

A Markov Chain Monte Carlo technique to sample transport and source parameters of Galactic cosmic rays

Antje Putze

Oskar Klein Centre for Cosmo Particle Physics

January 26, 2010

Cosmic ray backgrounds in dark matter searches, Stockholm, January 25-27

Constraints on the Leaky-Box Model

Constraints on the 1D diffusion model 00000000

Questions on cosmic-ray propagation

NGC 4631 (610 MHz) [Ekers & Sancisi, A&A 54 (1977), 973]

Galactic halo model

observation of radio halo which is due to cosmic rays around the galactic disc

\implies galactic halo

Antje Putze

MCMC constraints

Oskar Klein Centre

Cosmic ray backgrounds in dark matter searches

2/18

Mechanisms

- diffusion: K(E) \implies magnetic field; Kolmogorov: $K \propto E^{1/3}$?
- convection: V_c \implies galactic wind;
- reacceleration: V_a
 magnetohydrodynamic waves.

Constraints on the Leaky-Box Model

Constraints on the 1D diffusion model ${\scriptstyle 00000000}$

Bayesian approach

Identification and quantification of *m* parametres $\theta = \{\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(m)}\}$ of an theoretical model $\underbrace{P(\theta | \text{data})}_{\text{posterior probability}} \propto \underbrace{P(\text{data} | \theta)}_{\text{likelihood}} \cdot \underbrace{P(\theta)}_{\text{prior probability}}$

Extraction of the marginalised posterior PDFs by multi-dimensional integration

 \implies Sampling of $P(\theta | \text{data})$ with an Markov Chain Monte Carlo

Antje Putze

Constraints on the 1D diffusion model

An example

Markov chains sampling a 3D function

Constraints on the Leaky-Box Model

Constraints on the 1D diffusion model 00000000

Implementation the propagation code USINE

Antje Putze

Constraints on the Leaky-Box Model

Constraints on the 1D diffusion model ${\scriptstyle 00000000}$

Chain analysis

Evaluation of the burn-in and correlation lengths for independent sample extraction

Estimation of the posterior PDF

Antje Putze

 \Rightarrow

Constraints on the Leaky-Box Model •000 Constraints on the 1D diffusion model ${\scriptstyle 00000000}$

Leaky-Box Model

$$\frac{N_i}{\tau_{\rm esc}} + \bar{n}v\sigma_i N_i = \bar{q}_i + \sum_{j>i} \bar{n}v\sigma_{ij}N_j$$
$$n \Leftrightarrow \bar{n}, \quad q_i \Leftrightarrow \bar{q}_i$$
$$\frac{S}{P} = \frac{\sigma_{PS}}{\bar{m}/\lambda_{\rm esc} + \sigma_S}$$
$$\lambda_{\rm esc} = \bar{m}\bar{n}v\tau_{\rm esc}$$

$$\lambda_{\rm esc}(R) = \lambda_0 \beta \begin{cases} R_0^{-\delta} & \text{for } R < R_0, \\ R^{-\delta} & \text{sinon} \end{cases} \quad \text{with} \quad R = \frac{pc}{Ze}$$

4 free parameters: λ_0 in g cm⁻², R_0 in GV, δ , \mathcal{V}_a in km s⁻¹

Constraints on the Leaky-Box Model

Constraints on the 1D diffusion model 00000000

Leaky-Box Model: B/C ratio

Configuration with critical rigidity and reacceleration preferred:

$$\begin{split} \lambda_0 &= 27^{+2}_{-2}\,\mathrm{g\,cm^{-2}}\\ R_0 &= 2.6^{+0.4}_{-0.7}\,\mathrm{GV}\\ \delta &= 0.53^{+0.02}_{-0.03}\\ \mathcal{V}_a &= 86^{+9}_{-5}\,\mathrm{km\,s^{-1}\,kpc^{-1}} \end{split}$$

- Kolmogorov spectral index $(\delta = 1/3)$ disfavoured for all configurations by used data;
- Break in the $\lambda_{\rm esc}$ spectrum favoured by used data.

Constraints on the Leaky-Box Model 0000

Constraints on the 1D diffusion model 00000000

Leaky-Box Model: B/C ratio (envelope)

Constraints on the Leaky-Box Model

Constraints on the 1D diffusion model 00000000

Leaky-Box Model: Conclusion

- MCMC successfully implemented and tested in the framework of the simple Leaky-Box model;
- comparison of the relative merit of different configurations:
 - configuration with critical rigidity and reacceleration preferred by used data;
 - Kolmogorov spectral index disfavoured by used data;
 - ${\, \bullet \,}$ break in the $\lambda_{\rm esc}$ spectrum favoured by used data;
- correlation study between the propagation and source parameters.

MCMC is a powerful statistical tool which allows us to constrain efficiently the propagation model parameters!

Constraints on the Leaky-Box Model

Constraints on the 1D diffusion model ${\scriptstyle \bullet 0 0 0 0 0 0 0}$

Diffusion Model

Galaxy is divided into two zones:

- a thin disk of size h;
- 2 a diffusive halo of size $L \gg h$.

$$K(R) = \frac{K_0 \beta R^{\delta}}{n_d = n}, \quad n_h = 0$$

5 free parameters: K_0 in kpc²/Myr, δ , V_c in km/s, L in kpc, V_a in km/s.

Constraints on the Leaky-Box Model

Constraints on the 1D diffusion model $0 \bullet 000000$

1D Diffusion Model: stable nuclei

- Configuration with convection and reacceleration preferred:
 - L = 4 kpc fixed
 - $V_c = 18.8^{+0.3}_{-0.3}\,\rm km/s$
 - $\delta = 0.86^{+0.04}_{-0.04}$
 - $K_0 = 0.0046^{+0.0008}_{-0.0006} \, {\rm kpc}^2/{
 m Myr}$ $V_a = 38^{+2}_{-2} \, {
 m km/s}$
- Kolmogorov spectral index $(\delta = 1/3)$ disfavoured by used data.

Constraints on the Leaky-Box Model

Constraints on the 1D diffusion model 00000000

1D Diffusion Model: radioactive nuclei

Stable secondary-to-primary ratios: degeneracy between K_0 and L

$$\lambda_{\rm esc} = nmvh \frac{L}{K(E)}$$

 \Longrightarrow Radioactive secondaries needed to lift degeneracy

Results with ${}^{10}\text{Be}/{}^{9}\text{Be}$ data

Constraints on the Leaky-Box Model

Constraints on the 1D diffusion model $_{\texttt{OOO} \bullet \texttt{OOOO}}$

Modified 1D Diffusion Model

$$\frac{N_{r_h}}{N_{r_h=0}} = \exp\left(\frac{-r_h}{l_{\rm rad}}\right),$$

where l_{rad} is the typical distance on which a radioactive nucleus diffuses before decaying [Donato *et al.*, A&A **381** (2002), 539]

Supplementary parameter: the radius r_h (in pc) of the local bubble

Constraints on the Leaky-Box Model

Constraints on the 1D diffusion model $_{\texttt{OOOOOOO}}$

Modified 1D Diffusion Model: radioactive nuclei

Results with ¹⁰Be/⁹Be data

Antje Putze

Constraints on the Leaky-Box Model

Constraints on the 1D diffusion model 00000000

Modified 1D Diffusion Model: radioactive nuclei

Constraints on the Leaky-Box Model

Constraints on the 1D diffusion model 00000000

1D Diffusion Model: radioactive nuclei (envelopes)

17/18

Constraints on the Leaky-Box Model 0000

Constraints on the 1D diffusion model ${\scriptstyle 0000000} \bullet$

1D Diffusion Model: Conclusion

- Successful posterior PDF extraction of the propagation parameters of the one dimensional diffusion model:
 - configuration with reacceleration and convection favoured by used data;
 - Kolmogorov spectral index disfavoured by used data;
- Study of parameters describing the geometry of the Galaxy:
 - estimation of the halo size L and the radius r_h of the local bubble;
 - taking into account the local bubble decreases the halo size L;
 - values found compatible with observations.

MCMC is a robust tool allowing an excellent parameter estimation.

Determination of L and r_h values strongly depends on the δ value! \implies high-energy data of secondary-to-primary ratios and/or radioactive elemental ratios are necessary!