Legal Disclaimer (!ntda

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY Ol
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Performance tests and ratings are measured using specific computer systems and/or components
and reflect the approximate performance of Intel products as measured by those tests. An:
difference in system hardware or software design or configuration may affect actual performance.
Buyers should consult other sources of information to evaluate the performance of systems or
components they are considering purchasing. For more information on performance tests and on
the performance of Intel products, reference www.intel.com/software/products.

Intel, Intel Core and the Intel logo are trademarks of Intel Corporation in the U.S. and other
countries.

Ct: A New Paradigm for Data Parallel Comptiting

Hans—Christian Hoppe
Intel Visual Computing Institute, Intel Labs Copyright © 2009. Intel Corporation.

*Other names and brands may be claimed as the property of others.

http://intel.com/software/products

using material from

Anwar Ghuloum, CJ Newburn, Michael McCool and Stefanus Du T0|t
Performance and Productivity Libraries, Developer Products Qlylsmn
Software and Services Group

Software & Services Group, Developer Products Division

Partnership for Advanced Gomput ng

| in Europe

009,

Contents @ Challenge: @

Multiple Parallelism Mechanisms

Ct101 Today’s parallel platforms have many kinds of
— What is Ct, and what value does it provide? parallelism:
— Basic language elements and examples = Pipelining

« SIMD within a register (SWAR) vectorization

« Superscalar instruction issue or VLIW

= Overlapping memory access with computation (prefetch)

= Simultaneous multithreading (hyperthreading) on one core
« Multiple cores

How to learn more « Multiple processors

= Asynchronous host and accelerator execution

Ct Next Steps — Where to go from here
— Towards a parallel virtual machine

.

igh

Software & Services Group, Developer Products Division o Software & Services Group, Developer Products Division

&

Automatically Select the Right Mechanisms (!@

Solution: take a single abstract specification of latent parallelism and data
locality and use automation to transform it into multiple implementations
that can exploit all these mechanisms.

User specifies:

Platform implements: i i
Example implementation uses:

= Two cores

< Four-way vectorization

= Memory latency hiding with
streaming

Actual distribution of work
depends on hardware

Software & Services Group, Developer Products Division

What is Ct Technology? (!ntd)

A generalized data parallel programming solution that
frees application developers from dependencies on
particular hardware architectures.

A system that integrates with existing development tools
to allow parallel algorithms to be specified at a high level.

A dynamic compiler and runtime that translates high-level
specifications of computations into efficient parallel
implementations that can take advantage of both SIMD
and thread-level parallelism, as well as accelerators.

A system that allows an application developer to
combine performance, portability, and productivity.

Software & Services Group, Developer Products Division

Productivity

=Integrates with existing tools
=Applicable to many problem domains
=Safe by default: maintainable

Performance

-processor uEfficient and scalable

LRBni =Harnesses both vectors and threads
=Eliminates modularity overhead of C++

Hybrid Portability
Processor =High-level abstraction
=Hardware independent
=Forward scaling

Software & Services Group, Developer Products Division

The Ct Runtime

Intel Ct Technology
offers a standards
compliant C++ library...

.backed by a runtime

JIT Compiler

Virtual Machine

Vitual | Debua/ L
188" Swes it

Runtime generates and
manages threads and
vector code, via
— Machine independent
optimization
— Offload management
— Machine specific code

generation and optimizations .. L - .
— Scalable threading runtime [(]
(based on TBB!) .. I L1 .

CPU Accelerator Future

Software & Services Group, Developer Products Division

it be Used for? G@ Ct Language Introduction G’nu'g
=] e i

Bioinformatics Visual computing

* Genomics and sequence analysis * Digital content creation (DCC)

+ Molecular dynamics « Physics engines and advanced rendering
Engineering design * Visualization

* Finite element and finite difference simulation « Compression/decompression

« Monte Carlo simulation Signal and image processing
Financial analytics Computer vision

« Radar and sonar processing

« Microscopy and satellite image processing
Science and research

* Machine learning and artificial intelligence
« Climate and weather simulation

« Planetary exploration and astrophysics
Enterprise

* Database search

* Business information

* Option and instrument pricing

« Risk analysis

Oil and gas

* Seismic reconstruction

*+ Reservoir simulation

Medical imaging

* Image and volume reconstruction

+ Analysis and computer aided detection (CAD)

Software & Services Group, Developer Products Division

o, Intel Corporation, ved.

espective owners.

Data Spaces @ Ct Data Objects @

The basic type in Ct is the vector, named as Vec
C/C++ space Ct space .
— Vec-s are managed by the Ct runtime

— Vec-s are single-assignment vectors

— — Vec-s are (opaquely) flat, multidimensional, sparse, or nested

— Vec values are created & manipulated exclusively through Ct API

(s CopyItl Declared Vecs are simply references to immutable values

Vec<F64> doubleVec; // doubleVec can refer to any vector of
Ct code // doubles

doubleVec = srcl + src2;

Q’ copyouy doublevec = src3 * src4;

Corporation. All rig! jedt

it Software & Services Group, Developer Products Division i Software & Services Group, Developer Products Division
=
o Copyrigh . .

‘ames are the property of thei

Moving Data In and Out of Ct G@

Bind data with Ct name using Vec constructors

Vec<F32> prices(options, numOptions); // copy in from a C array

Vec<I8> red(image, length, 4); // copy element with a stride of 4

Vec2D<132> intVec(img, width, height); // A vector initialized to all -1s

Define the data behavior in the kernel’s signature
« Pass-by-value — means copying in
= Pass-by-reference — means both copying in and copying out

= Dynamic Compiler tries to recognize pure copying out

Software & Services Group, Developer Products Division

Ct Operators - Vector Element-wise
operators

Unary Operators
A = ~B; // bitwise not of each element of B
A = exp(B); // compute the exp() of each element of B

Binary Operators
A =B+ C; // an element-wise sum of B & C
D = max(E, F); // an element-wise maximum of E and F

G = 2*H; // element-wise multiplication of H and the scalar 2

Ternary Operators
A = select(mask, B, C);
A = select(mask, B, 0.f);

Software & Services Group, Developer Products Division

=

Ct Operators - Vector Reduce / Scan @

Reductions (e.g. aggregation, collective communication)

// Sum all the element of B
A = addReduce(B);
// Some common cases for BOOLEAN
Vec<Bool> B; /
//TRUE if all elements of B are TRUE /
Bool alltrue = all(B); /
//TRUE if at least one element of B is TRUE ﬁ
Bool nonzero = any(B);
0

Scans

// calculate the prefix sum of B
A = addScan(B);

il Software & Services Group, Developer Products Division

Copyrigh Al
~oth

Ct Operators - Vector Permutation
Operators

Shift

A = shift(B, 1); M ///
S Y S —

A = shiftSticky(B, 1);

Rotate
S S T —
A = rotate(B, 1); //L/l
I S e e |
Gather / Scatter
A=B[vindex];

A = scatter(B, vindex, C);

Software & Services Group, Developer Products Division
a

(P

Default

A Simple Example: Dot Product G@

Dot Product Using C Loops Dot Product Using Ct
q for(=0;i<n;i++) { | Vec<F64> Srcl(srcl, n), Src2(src2, n);
dr&c@ sre2[il; F64 Dst = addReduce(Src1*Src2);
by

@ Vector operations subsumes loop
@ Element-wise multiply

(® Reduction (a global sum)

(Iﬁh;ﬂ Software & Services Group, Developer Products Division

. Intel Corporation. Al righ

*Other brands and names are the property of the

A More Complex Example: Porting G‘nuj
Black-Scholes

Black-Scholes Using C Loops Black-Scholes Using Ct
clude <ct.h>
using namespace Ct;
float s[N], x[N], r[N], v[N], t[N]; float s[N], x[N], r[N], v[N], t[N];
fioat resultIN]: ;
| fortinti=0;i <N i) { Vec<F32> S(s, N), X(x, N), R(r, N), V{v, N), T(t, N);
Q
float d1 = s[i] / In(x[i]); Vec<F32>d1=5/In(X);
d1 += (r[i] + v[i] * v[i] * 0.5f) * t[i]; d1+=(R+V*V*050)*T;
d1 /= sartelil); d1/=sarn(1);
float d2 = d1 - sqrt(t[i]); Vec<F32> d2 = d1 - sqrt(T);
result[i] = x[i] * exp(r[i] * t[i]) * Vec<F32>tmp=X*exp(R*T)*
1.0f - CND| +(-s[i]) * (1.0f - CND(d1)); (1.0 - CND(d2)) + (-S) * (1.0f - CND(d1));

@ #include <ct.h> and use Ct namespace
Vector operations subsumes loop
(€] The Ct code is almost the same as the original loop body

Software & Services Group, Developer Products Division
Copyr 009, Intel Corporation. All rights reserved.

and names are the property of their respecti

Functions @

= A Ct Function is a C++ function that

— takes one or more Vec, Elt (a Vec element), or scalars as arguments

— returns one or more Vec, Elt (a Vec element), or scalars
« one return: Vec<F32> foo(Vec<F32> in);
« two returns: void foo(Vec<F32> in, Vec<F32>& outl, Vec<F32>&

out2);

— is invoked via special interfaces:
= call/rcall
= map/rmap
= ncall/nmap (internal-only, for now)

Software & Services Group, Developer Products Division

Copyrigh orporation. All righ

*Other bran are the property of the

Remote calls: Invoke Functions from @
C/C++ Space

void BlackScholes(Vec<F32> S, Vec<F32> X, Vec<F32> R, Vec<F32> V, Vec<F32> T, Vec<F32>& result)

Vec<F32> d1=$ / In(X); For functions that are remotely
dl+=(R+V*V*0.50)*T; invoked, the return values have to be
d1 /= sart(T); P
Vee<Faz> d2 = d1 - sqrt(T); expressed usmg pass by ref operat.or,
and the functions MUST return void.
result =X * exp(R * T) * (1.0f - CND(d2))
+(-5) * (1.0f - CND(d1));
}

//caler coda using binding constructors to bind
Vec<F32> S(sPtr, N); from C/C++ space to Ct vectors
Vec<F32> X(xPtr, N);

Vec<F32> R(rPtr, N);
Vec<F32> V(vPtr, N);
Vec<F32> T(TPtr, N);
Vec<F32> result(resultPtr, N); //output

using rcall operator to invoke
reall(BlackScholes)(s, X, R, V, T, result); s P

Ct Dynamic Engine Execution

int ar_a[1024], ar_b[1024]

Vec<i32> va(ar_a, ...;
Vec<i32> vbfar_b,..);

reall(work) (va, vb);

Ct Dynamic
Engine

Software & Services Group, Developer Products Division

o, Intel Corporation, ved.

Ct Dynamic Engine Execution

int ar_a[1024], ar_b[1024]

Vec<I32>val(ar_a, ..);

Vec<I32> vb(ar_b,..);

reall(work) (va, vb);

Ct Dynamic
Engine

espective owners.

mm) | *void work(Vec<i32> 3,
* Vecxi32>&b)

*{
® b=a+1;
°}
a I
b
Ct Dynamic
; —l]
Engine

Corporation. All rig! jedt

Software & Services Group, Developer Products Division
- Copyrigh

‘ames are the property of thei

Ct Dynamic Engine Execution

oo (10281, 013024

*void work(Vec<I32>a,
® Vec<i32>&b)

*f

) b=a+l;

°}

I

Ct Dynamic
Engine

Software & Services Group, Developer Products Division

b

int ar_a[1024], ar_b[1024]

Vec<I32> va(ar_a, ..);
Vec<I32> vblar_b,..);

reall(work) (va, vb);

—

* void work| Vec<132> 3,
* Vec<l32>&b)

b=a+1;

Ct Dynamic
Engine

Ct Dynamic Engine Execution

int ar_a[1024], ar_b[1024]

Vec<I32> va(ar_a

)
Vec<I32> vb(ar_b,...);

rcall(work) (va, vb);

4

* void work(Vec<32> 3,
* Vec<i32>&b)

Ct Dynamic
Engine

Ct Dynamic Engine Execution

IR Builder®

Qntel’
JIT

High-Level Optimizer

Low-Level Optimizer

CVI Code Gen

SSE | NI | AvX |

Software & Services Group, Developer Products Division

Copyright ntel Corporation. Al rig s ; c ation. All rights

*Other brands and names are the property b . he property ¢

int ar_a[1024], ar_b[1024]

Vec<I32> va(ar_a, ..);
Vec<I32> vbar_b,..);

rcall(work) (va, vb);

e

* void work| Vec<i32> 3,
* Vec<i32>&b)
M

¢ beas+y

*}

[

Ct Dynamic
Engine

Ct Dynamic Engine Execution

JIT

High-Level Optimizer

Low-Level Optimizer

CVI Code Gen

ion. Al rig!

the property of thei

int ar_a[1024], ar_b[1024]

Vec<i32> va(ar_a, ..J;
Vec<132> vbfar_b,...;

reall(work) (va, vb);

7

* void work(Vec<i32> a,
* Vecsizzo&b)
°t

o bmasy

)

e——

Ct Dynamic
Engine

Software & Services Group, Developer Products Division

Copyright ntel

~Other

d nam

JIT

High-Level Optimizer

Ct Dynamic Engine Execution G@ Ct Dynamic Engine Execution G‘nuj

int ar_a[1024], ar_b[1024]

T int ar_a[1024], ar_b[1024]

Vec<l32> va(ar_a, ..); High-Level Optimizer Vec<i32> vafar_a

)

Vec<l32> vbiar_b,..);

Vec<i32> vblar_b,..); Gogle:Nanagesr

Emitted Code for ‘work’ I

Low-Level Optimizer

CVI Code Gen

SSE LNI | AVX |

reall(work) (va, vb);

—

* void work(Vec<I32> 3,
* Vecx32>&b)

rcall(work) (va, vb);

Thread Scheduler

|
a b Thread Scheduler
| —]

Ct Dynamic
Engine

Ct Dynamic
Engine

(Iﬁh;ﬂ Software & Services Group, Developer Products Division Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved

Copyright © ntel Corporation. Al ved

*Other brands and names are the property of their respective owners. ~Other brar d names are the property of their respective owners.

Ct Dynamic Engine Execution @ Towards a Parallel Virtual Machine

int ar_a[1024], ar_b[1024]

Vec<I32> va(ar_a, ...);

Vec<I32> vb(ar_b,..); Gosle:Managesr €ede

- Emitted Code for ‘work’ I

Cache

rcall(work) (va, vb);

Ct Dynamic
Engine

il Software & Services Group, Developer Products Division

Software & Services Group, Developer Products Division

Copyright o, Intel ion. Al righ

d nam

(el Software & Services Group, Developer Products Division

Parallel Programming Abstractions G@

Parallel VM Tasks G@

* Provide function definition, data management and
execution

= Decouple programming languages from
concurrency platforms
— Allowing new frontends to flourish

= Be well-defined, offer C API and textual
representation
— Suitable for wide external adoption

Software & Services Group, Developer Products Division

Machine

= Converge Ct and RapidMind APIs into open, standard VM layer
* Goals:
— New frontends for other languages (e.g. .NET, Python, Java, etc.)
— Enable domain specific languages
— Leverage data-parallel execution engines from Intel
— Provide interface specification for non-Intel implementations
— Clearly specify semantics separately from syntax
— Binary compatibility and insulation
« Not generally aimed at application developers

= Collaboration welcome!
— Email to stefanus.du.toit@intel.com!

Software & Services Group, Developer Products Division

Evolve Ct into Data-parallel Virtual @

Ct In—Depth Information and Product @
Plans

Software & Services Group, Developer Products Division

Ct Going Forward G@

= Ct is being turned into an Intel software product
— public beta release planned for Q1/2010

e The product will contain
— Core API

— Libraries for Linear Algebra, FFT, Random Number
Generation (powered by Intel® Math Kernel Library)

— Lots of samples (Medical Imaging, Financial Analytics,
Seismic Processing, ...)
« Initial release on Windows, followed by Linux
— 1A-32 and Intel® 64 instruction sets

— Works with Intel® C/C++ Compiler, Microsoft* Visual
C++*, and GCC*
— Works with Intel® VTune™ Analyzer

Software & Services Group, Developer Products Division

Copyright @ tel on. Al righ ved

How to Learn More about Ct G@

< Read the material at http://www.intel.com/go/ct

« Browse the Intel Developer Forum website for Ct
presentations

« Bug your favorite Intel rep about getting into the
private beta program

« Sign up for the public beta at
http://www.intel.com/go/ct

Software & Services Group, Developer Products Division

*Other bran the property of their respective owners.

