching

The Signal DOES depend on:
Horizon shape
How steep is the spatial variation on the horizon:
the steeper → the higher THawking

Back-scattering



Numerical simulation Results

Comparison with the analytical predictions:

Excellent agreement in the hydrodynamical limit.
Still Hawking effect robust even beyond



Numerical simulation Results

Role of thermal fluctuations:
Numerical simulation with T = 0.1µ� THawking ∼ 10−2µ



ION RINGS

First proposal to observe Hawking rad. in discrete systems.
. Horstmann, Reznik, SF, Cirac, PRL 104 (2010)

Non homogenous spacing - quadrupole ring trap.
Rotation imposed.

High control in ions manipulation: trapping and measurements
. Schatz et al., Nature 412, 717 (2001)



ION RINGS

Good agreement with analytic prediction
HR robust even in discrete system
→ non linear dispersion even at very low energy
High signal, visible with current technology



Correlations in acoustic Black Holes

Realizing any concrete experiment to observe Hawking radiation
still is a non trivial task.

These works represent the first necessary steps
towards real experiments.

Major issues solved before any concrete experimental
realization.

Experimental realization is getting
closer and closer.

First Acoustic Black Hole created:
. Lahav, Itah, Blumkin, Gordon, Steinhauer,
arXiv:0906.1337 (2009)



Dynamical Casimir effect

Casimir Effect:
Two conducting plates in vacuum attract each other due to
em vacuum. V
Dynamical Casimir:
Plates in non uniformly accelerated motion → real photons
are produced. Not V
Originally DCE is a Moving Mirrors problem
. Moore, JMP 11 (1970)
. Carlitz, Willey, PRD 36 (1987)



The Moving mirror problem : THE BEC ZIPPER
. SF, Altman, Demler, to appear

UNZIPPING A 1-D BEC through a Y-junction.
Dynamics of the phase difference ϕ between the two arms →
well known QFT description. (. A. Polkovnikov et al, PNAS (2006))

END OF THE BECEND OF THE BEC RUNNING SPLITTING POINTRUNNING SPLITTING POINT



THE BEC ZIPPER– QFT mapping :
1D-problem for the phase difference ϕ = ϕ1 − ϕ2:
S = −K

2
∫

dt dx
[
(∂tϕ̂)2 − 1

c2 (∂xϕ)2
]

Eq. of Motion for ϕ:
(c2∂2

t − ∂2
x )ϕ = 0

with two boundary conditions:
ϕ|xm(t) = 0 → at the spitting point
∂xϕ|x=0 = 0 → at the edge (to avoid current)

END OF THE BECEND OF THE BEC RUNNING SPLITTING POINTRUNNING SPLITTING POINT



THE BEC ZIPPER

Natural realization of Dynamical Casimir effect in an
ultra-cold atom interferometer
Emitted radiation can be directly measured by the
interference fringes
Outcomes will depend just on the trajectory of the
splitting point
i.e. exponential traj.→thermal emission
(link to Hawking radiation)



Cosmological Quantum Emission

Cosmology can be simulated by:

Imposing special time dependent profile in either c or v (or
both)
Expanding BEC after releasing the trapping potential

. Schutzhold, et al, PRD (2005)

. Liberati et al, PRD (2005)

...



Density correlation in a 3D Expanding BEC after trap release
. Prain, SF, Liberati, arXiv:1009.0647)

As times goes (dashed-dotted → red → dashed → green)



Conclusion

Importance of Analog Models to test undetectable effects
and to suggest new physics
Importance of Correlation measurement for testing
non-equilibrium dynamics
Major issues solved before real experiments to detect
Hawking radiation
The BEC UNZIPPING is a very interesting non
equilibrium process mapping in a well known QFT
problem: The Dynamical Casimir Effect
Cosmological Particle emission

Thank you!
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Numerical Simulations

Space-time modulation of Vext and g:Vext + gn = const

Mean-field condensate wavefunction is a plane wave
solution of GPE at any time
Fluctuations dynamics separated from the mean-field
dynamics
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Wigner Formalism

Propagation according to deterministic GPE of classical
wavefunction Φ(x, t) with random initial wavefunction Φ0:
. Sinatra, Lobo, Castin, J. Phyis. B (2002)

Φ0 = ei(k0x−ω0t) ∑
k 6=0

(
αkukeikx + α∗vke−ikx

)

Then averaging on Φ0.

Sum running over k = 2πj/L, L= box size
UV cutoff kmax needed
uk ± vk = (εk/Ek)±1/4

Ek = ~2k2/2m
εk Bogoliubov spectrum
αk random variables: 〈αk〉 = 〈α2

k〉 = 0
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