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Contents @ Challenge: @

Multiple Parallelism Mechanisms

Ct101 Today’s parallel platforms have many kinds of
— What is Ct, and what value does it provide? parallelism:
— Basic language elements and examples = Pipelining

« SIMD within a register (SWAR) vectorization

« Superscalar instruction issue or VLIW

= Overlapping memory access with computation (prefetch)

= Simultaneous multithreading (hyperthreading) on one core
« Multiple cores

How to learn more « Multiple processors

= Asynchronous host and accelerator execution

Ct Next Steps — Where to go from here
— Towards a parallel virtual machine

.
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Automatically Select the Right Mechanisms (!@

Solution: take a single abstract specification of latent parallelism and data
locality and use automation to transform it into multiple implementations
that can exploit all these mechanisms.

User specifies:

Platform implements: i i
Example implementation uses:

= Two cores

< Four-way vectorization

= Memory latency hiding with
streaming

Actual distribution of work
depends on hardware
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What is Ct Technology? (!ntd)

A generalized data parallel programming solution that
frees application developers from dependencies on
particular hardware architectures.

A system that integrates with existing development tools
to allow parallel algorithms to be specified at a high level.

A dynamic compiler and runtime that translates high-level
specifications of computations into efficient parallel
implementations that can take advantage of both SIMD
and thread-level parallelism, as well as accelerators.

A system that allows an application developer to
combine performance, portability, and productivity.
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Productivity

=Integrates with existing tools
=Applicable to many problem domains
=Safe by default: maintainable

Performance

-processor  uEfficient and scalable

LRBni =Harnesses both vectors and threads
=Eliminates modularity overhead of C++

Hybrid Portability
Processor =High-level abstraction
=Hardware independent
=Forward scaling
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The Ct Runtime

Intel Ct Technology
offers a standards
compliant C++ library...

.backed by a runtime

JIT Compiler

Virtual Machine

Vitual | Debua/ L
188" Swes it

Runtime generates and
manages threads and
vector code, via
— Machine independent
optimization
— Offload management
— Machine specific code

generation and optimizations .. L - .
— Scalable threading runtime [ (]
(based on TBB!) .. I L1 .

CPU Accelerator Future
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it be Used for? G@ Ct Language Introduction G’nu'g
=] e i

Bioinformatics Visual computing

* Genomics and sequence analysis * Digital content creation (DCC)

+ Molecular dynamics « Physics engines and advanced rendering
Engineering design * Visualization

* Finite element and finite difference simulation « Compression/decompression

« Monte Carlo simulation Signal and image processing
Financial analytics  Computer vision

« Radar and sonar processing

« Microscopy and satellite image processing
Science and research

* Machine learning and artificial intelligence
« Climate and weather simulation

« Planetary exploration and astrophysics
Enterprise

* Database search

* Business information

* Option and instrument pricing

« Risk analysis

Oil and gas

* Seismic reconstruction

*+ Reservoir simulation

Medical imaging

* Image and volume reconstruction

+ Analysis and computer aided detection (CAD)
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Data Spaces @ Ct Data Objects @

The basic type in Ct is the vector, named as Vec
C/C++ space Ct space .
— Vec-s are managed by the Ct runtime

— Vec-s are single-assignment vectors

— — Vec-s are (opaquely) flat, multidimensional, sparse, or nested

— Vec values are created & manipulated exclusively through Ct API

( s CopyItl Declared Vecs are simply references to immutable values

Vec<F64> doubleVec; // doubleVec can refer to any vector of
Ct code // doubles

doubleVec = srcl + src2;

Q’ copyouy doublevec = src3 * src4;

Corporation. All rig! jedt
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Moving Data In and Out of Ct G@

Bind data with Ct name using Vec constructors

Vec<F32> prices(options, numOptions); // copy in from a C array

Vec<I8> red(image, length, 4); // copy element with a stride of 4

Vec2D<132> intVec( img, width, height); // A vector initialized to all -1s

Define the data behavior in the kernel’s signature
« Pass-by-value — means copying in
= Pass-by-reference — means both copying in and copying out

= Dynamic Compiler tries to recognize pure copying out
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Ct Operators - Vector Element-wise
operators

Unary Operators
A = ~B; // bitwise not of each element of B
A = exp(B); // compute the exp() of each element of B

Binary Operators
A =B+ C; // an element-wise sum of B & C
D = max(E, F); // an element-wise maximum of E and F

G = 2*H; // element-wise multiplication of H and the scalar 2

Ternary Operators
A = select( mask, B, C );
A = select( mask, B, 0.f );
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Ct Operators - Vector Reduce / Scan @

Reductions (e.g. aggregation, collective communication)

// Sum all the element of B
A = addReduce(B);
// Some common cases for BOOLEAN
Vec<Bool> B; /
//TRUE if all elements of B are TRUE /
Bool alltrue = all(B); /
//TRUE if at least one element of B is TRUE ﬁ
Bool nonzero = any(B);
0

Scans

// calculate the prefix sum of B
A = addScan(B);

il Software & Services Group, Developer Products Division
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Ct Operators - Vector Permutation
Operators

Shift

A = shift(B, 1); M ///
S Y S —

A = shiftSticky(B, 1);

Rotate
S S T —
A = rotate(B, 1); //L/l
I S e e |
Gather / Scatter
A=B[vindex];

A = scatter( B, vindex, C);

Software & Services Group, Developer Products Division
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A Simple Example: Dot Product G@

Dot Product Using C Loops Dot Product Using Ct
q for(=0;i<n;i++) { | Vec<F64> Srcl(srcl, n), Src2(src2, n);
dr&c@ sre2[il; F64 Dst = addReduce(Src1*Src2);
by

@ Vector operations subsumes loop
@ Element-wise multiply

(® Reduction (a global sum)

(Iﬁh;ﬂ Software & Services Group, Developer Products Division
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A More Complex Example: Porting G‘nuj
Black-Scholes

Black-Scholes Using C Loops Black-Scholes Using Ct
clude <ct.h>
using namespace Ct;
float s[N], x[N], r[N], v[N], t[N]; float s[N], x[N], r[N], v[N], t[N];
fioat resultIN]: ;
| fortinti=0;i <N i) { Vec<F32> S(s, N), X(x, N), R(r, N), V{v, N), T(t, N);
Q
float d1 = s[i] / In(x[i]); Vec<F32>d1=5/In(X);
d1 += (r[i] + v[i] * v[i] * 0.5f) * t[i]; d1+=(R+V*V*050)*T;
d1 /= sartelil); d1/=sarn(1);
float d2 = d1 - sqrt(t[i]); Vec<F32> d2 = d1 - sqrt(T);
result[i] = x[i] * exp(r[i] * t[i]) * Vec<F32>tmp=X*exp(R*T)*
1.0f - CND| +(-s[i]) * (1.0f - CND(d1)); ( 1.0 - CND(d2)) + (-S) * (1.0f - CND(d1));

@ #include <ct.h> and use Ct namespace
Vector operations subsumes loop
(€] The Ct code is almost the same as the original loop body

Software & Services Group, Developer Products Division
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Functions @

= A Ct Function is a C++ function that

— takes one or more Vec, Elt (a Vec element), or scalars as arguments

— returns one or more Vec, Elt (a Vec element), or scalars
« one return: Vec<F32> foo(Vec<F32> in);
« two returns: void foo(Vec<F32> in, Vec<F32>& outl, Vec<F32>&

out2);

— is invoked via special interfaces:
= call/rcall
= map/rmap
= ncall/nmap (internal-only, for now)

Software & Services Group, Developer Products Division
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Remote calls: Invoke Functions from @
C/C++ Space

void BlackScholes(Vec<F32> S, Vec<F32> X, Vec<F32> R, Vec<F32> V, Vec<F32> T, Vec<F32>& result)

Vec<F32> d1=$ / In(X); For functions that are remotely
dl+=(R+V*V*0.50)*T; invoked, the return values have to be
d1 /= sart(T); P
Vee<Faz> d2 = d1 - sqrt(T); expressed usmg pass by ref operat.or,
and the functions MUST return void.
result =X * exp(R * T) * ( 1.0f - CND(d2))
+(-5) * (1.0f - CND(d1));
}

//caler coda using binding constructors to bind
Vec<F32> S(sPtr, N); from C/C++ space to Ct vectors
Vec<F32> X(xPtr, N);

Vec<F32> R(rPtr, N);
Vec<F32> V(vPtr, N);
Vec<F32> T(TPtr, N);
Vec<F32> result(resultPtr, N); //output

using rcall operator to invoke
reall(BlackScholes)(s, X, R, V, T, result); s P




Ct Dynamic Engine Execution

int ar_a[1024], ar_b[1024]

Vec<i32> va(ar_a, ...;
Vec<i32> vbfar_b,..);

reall( work ) (va, vb );

Ct Dynamic
Engine

Software & Services Group, Developer Products Division
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Ct Dynamic Engine Execution

int ar_a[1024], ar_b[1024]

Vec<I32>val(ar_a, ..);

Vec<I32> vb(ar_b,..);

reall( work ) (va, vb);

Ct Dynamic
Engine

espective owners.

mm) | *void work( Vec<i32> 3,
* Vecxi32>&b)

*{
® b=a+1;
°}
a I
b
Ct Dynamic
; —l]
Engine

Corporation. All rig! jedt
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Ct Dynamic Engine Execution

oo (10281, 013024

*void work( Vec<I32>a,
®  Vec<i32>&b)

*f

) b=a+l;

°}

I

Ct Dynamic
Engine
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int ar_a[1024], ar_b[1024]

Vec<I32> va(ar_a, ..);
Vec<I32> vblar_b,..);

reall( work ) (va, vb );

—

* void work| Vec<132> 3,
* Vec<l32>&b)

b=a+1;

Ct Dynamic
Engine

Ct Dynamic Engine Execution

int ar_a[1024], ar_b[1024]

Vec<I32> va(ar_a

)
Vec<I32> vb(ar_b,...);

rcall( work ) (va, vb );

4

* void work( Vec<32> 3,
*  Vec<i32>&b)

Ct Dynamic
Engine

Ct Dynamic Engine Execution

IR Builder®

Qntel’
JIT

High-Level Optimizer

Low-Level Optimizer

CVI Code Gen

SSE | NI | AvX |
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int ar_a[1024], ar_b[1024]

Vec<I32> va(ar_a, ..);
Vec<I32> vbar_b,..);

rcall( work ) (va, vb );

e

* void work| Vec<i32> 3,
* Vec<i32>&b)
M

¢ beas+y

*}

[

Ct Dynamic
Engine

Ct Dynamic Engine Execution

JIT

High-Level Optimizer

Low-Level Optimizer

CVI Code Gen

ion. Al rig!

the property of thei

int ar_a[1024], ar_b[1024]

Vec<i32> va(ar_a, ..J;
Vec<132> vbfar_b,...;

reall( work ) (va, vb );

7

* void work( Vec<i32> a,
* Vecsizzo&b)
°t

o bmasy

)

e——

Ct Dynamic
Engine
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Ct Dynamic Engine Execution G@ Ct Dynamic Engine Execution G‘nuj

int ar_a[1024], ar_b[1024]

T int ar_a[1024], ar_b[1024]

Vec<l32> va(ar_a, ..); High-Level Optimizer Vec<i32> vafar_a

)

Vec<l32> vbiar_b,..);

Vec<i32> vblar_b,..); Gogle:Nanagesr

Emitted Code for ‘work’ I

Low-Level Optimizer

CVI Code Gen

SSE  LNI | AVX |

reall( work ) (va, vb );

—

* void work( Vec<I32> 3,
* Vecx32>&b)

rcall( work ) (va, vb );

Thread Scheduler

|
a b Thread Scheduler
| — ]

Ct Dynamic
Engine

Ct Dynamic
Engine
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Ct Dynamic Engine Execution @ Towards a Parallel Virtual Machine

int ar_a[1024], ar_b[1024]

Vec<I32> va(ar_a, ...);

Vec<I32> vb(ar_b,..); Gosle:Managesr €ede

- Emitted Code for ‘work’ I

Cache

rcall( work ) (va, vb );

Ct Dynamic
Engine
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Parallel Programming Abstractions G@

Parallel VM Tasks G@

* Provide function definition, data management and
execution

= Decouple programming languages from
concurrency platforms
— Allowing new frontends to flourish

= Be well-defined, offer C API and textual
representation
— Suitable for wide external adoption
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Machine

= Converge Ct and RapidMind APIs into open, standard VM layer
* Goals:
— New frontends for other languages (e.g. .NET, Python, Java, etc.)
— Enable domain specific languages
— Leverage data-parallel execution engines from Intel
— Provide interface specification for non-Intel implementations
— Clearly specify semantics separately from syntax
— Binary compatibility and insulation
« Not generally aimed at application developers

= Collaboration welcome!
— Email to stefanus.du.toit@intel.com!
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Evolve Ct into Data-parallel Virtual @

Ct In—Depth Information and Product @
Plans
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Ct Going Forward G@

= Ct is being turned into an Intel software product
— public beta release planned for Q1/2010

e The product will contain
— Core API

— Libraries for Linear Algebra, FFT, Random Number
Generation (powered by Intel® Math Kernel Library)

— Lots of samples (Medical Imaging, Financial Analytics,
Seismic Processing, ...)
« Initial release on Windows, followed by Linux
— 1A-32 and Intel® 64 instruction sets

— Works with Intel® C/C++ Compiler, Microsoft* Visual
C++*, and GCC*
— Works with Intel® VTune™ Analyzer

Software & Services Group, Developer Products Division
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How to Learn More about Ct G@

< Read the material at http://www.intel.com/go/ct

« Browse the Intel Developer Forum website for Ct
presentations

« Bug your favorite Intel rep about getting into the
private beta program

« Sign up for the public beta at
http://www.intel.com/go/ct
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