Cosmic ray acceleration in supernova remnants and the Fermi/PAMELA data

Philipp Mertsch Rudolf Peierls Centre for Theoretical Physics, University of Oxford

> Cosmic ray backgrounds in dark matter searches Oskar Klein Centre, Stockholm, 25 January 2010

Positron Fraction

theoretical prediction: $\propto E^{-0.4...0.8}$

Positron Fraction

theoretical prediction: $\propto E^{-0.4...0.8}$

Positron Fraction

The Leaky Box Model

Transport equation:

$$\frac{\mathrm{d}n(\vec{r},t)}{\mathrm{d}t} = \underbrace{\nabla(D\nabla n(\vec{r},t))}_{\text{diffusion}} - \underbrace{\frac{\partial}{\partial E}(b(E)n(r,t))}_{\text{energy losses}} + \underbrace{q(\vec{r},t)}_{\text{injection}}$$
Averaging over extended CR halo; steady state solution
$$0 = -\frac{n}{\tau_{\mathrm{esc}}} - \frac{n}{\tau_{\mathrm{cool}}} + q$$
Escape from extended CR halo: $\tau_{\mathrm{esc}} \propto E^{-0.6}$

Energy loss through synchrotron radiation and ICS on CMB and IBL:

 $au_{\rm cool} \propto E^{-1}$

Energy Spectra

Secondary e^{\pm} during Propagation

Energy Spectra

theoretical prediction:

Rising Positron Fraction

harder positron injection $\propto E^{-2.2}$

- DM annihilation or decay ➔ P. Serpico
- Nearby pulsars
- Acceleration of Secondaries \rightarrow this talk

• Propagation cut-off in primary electrons T. Piran

Secondary Origin of e^{\pm}

Rise in positron fraction could be due to secondary positrons produced during acceleration and accelerated along with primary electrons Blasi, PRL **103** (2009) 051105

Assuming production of galactic CR in SNRs, PAMELA positron fraction can be fitted

This effect is guaranteed, only its size depends on normalisation and one free parameter that needs to be fitted from observations

Cas A in γ -rays from MAGIC

DSA – Test Particle Approximation

Consider flux

$$\Phi(p) = \int \mathrm{d}^3x \, \frac{4\pi p^2}{3} f(p)(-\nabla \cdot \vec{u})$$

change in acceleration convection injection density

 $ec{u}_1, n_1$

downstream upstream

 $\vec{u}_2,$

 \hat{x}

One finds:

$$\frac{u_1 - u_2}{3} p \frac{\partial f^0}{\partial p} + u_1 f^0 = 0$$
$$\Rightarrow f^0(p) \propto p^{-3u_1/(u_1 - u_2)} = p^{-\gamma}$$

DSA with Secondaries

- Secondaries get produced with primary spectrum:
 - $q_{e^{\pm}} \propto f_{\rm CR} \propto p^{-\gamma}$
- Only particles with $|x| \lesssim D(p)/u~~{\rm can}~{\rm be}~{\rm accelerated}$
- Bohm diffusion: $D(p) \propto p$
- Fraction of secondaries that go into acceleration $\propto p$
- Equilibrium spectrum

$$n_{e^{\pm}} \propto q_{e^{\pm}} \left(1 + \frac{p}{p_0}\right) \propto p^{-\gamma} + p^{-\gamma+1}$$

Rising positron fraction at source

Diffusion of GCRs

Transport equation:

Green's function:

describes flux from one discrete, burst-like source

The Discreteness of Sources

- Numerical codes like GALPROP usually simulate *continuous* source distribution
- However, discreteness of sources important, once the diffusion length shorter than average distance between sources

A Caveat

Statistical Distribution of Sources

Idea:

- draw source positions from this distribution
- calculate total $(e^+ + e^-)$ flux
- best fit to data is closest to real distribution

Normalising the Source Spectra

normalisation of primary e^- : from fitting absolute e^- flux at low energies

normalisation of secondary e^{\pm} :

$$p + p \to \begin{cases} \pi^0 + \dots & \to & 2\gamma + \dots \\ \pi^{\pm} + \dots & \to & e^{\pm} + \dots \end{cases}$$

Source	Other name(s)	Г	$J_{\gamma}^{0} \div 10^{-12}$	E_{\max}	d	$Q_{\gamma}^{0} \div 10^{33}$
			$[(\mathrm{cm}^2\mathrm{s}\mathrm{TeV})^{-1}]$	[TeV]	[kpc]	$[(\mathrm{sTeV})^{-1}]$
HESS J0852-463	RX J0852.0-4622 (Vela Junior)	2.1 ± 0.1	21 ± 2	> 10	0.2	0.10
HESS J1442 -624	RCW 86, SN 185 (?)	2.54 ± 0.12	3.72 ± 0.50	$\gtrsim 20$	1	0.46
HESS J1713-381	CTB 37B, G348.7+0.3	2.65 ± 0.19	0.65 ± 0.11	$\gtrsim 15$	7	3.812
HESS J1713-397	RX J1713.7-3946, G347.3-0.5	2.04 ± 0.04	21.3 ± 0.5	17.9 ± 3.3	1	2.55
HESS J1714 -385	CTB 37A	2.30 ± 0.13	0.87 ± 0.1	$\gtrsim 12$	11.3	13.3
HESS $J1731 - 347$	G 353.6-07	2.26 ± 0.10	6.1 ± 0.8	$\gtrsim 80$	3.2	7.48
HESS J1801 -233^{a}	W 28, GRO J1801-2320	2.66 ± 0.27	0.75 ± 0.11	$\gtrsim 4$	2	0.359
HESS J1804 -216^{b}	W 30, G8.7-0.1	2.72 ± 0.06	5.74	$\gtrsim 10$	6	24.73
HESS J1834 -087	W 41, G23.3-0.3	2.45 ± 0.16	2.63	$\gtrsim 3$	5	7.87
MAGIC J0616+225	IC 443	3.1 ± 0.3	0.58	$\gtrsim 1$	1.5	0.156
Cassiopeia A		2.4 ± 0.2	1.0 ± 0.1	$\gtrsim 40$	3.4	1.38
J0632 + 057	Monoceros	2.53 ± 0.26	0.91 ± 0.17	N/A	1.6	0.279
Mean		~ 2.5		$\gtrsim 20$		~ 5.2
Mean, excluding sources with $\Gamma > 2.8$		~ 2.4		$\gtrsim 20$		~ 5.7
Mean, excluding sources with $\Gamma > 2.6$		~ 2.3		$\gtrsim 20$		~ 4.2

Diffusion Coefficient

- Diffusion coefficient not known *a priori*
- Bohm diffusion sets lower limit

$$D_{\rm Bohm} = r_\ell \frac{c}{3} \propto \frac{E}{Z}$$

• Difference parametrised by fudge factor K_B

$$D = D_{\rm Bohm} K_B$$

• K_B determined by fitting to one observable, allows prediction for another observable

The Total $(e^+ + e^-)$ Flux

The Total $(e^+ + e^-)$ Flux

The Positron Fraction

Explanations for PAMELA Excess

rise in	e^+/e^-	
DM	✓	
Pulsars	✓	
Acceleration of Secondaries	1	

Antiproton-to-proton Ratio

Antiproton-to-proton Ratio

Nuclear Secondary-to-Primary Ratios

Nuclear Secondary-to-Primary Ratios

If nuclei are accelerated in the same sources as electrons and positrons, nuclear ratios *must* rise eventually

Explanations for PAMELA Excess

rise in	e^+/e^-	$ar{p}/p$	nuclei
DM	~	(🗸)	×
Pulsars	~	×	×
Acceleration of Secondaries	1	✓	✓

Titanium-to-Iron Ratio

Titanium-to-iron ratio used as calibration point for diffusion coefficient:

$$K_{\rm B}\simeq 40$$

Boron-to-Carbon Ratio

PAMELA is currently measuring B/C with unprecedented accuracy

A rise would rule out the DM and pulsar explanation of the PAMELA e^+/e^- excess.

Boron-to-Carbon Ratio

PAMELA is currently measuring B/C with unprecedented accuracy

A rise would rule out the DM and pulsar explanation of the PAMELA e^+/e^- excess.

Hint at Hadronic SNRs

Maximum column depth around galactic centre

However brightness only smaller by 30% in rest of sky

on average:

- 3 sources brighter than Crab
- 7 sources brighter than 50% Crab

Prospects for IceCube

Flux from SNR at 2 kpc with Γ =2.4 and above normalisation:

 $F_{\nu_{\mu}}(>3 \text{ TeV}) \simeq 7 \times 10^{-13} \text{cm}^{-2} \text{ s}^{-1}$

To be compared with IceCube (22 strings) point source limit (90% CL upper limit on muon neutrino flux for energies between 3 TeV and 3 PeV):

$$F_{\nu_{\mu}} \le 4.7 \times 10^{-12} \mathrm{cm}^{-2} \mathrm{s}^{-1}$$

However, E⁻² point source with $F_{
u_{\mu}} \simeq 7.2 imes 10^{-12} {
m cm}^{-2} {
m s}^{-1}$

can be detected in full IceCube (80 strings) with 5σ significance in 3 years .

Summary

1. Background for secondary-to-primary ratios in Leaky Box Model

2. Acceleration of secondary positrons and electrons in source explains both PAMELA and Fermi LAT/HESS data

3. Nuclear secondary-to-primary ratios as a unique test of this model