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Models and observations

Coupled atmosphere/ocean
modelling combines sub-models:

I Ocean
I Ocean waves
I Land surface
I Atmosphere
I Atmospheric

chemistry/aerosols

The observations of the system
are a heterogeneos collection of
direct/indirect measurements.

Need a flexible and efficient
approach to combining
observations and models:
(variational) data assimilation.

Polar-orbiting satellites Geo-stationary satellites 

Atmospheric
motion vector 

SYNOP – Ship

SYNOP – Land
METAR

Buoys –
Drifting & Moored

Clear sky radiances
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Observation Coverage

6 February 2009
00 UTC ± 3h
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Observation Sources

Assimilating new data types requires a lot of resources (developments and
computer time).
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Observation Numbers

Observation numbers have increased regularly and will increase even faster
in the future. Shown are used data (millions per 24 hours) which are ca
5% of all available data in 2008 (much redundant satellite information).
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Combining models and observations

Given are a model M(x), a set of observations y, and a first guess
model state, the background xb

Each of those has associated errors (εm, εo , εb).

Each observation type has a model equivalent which maps
observations to models: the observation operator H(y) (e. g.
interpolation or ratiative transfer model).

Find a best estimate xa (the analysis) of the state vector x given xb

at t = 0 and observations yn in the time interval [0, τ ]

M(x) = εm

x(0) = xb + εb

yn = Hn(x) + εo,n n = 1, . . . ,N
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Maximum Likelihood

We define the analysis xa as the most probable state of the system
given a background state xb and observations y:

xa = arg max
x

p(x|y and xb)

It will be convenient to define a cost function:

J(x) = − log p(x|y and xb) + K

where K is a constant.

Since log is a monotonic function, xa is also:

xa = arg min
x

J(x)

Variational data assimilation comprises minimizing the cost function
J(x).
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Maximum Likelihood and Bayes’ Theorem

Applying Bayes’ theorem gives:

p(x|y and xb) =
p(y and xb|x)p(x)

p(y and xb)

p(y and xb) is independent of x and a priori we know nothing about x
(all values of x are equally likely) thus p(x) is also independent of x.

Hence:
p(x|y and xb) ∝ p(y and xb|x)

Finally, if observation errors and backgound errors are uncorrelated:

p(y and xb|x) = p(y|x)p(xb|x)

⇒ J(x) = − log p(y|x)− log p(xb|x) + K
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Maximum Likelihood and Cost Function

The maximum likelihood approach is applicable to any probability
density functions p(y|x) and p(xb|x).

Consider the special case of Gaussian p.d.f’s:

p(xb|x) =
1

(2π)N/2|B|1/2
exp

[
−1

2
(x− xb)TB−1(x− xb)

]
p(y|x) =

1

(2π)M/2|R|1/2
exp

[
−1

2
[H(x)− y]TR−1[H(x)− y]

]
where B and R are the background and observation error covariance
matrices and H is the observation operator.

With an appropriate choice of the constant:

J(x) =
1

2
(x− xb)TB−1(x− xb) +

1

2
[H(x)− y]TR−1[H(x)− y]

This is the variational data assimilation cost function.
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Maximum Likelihood: Remarks
The maximum-likelihood approach is general: as long as we know the
p.d.f’s, we can define the cost function.

I Finding the global minimum may not be easy for non-Gaussian p.d.f’s.

In practice, background errors are usually assumed to be Gaussian (or
a nonlinear transformation is applied to make them Gaussian).
Non-Gaussian observation errors are taken into account.

I Directionally-ambiguous wind observations from scatterometers,
I Observations contaminated by occasional gross errors, which make

outliers much more likely than implied by a Gaussian model.

For Gaussian errors and linear observation operators, the maximum
likelihood analysis coincides with the minimum variance solution. This
is not the case in general:
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P
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x
 | 

y
)

x
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3D-Var and 4D-Var

J(x) =
1

2
(x− xb)TB−1(x− xb) +

1

2
[H(x)− y]TR−1[H(x)− y]

We have not precisely defined the space over which the state variable
x is defined or the observation operator H.

Depending on the choice of x and H, the general approach described
earlier will lead to different variational data assimilation methods.

The simplest approach is to consider x as the state over the 3D spatial
domain at analysis time, while H spatially interpolates this state and
converts model variables to observed quantities: this is 3D-Var.

Another more common approach is to consider x as the state over the
3D spatial domain and over the period for which observations are
available, while H spatially and temporally interpolates this state and
converts model variables to observed quantities: this is 4D-Var.
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4D-Var

We now discretize the assimilation window in time and define
x = {xi}i=0,n and y = {yi}i=0,n where xi and yi are the state and
observations at time ti for i = 0, . . . , n.

Assuming that observation errors are uncorrelated in time, R is block
diagonal, with blocks Ri corresponding to the observations at time ti .

The 4D-Var cost function is:

J(x) =
1

2
(x0−xb)TB−1(x0−xb)+

1

2

n∑
i=0

[Hi (xi )−yi ]
TR−1

i [Hi (xi )−yi ]

Hi represents a spatial interpolation and transformation from model
variables to observed variables (i.e. a 3D-Var-style observation
operator).
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Strong Constraint 4D-Var

The states at various times are not independent: they are related
through the forecast model:

xi =Mi (xi−1)

where Mi is the forecast model integrated from time ti−1 to time ti .

By introducing the vectors xi , the unconstrained minimization
problem:

xa = arg min
x

J(x)

became a strong constraints minimization problem:

xa = arg min
x0

J(x0, x1, · · · , xk)

subject to xi = Mi (xi−1) for i = 1, . . . , n

This form of 4D-Var is called strong constraint 4D-Var.
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Strong Constraint 4D-Var

The 4D-Var cost function is:

J(x0, x1, . . . , xk) =
1

2
(x0 − xb)TB−1(x0 − xb)

+
1

2

n∑
i=0

[Hi (xi )− yi ]
TR−1

i [Hi (xi )− yi ]

4D-Var determines the analysis state at every gridpoint and at every
time within the analysis window i.e. a four-dimensional analysis of the
available data.

In deriving strong constraint 4D-Var, we have assumed that the
observation operators and the model are perfect.

As a consequence of the perfect model assumption, the analysis
corresponds to a trajectory (i.e. an integration) of the forecast model.

The 4D-Var framework can also includes model errors – weak
constraint 4D-Var.
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Minimizing the cost function

We want to minimize the cost function:

J(x) =
1

2
(x− xb)TB−1(x− xb) +

1

2
[H(x)− y]TR−1[H(x)− y]

This is a very large-scale minimization problem (dim(x) ≈ 300× 106

for the operational system at ECMWF.)

Derivative-free algorithms are too slow (because each function
evaluation gives very limited information about the shape of the cost
function and in which direction the minimum might be).

Practical algorithms for minimizing the cost function require its
gradient.

For poorly conditioned problems, where the iso-surfaces of the
costfunction are far from spherical, a preconditioner is needed for
efficient minimization.
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Minimizing the cost function

Minimization algorithms work
best if the iso-surfaces of the
cost function are nearly
spherical, as measured by the
eigenvalues of the Hessian.

Each eigenvalue corresponds to
the curvature in the direction of
the corresponding eigenvector.
The convergence rate will
depend on the condition
number:

κ = λmax/λmin

The convergence can be
accelerated by reducing the
condition number
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Preconditioning

We can speed up the convergence of the minimization by a change of
variables χ = L−1δx (i.e. δx = Lχ), where L is chosen to make the
cost function more spherical.

A common choice is L = B1/2.

The 4D-Var cost function becomes:

J(χ) =
1

2
χTχ+

1

2
(HLχ− d)TR−1(HLχ− d).

With this change of variables, the Hessian becomes:

J ′′χ = I + LTHTR−1HL.

The presence of the identity matrix in this expression guarantees that
all eigenvalues are ≥ 1.

There are no small eigenvalues to destroy the conditioning of the
problem.
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Minimizing the cost function

For general nonlinear functions use quasi-Newton methods, e. g. a
(limited memory) BFGS algorithm, available at
http://www-rocq.inria.fr/ gilbert/modulopt/optimization-
routines/m1qn3/m1qn3.html

An important special case occurs if the observation operator H is
linear. In this case, the cost function is strictly quadratic, and the
gradient is linear.

In this case, it makes sense to determine the analysis by solving the
linear equation ∇J(x) = 0.

Since the matrix J ′′ = B−1 + HTR−1H is symmetric and positive
definite, the best algorithm to use is conjugate gradients.

A good introduction to the method can be found online: An
Introduction to the Conjugate Gradient Method Without the
Agonizing pain, Shewchuk (1994).

This will be useful in the incremental 4D-Var.
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The Incremental Method
A variant of the Newton method can be used: the nonlinear cost
function is approximated by a quadratic cost function around the
current guess. This quadratic cost function is minimized to provide an
updated guess and the process is repeated.
One complex problem is replaced by a series of (slightly) easier
problems.

kx xk+1 xk+2

The conjugate gradient algorithm can be used to solve efficiently the
quadratic minimization problems.
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The Incremental Method

The cost function is written as a function of the correction to the first
guess (the increment) δx = x− xg :

J(xg + δx) =
1

2
(xg + δx− xb)TB−1(xg + δx− xb)

+
1

2
[H(xg + δx)− y]TR−1[H(xg + δx)− y]

The quadratic approximation of the cost function is obtained by
linearizing around the curent guess:

J(δx) =
1

2
(δx + b)TB−1(δx + b) +

1

2
(Hδx + d)TR−1(Hδx + d)

where b = xg − xb , d = H(xg )− y and H is the Jacobian of H.

The gradient is:

∇J(δx) = B−1(δx + b) + HTR−1(Hδx + d)
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Calculating the Gradient: Tangent Linear and Adjoint

To minimize the cost function, we must be able to calculate its
gradient:

∇J(δx) = B−1(δx + b) + HTR−1(Hδx + d)

The Jacobians H and HT are much too large to be represented
explicitly: we can only represent these as operators (subroutines) that
calculate matrix-vector products.

These codes are called the tangent linear code for H and the adjoint
code for HT .

For a good introduction about writing adjoints, see:
X. Y. Huang and X. Yang, 1996, Variational Data Assimilation with
the Lorenz model, HIRLAM Technical Report 26.
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Writing the Adjoint Code

Each line of the subroutine that applies H (including the forecast
model) can be considered as a function hk , so that

H(x) ≡ hK ◦ hK−1 ◦ · · · ◦ h1(x).

Each of the functions hk can be linearized, to give the corresponding
linear function hk . Each of these is extremely simple, and can be
represented by one or two lines of code.

The resulting code is called the tangent linear of H and:

Hδx ≡ hKhK−1 · · ·h1δx

The transpose, HT δx ≡ hT
1 hT

2 · · ·hT
K δx, is called the adjoint of H.

Again, each hT
k is extremely simple – just a few lines of code.

The difficulties in writing an adjoint can come from:
I Non differentiable functions in the nonlinear cost function (physical

processes, e. g. phase transitions),
I The length of the code (automatic tools can help).
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The Incremental Method

The 4D-Var cost function and its gradient can be evaluated for the
cost of:

I one integration of the forecast model,
I one integration of the adjoint model.

This cost is still prohibitive:
I A typical minimization requires between 10 and 100 iterations,
I The cost of the adjoint is typically 3 times that of the forward model.
I The cost of the analysis would be roughly equivalent to between 20

and 200 days of model integration (with a 12h window).

The incremental algorithm reduces the cost of 4D-Var by reducing the
resolution of the model and using simplified physics (or by using a
perturbation forecast model).

The analysis increments are calculated at reduced resolution and must
be interpolated to the high-resolution model’s grid.

The departures d are always evaluated using the full-resolution
versions of H (and M) i.e. the observations are always compared
with the full resolution state.
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Incremental 4D-Var
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Summary

The Maximum Likelihood approach is general and can in principle be
applied to non-Gaussian, nonlinear analysis.

3D-Var and 4D-Var derive from the maximum likelihood principle.

4D-Var is an extension of 3D-Var to the case where observations are
distributed in time.

The cost function is minimized using algorithms based on knowledge
of its gradient.

The incremental method with appropriate preconditioning allows the
computational cost to be reduced to acceptable levels.

In strong constraint 4D-Var the model is assumed to be perfect, so
that the four-dimensional analysis state corresponds to an integration
(trajectory) of the model. Model errors also fit into the 4D-Var
framework (formulation straightforward, the difficulty is to usefully
characterize these errors beyond the trivial random noise).
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Summary

Most (all?) of the main NWP centres run variational data
assimilation schemes operationally.

I ECMWF, United Kingdom, France, Germany, Canada, USA (NCEP,
NRL, GMAO), Japan, Korea, Taiwan, China, Australia, HIRLAM
countries, ALADIN countries...

Forecast performance has improved over the years, in particular
because of the ability of variational systems to adapt to and benefit
from the varying components of the global observing system.

Other aspects are important but were not covered in this talk:
I Modelling of B and balance considerations,
I Definition of the observation operators,
I Observation variational bias correction.
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Some online resources
Excellent presentations on data assimilation including practical details
at the JCSDA Summer Colloquium on Data Assimilation July 2009:
http : //www .jcsda.noaa.gov/meetings2009SummerColloq.php
Classic practical guide to starting 4D-Var from the HIRLAM group
Technical Report 26:
http : //www .hirlam.org/publications/TechReports/index .html
Downloadable ensemble Kalman filter data assimilation system from
NCAR (Fortran 90): http : //www .image.ucar .edu/DAReS/DART/
Resources for automatic tangent linear/adjoint code development
available online. They are an assistance in development, but the
resulting code always needs some reorganization for speed. Example
is INRIA’s Tapenade code,
http : //tapenade.inria.fr : 8080/tapenade/index .jsp.
General minimization routine (limited memory quasi-Newton) from
INRIA at
http : //www − rocq.inria.fr/ gilbert/modulopt/optimization −
routines/m1qn3/m1qn3.html

Eĺıas Valur Hólm (ECMWF) Variational Data Assimilation October 2009 34 / 34


	Combining Models and Observations
	The Maximum Likelihood Approach
	4D-Var (and 3D-Var)
	Minimization and Incremental 4D-Var
	Summary
	Online Resources

