

Fermi Gamma-ray Space Telescope

Cosmic Ray Electrons with Fermi-LAT

L. Latronico

INFN-Pisa On behalf of the Fermi Mission Team

Cosmic ray backgrounds in Dark Matter Searches Albanova, Stockholm, 25-27/1/2010

1 year Fermi gamma-ray skymap

Intro – impact of the Fermi observatory Detection of CRE with the Fermi LAT

CRE spectrum update

The Fermi observatory

- □ Satellite gamma-ray telescope
 - Large Area Telescope (LAT)
 - 20 MeV > 300 GeV
 - Gamma Burst Monitor (GBM)
 - 8 KeV 40 MeV
- □ Key features
 - Huge field of view (full sky every 3 hours for 30 mins)
 - Huge energy range
- Milestones
 - 11 jun 2008: launch
 - 04 aug 2008: science ops start
 - 13 aug 2009: data go public
 - 22 dec 2009: 90B triggers

- In addition to the search for new pulsars, 762 known pulsars with ephemerides were searched for pulsations in nine months of data
 - 46 pulsars were detected: 16 blind search PSRs, 8 radioloud MSPs, 22 radio-loud normal PSRs.

Fermi pulsars are in the top 10 results of 2009 according to Science

http://www.sciencemag.org/cgi/ content/full/326/5960/1589

see J. Bregeon's talk

The New York Times

1500

7.3 Billion Years Later, Einstein's Theory Prevails

By DENNIS OVERBYE Published: October 28, 2009

Astronomers said Wednesday that a race halfway across the universe had ended in a virtual tie. And so the champion is still <u>Albert</u> <u>Einstein</u> — for now. SIGN IN TO RECOMMEND

Number 9 of Slate Magazine's top twelve stories oct. 29 \rightarrow

http://fermi.gsfc.nasa.gov/ssc/data/access/lat/1yr_catalog/

More than 1000 sources in year one catalog

About 250 sources show evidence of variability

Gamma-ray pace Telescope

- Half the sources are associated positionally, mostly blazars and PSRs
- Other classes of sources exist in small numbers (XRB, PWN, SNR, starbursts, globular clusters, radio galaxies, narrow-line Seyferts)
- Uncertainties due to the diffuse model, particularly in the Galactic ridge

- Galactic gamma rays trace cosmic-ray proton interactions (cosmic-ray acceleration sites & propagation)
- Observations of nearby galaxies provide an outside view
- Primary targets: galactic plane, starburst galaxies, LMC, SNR
- Direct CR observations

Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

DETECTION OF GAMMA-RAY EMISSION FROM THE STARBURST GALAXIES M82 AND NGC 253 WITH THE LARGE AREA TELESCOPE ON *FERMI*

Observations of the Large Magellanic Cloud with Fermi

Published Online January 7, 2010 Science DOI: 10.1126/science.1182787

REPORTS

Gamma-Ray Emission from the Shell of Supernova Remnant W44 Revealed by the Fermi LAT

□ Probe CR models

- Sources (including DM), interactions, propagation, diffusion
- □ Probe CR targets (ISM, ISRF)
 - Propagation and diffusion
 - Strong connection with diffuse gamma-ray radiation
- □ Probe possible nearby sources
 - limited electron lifetime within Galaxy
- □ Answers to long-standing questions and vast literature

THE ASTROPHYSICAL JOURNAL, 162:L181-L186, December 1970 © 1970. The University of Chicago. All rights reserved. Printed in U.S.A.

PULSARS AND VERY HIGH-ENERGY COSMIC-RAY ELECTRONS

C. S. Shen*

Department of Physics, Purdue University, Lafayette, Indiana 47907 Received 1970 June 8; revised 1970 September 19

Ś

Measurement of the Cosmic Ray $e^+ + e^-$ Spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope

NASA's Fermi Explores High-energy Space Invaders

Since its launch last June, NASA's Fermi Gamma-ray Space Telescope has discovered a new class of pulsars, probed gamma-ray bursts and watched flaring jets in galaxies billions of light-years away. Today at the American Physical Society meeting in Denver, Colo., Fermi scientists revealed new details about high-energy particles implicated in a nearby cosmic mystery.

Physics: Cosmic light matter probes heavy dark matter

May 4, 2009

New results from the Fermi Gamma-Ray Space Telescope, the most precise to date in the energy range 20 GeV to 1 TeV, should help resolve whether cosmic rays composed of the lightest charged particles, i.e., electrons and positrons, come from dark matter or some other astrophysical source.

[Viewpoint on Phys. Rev. Lett. 102, 181101 (2009)]

High-energy Electrons Could Come from Pulsars—or Dark Matter

by Michael Wall Something in our galactic neighborhood seems to be producing large numbers of high-energy electrons, according

An artist's conception of the Fermi Gamma-ray Space Telescope. (Image: NASA.)

CERN COURIER

Jun 8, 2009

Fermi measures the spectrum of cosmic-ray electrons and positrons

The Fermi Gamma-Ray Telescope can find out about more than gamma rays. It has now provided the most accurate measurement of the spectrum of cosmic-ray electrons and positrons. These

results are consistent with a single power-law, but visually they suggest an excess emission from about 100 GeV to 1 TeV. The additional source of electrons and positrons could come from nearby pulsars or dark-matter annihilation.

Lights Out for Dark Matter Claim?

+ Enlarge Image

By Adrian Cho *Science*NOW Daily News 2 May 2009

Last November, data from a balloon-borne particle detector circling the South Pole revealed a dramatic excess of high-energy particles from space--a possible sign of dark matter, the mysterious substance whose gravity seems to hold our galaxy together. But satellite data reported today stick a pin in that

- □ Highest statistics
 - >> balloons (short exposure)
 - > spectrometers (smaller acceptance)
 - Forces careful study of systematic effects
- □ High quality data between old data and HESS
 - Disprove ATIC claim of strong spectral feature
 - Confirm harder spectrum
- □ Unable to separate e- from e+ (no magnet on-board)
 - On-going effort to use earth magnetic field to do this
- Potentials for
 - Anisotropies (see Mazziotta's talk)
 - Energy extentions
 - Low energy: orbit-dependent, see later in this talk
 - High energy (> 1TeV): require specific new CAL recon

How the LAT detects electrons

Trigger and downlink Incoming Electron Very versatile and configurable **Triggering on ~ all particles that** ACD identifies cross the LAT charged Including electrons (8M/yr) particles On board filtering to fit bandwidth **Remove many charged** _ particles Main track - Keeps all events with more than pointing to the 20 GeV in the CAL (HE) hit ACD tile - Prescaled (1:250) sample of unfiltered triggers (LE) **Electron identification** The challenge is identifying the good Same tracking electrons among the proton and energy background reconstruction Rejection power of $10^3 - 10^4$ _ algorithms used required for γ -rays - Can not separate electrons from positrons • • • • • • $- \rightarrow$ Dedicated high energy electron event selection

□ Very accurate Monte Carlo

- >45k active volumes
- Geant4 optimized physics
- □ Simulation is key for
 - Reconstruction tuning
 - Event selection and performance
 - Estimate residual contamination

□ Full subsystems reconstruction

- ACD PH analysis
- TKR powerful tracking
- CAL 3D shower profile recon, handles cracks and saturation

Energy resolution validations with BT electrons

Sermi

Gamma-ray Space Telescope

G

CR Backgrounds in DM Searches – Stockholm 25-27 Jan. 2010

- Event selection tuned on simulation and validated with real data
 - 100s variables describing key event topology in each subsystems
 - Prefilters +
 - Classification Trees (CT) optimizing electron efficiency and hadron rejection
- Peak geometry factor 2.8 m²sr at 50 GeV, rejection power up to 1:10⁴ at 1 TeV
- □ Systematic uncertainties kept below 20%
 - Data-MC disagreement and event selection effect on acceptance <20%</p>
 - Proton spectrum <20%</p>

– Energy calibration uncertain (+5%,-10%)→ rigid shift of the spectrum

- > ACD: large energy deposit per tile
- TKR: small number of extra clusters around main track, large number of clusters away from the track
- > CAL: large shower size, low probability of good energy reconstruction

- > ACD: few hits in conjunction with track
- TKR: single clean track, extra clusters around main track clusters (preshower)
- CAL: clean EM shower not fully contained in CAL

Electrons

Hadrons

more simple type events

Examples of less obvious events well tagged

Shower size at different selection steps

Gamma-ray Space Telescope

Shower size data-MC comparison vs energy

Samma-ray

Good agreement over whole spectrum

Energy dependent selection on combined electron probability from CAL and TKR probabilities

 $P^{e}_{comb} = sqrt(p^{e}_{tkr} \times p^{e}_{cal})$

Energy resolution checks – High X0 events

□ Critical for high energies

- Shower leakage from CAL
- Select subsample of events with long path-length (HI-X0)

- X0>13

- 12 in CAL + minimum track length in TKR + events contained in a single CAL module
- ↑ Energy resolution X ~ 2 4
 - Down to 5% at 1 TeV (68% containment half-width)
- Instrument acceptance to ~ 5% of standard and limited to a specific portion of instrument phase space
 - Much higher systematics

Comparison of standard and High-X0 spectra

Consistent within their own systematics

Space Telescope

already demonstrated by simulation of LAT response to spectral features with artificially worsened resolution

→ the LAT energy resolution is adequate to detect prominent spectral features

→ the Fermi spectrum is NOT dependent on the energy resolution of the bulk of the events

Extension to low energy measurements

 \sim 7 GeV is the natural lower limit

Gamma-ray Space Telescope

Extension to low energy measurements

- Determine geomagnetic cutoff energy as a function of geomagnetic orbital coordinates
 - Higher McIlwainL, lower cutoff energy
- Measure spectrum for primary component above cutoff
- Recombine spectra into global spectrum

Extension to low energy measurements

Gamma-ray Space Telescope

LE selection variables validation

Combined Analysis

Provides extension to lower energies

Provides consistency check with HE analysis up to ~100 GeV

- Fermi CRE measurement extended down to 7 GeV and to 1 year statistics
- Event selection checks with long path-length requests indicate no dependence of the measured spectrum on energy resolution
- Spectrum adds valuable information below 10 GeV where strong constraints to propagation models can be imposed
- □ Several possible interpretations possible
 - see many talks in this meeting
- **Given Service** Further work
 - extend energy above 1 TeV to find TeV spectral cut-off
 - Reduce systematics to constrain different components in the overall spectrum
 - Search for anisotropies (see Mazziotta's talk)

BACKUP

Systematic uncertainties

Absence of high energy features

Sensitivity to spectral features demonstrated

Spectrum with best possible energy resolution compatible with main spectrum

Event rate before background subtraction does not show any feature

LAT Electron performance

□ Performance is a trade-off among:

- electron-acceptance hadron contamination systematics
- □ Geometry factor

Gamma-ray Space Telescope

- $\sim 3 \text{ m}^2 \text{sr}$ (50 GeV) to $\sim 1 \text{ m}^2 \text{sr}$ (1 TeV)
- > 10x wrt previous experiments
- **\Box** Rejection power: ~ 1:10³ (20 GeV) to ~ 1:10⁴ (1 TeV)
- Maximum residual contamination ~ 20% (1 TeV)
- □ Maximum systematic uncertainty ~ 20% (1 TeV)

Some possible interpretations

□ Several papers already published to explain electron spectrum

Together with other observations (positron fraction, diffuse γ-ray)
 Pulsars
 Dark Matter

Space Telescope

Strumia et al. 2009

Source stocasticity

•	"Measurement of the Cosmic Ray e⁺+e⁻ Spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope" (05/2009)	~190
	 Cited across a broad range - cosmic-ray, astronomy, particle physics (D0, BABAR) 	
•	"Fermi/Large Area Telescope Bright Gamma-Ray Source List" (07/2009)	~85
•	"Fermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C" (03/2009)	~74
•	"Bright Active Galactic Nuclei Source List from the First Three Months of the Fermi Large Area Telescope All-Sky Survey" (07/2009)	~62
•	"The Fermi Gamma-Ray Space Telescope Discovers the Pulsar in the Young Galactic Supernova Remnant CTA 1" (11/2008)	~41

Overview of the Large Area Telescope

ACCURATE ACC

LAT:

- modular 4x4 array
- 3ton 650watts

Anti-Coincidence (ACD):

- Segmented (89 tiles + 8 ribbons)
- Self-veto @ high energy limited
- 0.9997 detection efficiency

Tracker/Converter (TKR):

- Si-strip detectors
- ~80 m² of silicon (total)
- W conversion foils
- 1.5 X0 on-axis
- 18XY planes
- ∽10⁶ digital elx chans
- Highly granular
- High precision tracking
- Average plane PHA

Calorimeter (CAL):

- 1536 CsI(TI) crystals
- 8.6 X0 on-axis
- large elx dynamic range (2MeV-60GeV per xtal)
- Hodoscopic (8x12)
- Shower profile recon
- leakage correction
- EM vs HAD separation