Axion Cold Dark Matter in Standard and Non-Standard Cosmologies

Paolo Gondolo University of Utah

Visinelli, Gondolo, arxiv:0903.4377, Phys. Rev. D 80, 035024 (2009) Visinelli, Gondolo, arxiv:0912.0015

Axion cold dark matter

When are axions 100% of cold dark matter?

Study axion parameter space imposing

$\Omega_a = \Omega_{\rm CDM} = 0.1131 + 0.0034$

And update cosmological constraints and include anharmonicities

Axions as solution to the strong CP problem

The strong CP problem

Vacuum potentials $A_{\mu} = i\Omega \partial_{\mu}\Omega^{-1}$ with $\Omega \to e^{2\pi i n}$ as $r \to \infty$

Vacuum state $|\theta\rangle = \sum_{n} e^{-in\theta} |0\rangle$

New term in lagrangian $\mathcal{L}_{\theta} = \theta \frac{g^2}{32\pi^2} F_a^{\mu\nu} \tilde{F}_{a\mu\nu}$

 \mathcal{L}_{θ} violates P and T but conserves C, thus produces a neutron electric dipole moment $d_n \approx e(m_q/M_n^2)\theta$

Experimentally $d_n < 1.1 \times 10^{-26} ecm \text{ so } \theta < 10^{-9} - 10^{-10}$

Why θ should be so small is the strong CP problem

Axions as solution to the strong CP problem

The Peccei-Quinn solution

New lagrangian
$$\mathcal{L}_a = -\frac{1}{2}\partial^{\mu}a\partial_{\mu}a + \frac{a}{f_a}\frac{g^2}{32\pi^2}F_a^{\mu\nu}F_{a\mu\nu} + \mathcal{L}_{int}(a)$$

Before QCD phase transition, $\langle \theta \rangle$ can be anything

Axions as dark matter

Hot

Produced thermally in early universe Important for $m_a > 0.1 eV$ ($f_a < 10^8$), mostly excluded by astrophysics

Cold

Produced by coherent field oscillations around mimimum of $V(\theta)$ (Vacuum realignment)

Produced by decay of topological defects (Axionic string decays)

Axion cold dark matter parameter space

fa	Peccei-Quinn symmetry breaking scale
N	Peccei-Quinn color anomaly
N_d	Number of degenerate QCD vacua
Kim-Shifman-Vainshtain-Zakharov Dine-Fischler-Srednicki-Zhitnistki	Couplings to quarks, leptons, and photons
H_{I}	Expansion rate at end of inflation
$ heta_i$	Initial misalignment angle
Harari-Sikivie-Hagmann-Chang Davis-Battye-Shellard	Axionic string parameters

Assume $N = N_d = 1$ and show results for KSVZ and HSHC string network

Thus 3 free parameters f_a , θ_i , H_I and one constraint $\Omega_a = \Omega_{CDM}$

Cold axion production in cosmology

Vacuum realignment

- Initial misalignment angle θ_i
- Coherent axion oscillations start at temperature T_1

 $3H(T_1)=m(T_1)$

Hubble expansion parameter non-standard expansion histories differ in the function H(T) T-dependent axion mass axions acquire mass through instanton effects at $T < \Lambda \approx \Lambda_{\rm QCD}$

• Density at T_1 is $n_a(T_1) = \frac{1}{2}m_a(T_1)f_a^2\chi\langle\theta_i^2f(\theta_i)\rangle$

Anharmonicity correction $f(\theta)$

axion field equation has anharmonic terms $\ddot{\theta} + 3H(T)\dot{\theta} + m_a^2(T)\sin\theta = 0$

• Conservation of comoving axion number gives present density Ω_a

Cold axion production in cosmology

Axionic string decays

• Energy density ratio (string decay/misalignment)

Slow oscillating strings (Davis-Battye-Shellard)

Fast-oscillating strings (Harari-Hagmann-Chang-Sikivie)

$$\overline{r} = \frac{1-\beta}{3\beta-1} \ln(t_1/\delta)$$

$$\overline{r} = \frac{1-\beta}{3\beta-1} 0.8$$

with $a(t) \propto t^{\beta}$

Standard cosmology

Standard cosmology

Non-standard cosmology

Low Temperature Reheating cosmology

Turner 1983, Scherrer, Turner 1983, Dine, Fischler 1983

Wednesday, January 27, 2010

Wednesday, January 27, 2010

Non-standard cosmology

Kination cosmology

Ford 1987

Wednesday, January 27, 2010

 m_a [eV]

Conclusions

For axions to be 100% of cold dark matter.....

- If the Peccei-Quinn symmetry breaks after inflation ends, the axion mass must be $m_a=85\pm3$ µeV in standard cosmology
 - much smaller m_a in LTR cosmology
 - much larger m_a in kination cosmology
- If the Peccei-Quinn symmetry breaks during inflation, cosmological limits on non-adiabatic fluctuations constrain parameter space and a specific initial misalignment angle θ_i must be chosen
 - larger allowed region and larger θ_i in LTR cosmology
 - smaller allowed region and smaller θ_i in kination cosmology