The PAMELA Space Experiment

Mirko Boezio INFN Trieste, Italy, OKC Guest

On behalf of the PAMELA collaboration

Cosmic-Ray Backgrounds in DM Searches January 25th 2010

Payload for Antimatter Matter Exploration and Light Nuclei Astrophysics

PAMELA Collaboration

- Search for dark matter annihilation
- Search for antihelium (primordial antimatter)
- Search for new Matter in the Universe (Strangelets?)
- Study of cosmic-ray propagation (light nuclei and isotopes)
- Study of electron spectrum (local sources?)
- Study solar physics and solar modulation
- Study terrestrial magnetosphere

COSMIC RAYS PRODUCTION MECHANISMS

PAMELA history

- 1996: PAMELA proposal
- 22.12.1998: agreement between RSA (Russian Space Agency) and INFN to build and launch PAMELA.

Three models required by the RSA:

- Mass-Dimensional and Thermal Model (MDTM)
- Technological Model (TM)
- Flight Model (FM)

→ Starts PAMELA construction

• 2001: change of the satellite \rightarrow complete redefinition of mechanics

• 2006: flight!!!

PAMELA apparatus

Design Performance

- Antiprotons
- Positrons
- Electrons
- Protons
- Electrons+positrons
- Light Nuclei (He/Be/C)
- AntiNuclei search

<u>energy range</u> 80 MeV - 190 GeV

50 MeV – 300 GeV

up to 500 GeV

up to 700 GeV

up to 2 TeV (from calorimeter)

up to 200 GeV/n

sensitivity of 3x10⁻⁸ in He/He

- → Simultaneous measurement of many cosmic-ray species
- \rightarrow New energy range
- → Unprecedented statistics

The magnet

Characteristics:

- 5 modules of permanent magnet (Nd-B-Fe alloy) in aluminum mechanics
- Cavity dimensions 162x132x445 cm³
 →GF 21.5 cm²sr
- Magnetic shields
- 5mm-step field-map
- **B=0.43 T** (average along axis), B=0.48 T (@center)

The tracking system

Main tasks:

- Rigidity measurement
- Sign of electric charge
- dE/dx

Characteristics:

- 6 planes double-side (x&y view) microstrip Si sensors
- 36864 channels
- Dynamic range 10 MIP

Performances:

- Spatial resolution: 3÷4 μm
- MDR ~1.2TV (from flight data)

The electromagnetic calorimeter

Main tasks:

- •e/h discrimination
- •e^{+/-} energy measurement

Characteristics:

- •44 Si layers (X/Y) +22 W planes
- 16.3 X_o / 0.6 l₀
- •4224 channels
- •Dynamic range ~1100 mip
- •Self-trigger mode (> 300 GeV GF~600 cm² sr) **Performances:**
- p/e⁺ selection efficiency ~90%
- p rejection factor **10**⁵
- •e rejection factor >10⁴
- •Energy resolution ~5% @200GeV

The time-of-flight system

Main tasks:

- First-level trigger
- Albedo rejection
- dE/dx
 - Particle identification

 (<1GeV/c)

Characteristics:

- 3 double-layer scintillator paddles
- X/Y segmentation
- Total: 48 Channels

Performances:

σ_{paddle} ~ 110ps

σ_{TOF} ~ 330ps (for MIPs)

The anticounter shields

Main tasks:

• Rejection of events with particles interacting with the apparatus (off-line and secondlevel trigger)

Characteristics:

- scintillator paddles 10mm thick
- 4 up (CARD), 1 top (CAT), 4 side (CAS)

Performances:

• Efficiency > 99.9%

PaMél

Shower-tail catcher (S4) Main tasks:

- ND trigger
- **Characteristics:**
- 1 scintillator paddle 10mm thick

Neutron detector

Main tasks:

- •e/h discrimination @high-energy **Characteristics:**
- •36 ³He counters: ³He(n,p)T \rightarrow Ep=780 keV
- •1cm thick polyetilene moderators
- n collected within 200 ms time-window

PAMELA INTEGRATION in the RESURS-DK1 satellite

The Launch: 15th June 2006

The Launch: 15th June 2006

Resurs-DK1 satellite + orbit

- Resurs-DK1: multi-spectral imaging of earth's surface
- PAMELA mounted inside a pressurized container
- Lifetime >3 years (assisted, first time last February)
- Data transmitted to NTsOMZ, Moscow via high-speed radio downlink. ~16 GB per day
- Quasi-polar and elliptical orbit (70.0°, 350 km - 600 km)
- Traverses the South Atlantic Anomaly
- Crosses the outer (electron) Van Allen belt at south pole

See W. Gillard's talk

Subcutoff particles

PAMELA milestones

Launch from Baikonur \rightarrow June 15th 2006, 0800 UTC

'First light' \rightarrow June 21st 2006, 0300 UTC.

• Detectors operated as expected after launch

• Different trigger and hardware configurations evaluated

→ PAMELA in continuous data-taking mode since commissioning phase ended on July 11th 2006

Main antenna in NTsOMZ

Trigger rate* ~ 25 Hz Fraction of live time* $\sim 75\%$ Event size (compressed mode) ~ 5 kB 25 Hz x 5 kB/ev $\rightarrow \sim 10$ GB/day (*outside radiation belts)

Till ~now: ~1200 days of data taking ~18 TByte of raw data downlinked >10⁹ triggers recorded and analyzed (Data from April till December 2008 under analysis)

Antiparticles with PAMELA

Antiproton / positron identification

Time-of-flight: trigger, albedo rejection, mass determination (up to 1 GeV)

Bending in spectrometer: sign of charge

Ionisation energy loss (dE/dx): magnitude of charge

Interaction pattern in calorimeter: electron-like or proton-like, electron energy

ANTIPROTONS

Antiproton to proton flux ratio

PRL 102, (2009) 051101, Astro-ph 0810.4994

Mirko Boezio, OKC Stockholm, 2010/01/25

Antiproton to proton flux ratio

POSITRONS

Proton / positron discrimination

Mirko Boezio, OKC Stockholm, 2010/01/25

Positron

Positron selection with calorimeter

Fraction of energy released along the calorimeter track (left, hit, right)

Positron selection with calorimeter Rigidity: 20-30 GV

•Energy-momentum match •Starting point of shower

Mirko Boezio, OKC Stockholm, 2010/01/25

calorimeter track (left, hit, right)

Positron to Electron Fraction

0.4 Positron fraction $\phi(e^+)$ / ($\phi(e^+)$ + $\phi(e^-)$) 0.3 0.2 0.1 In Nature article published Moskalenko and Strong, ApJ 493, 694 (1998) data acquired till February PAMELA 0.02 PAMELA - new data (beta functions) 2008 Aesop (Clem & Evenson 2007) HEAT00 AMS **Secondary production** New data reduction: data 0.01 CAPRICE94 HEAT94+95 Moskalenko & Strong 98 till end of 2008. With same TS93 MASS89 approach of Nature paper Muller & Tang 1987 0.005 ~30% increase in statistics 10² 10 better understanding of Energy [GeV] systematics.

Solar Modulation of galactic cosmic rays

Solar modulation

Heliosphere & Cosmic Ray Modulation Mechanisms

Charge dependent solar modulation

PAMELA electron to positron ratio and theoretical models

ELECTRONS

PAMELA Electron (e⁻) Spectrum

See E. Mocchiutti's talk

PROTONS AND HEAVIER NUCLEI

INFN Istituto Nazionale di Fisica Nucleare

Galactic H and He spectra

ND

ND

Charge identification capabilities (tracker)

- Good charge discrimination of H and He
- Single-channel saturation at ~10MIP affects B/C discrimination

Charge identification capabilities (calorimeter)

Truncated mean of multiple dE/dx measurements in different silicon planes

PAMELA has been in orbit and studying cosmic rays for ~42 months. >10⁹ triggers registered and >18 TB of data has been down-linked.

Antiproton-to-proton flux ratio and antiproton energy spectrum (~100 MeV - ~200 GeV) show no significant deviations from secondary production expectations.

High energy positron fraction (>10 GeV) increases significantly (and unexpectedly!) with energy. Primary source?
 Data at higher energies might help to resolve origin of rise (spillover limit ~300 GeV).

• e⁻ spectrum up to ~200 GeV shows spectral features that may point to additional components. Analysis is ongoing to increase the statistics and expand the measurement of the e⁻ spectrum up to ~500 GeV and e⁺ spectrum up to ~300 GeV (all electrum (e⁻ + e⁺) spectrum up to ~1 TV).

Furthemore:

• PAMELA is going to provide measurements on elemental spectra and low mass isotopes with an unprecedented statistical precision and is helping to improve the understanding of particle propagation in the interstellar medium

- PAMELA is able to measure the high energy tail of solar particles.
- PAMELA is going to set a new lower limit for finding Antihelium

