


Intro – impact of the Fermi observatory 

Detection of CRE with the Fermi LAT 

CRE spectrum update 

1 year Fermi gamma-ray skymap 



  Satellite gamma-ray telescope 
–  Large Area Telescope (LAT) 

•  20 MeV –  > 300 GeV 
–  Gamma Burst Monitor (GBM) 

•  8 KeV – 40 MeV  
  Key features 

–  Huge field of view (full sky every 
3 hours for 30 mins) 

–  Huge energy range 
  Milestones 

–  11 jun  2008: launch 
–  04 aug 2008: science ops start 
–  13 aug 2009: data go public 
–  22 dec 2009: 90B triggers 
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  In addition to the search for new pulsars, 762 known pulsars 
with ephemerides were searched for pulsations in nine months 
of data 
–  46 pulsars were detected: 16 blind search PSRs, 8 radio-

loud MSPs, 22 radio-loud normal PSRs. 

INFN – CSNII 4 Abdo et al, arXiv:0910.1608 



INFN – CSNII 5 

Fermi pulsars 
are in the top 10 
results of 2009 
according to 
Science 

http://www.sciencemag.org/cgi/
content/full/326/5960/1589 

see J. Bregeon’s talk 
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Number 9 of Slate Magazine's 
top twelve stories oct. 29       



More than 1000 sources in year one catalog 
•  About 250 sources show evidence of variability 
•  Half the sources are associated positionally, mostly blazars and PSRs 
•  Other classes of sources exist in small numbers (XRB, PWN, SNR, 

starbursts, globular clusters, radio galaxies, narrow-line Seyferts) 
•  Uncertainties due to the diffuse model, particularly in the Galactic ridge  

http://fermi.gsfc.nasa.gov/ssc/data/access/lat/1yr_catalog/ 
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•  Galactic gamma rays trace cosmic-ray proton interactions 
(cosmic-ray acceleration sites & propagation) 

•  Observations of nearby galaxies provide an outside view 
•  Primary targets: galactic plane, starburst galaxies, LMC, SNR 
•  Direct CR observations	




see A. Strong talk 



Fermi LAT (>200 MeV) Fermi LAT (>200 MeV) 

6o x 6o region of the sky 6o x 6o region of the sky 



Accepted by A&A 





  Probe CR models  
–  Sources (including DM), interactions, propagation, diffusion 

  Probe CR targets (ISM, ISRF) 
–  Propagation and diffusion 
–  Strong connection with diffuse gamma-ray radiation 

  Probe possible nearby sources 
–  limited electron lifetime within Galaxy 

  Answers to long-standing questions and vast literature 
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A. A. Abdo et al. Fermi LAT Collaboration 
Phys. Rev. Lett. 102, 181101 (2009) – Published May 04, 2009 

(arXiv: 0905.0025) 



NASA’s Fermi Explores High-energy Space Invaders 



  Highest statistics 
–  >> balloons (short exposure) 
–  > spectrometers (smaller acceptance) 
–  Forces careful study of systematic effects 

  High quality data between old data and HESS  
–  Disprove ATIC claim of strong spectral feature 
–  Confirm harder spectrum 

  Unable to separate e- from e+ (no magnet on-board) 
–  On-going effort to use earth magnetic field to do this 

  Potentials for 
–  Anisotropies (see Mazziotta’s talk) 
–  Energy extentions 

•  Low energy: orbit-dependent, see later in this talk 
•  High energy (> 1TeV): require specific new CAL recon  
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Trigger and downlink 
Very versatile and configurable  

–  Triggering on ~ all particles that 
cross the LAT 

•  Including electrons (8M/yr) 
On board filtering to fit bandwidth 

–  Remove many charged 
particles 

–  Keeps all events with more than 
20 GeV in the CAL (HE) 

–  Prescaled (1:250) sample of 
unfiltered triggers (LE) 

Electron identification 
The challenge is identifying the good 

electrons among the proton 
background 

–  Rejection power of 103 – 104 
required 

–  Can not separate electrons 
from positrons 

–   Dedicated high energy 
electron event selection 

ACD identifies 
charged 
particles 

Incoming Electron 

Main track 
pointing to the 
hit ACD tile 

Same tracking 
and energy 
reconstruction 
algorithms used 
for γ-rays 



  Very accurate Monte Carlo 
–  >45k active volumes 
–  Geant4 optimized physics 

  Simulation is key for 
–  Reconstruction tuning 
–  Event selection and 

performance 
–  Estimate residual 

contamination 

  Full subsystems reconstruction 
–  ACD - PH analysis 
–  TKR - powerful tracking 
–  CAL - 3D shower profile recon, handles cracks and 

saturation 
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  Event selection tuned on simulation and validated with real 
data 

–  100s variables describing key event topology in each 
subsystems 

–  Prefilters + 

–  Classification Trees (CT) optimizing electron efficiency 
and hadron rejection 

  Peak geometry factor 2.8 m2sr at 50 GeV, rejection power up 
to 1:104 at 1 TeV 

  Systematic uncertainties kept below 20% 

–  Data-MC disagreement and event selection effect on 
acceptance <20% 

–  Proton spectrum <20% 

–  Energy calibration uncertain (+5%,-10%) rigid shift of the 
spectrum  



  ACD: large energy deposit per tile 
  TKR: small number of extra clusters around main track, large number of 

clusters away from the track 
  CAL: large shower size, low probability of good energy reconstruction 



  ACD: few hits in conjunction with track 
  TKR: single clean track, extra clusters around main track clusters 

(preshower) 
  CAL: clean EM shower not fully contained in CAL 



more simple type events 

Examples of less obvious events well tagged 
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  CAL variables cuts only 

–  High electron efficiency 

–  Large hadron 
contamination 
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  All cuts 

–  acceptable hadron 
contamination 

preliminary 
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Good agreement over whole spectrum 



CT electron probability
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Energy dependent selection on combined electron 
probability from CAL and TKR probabilities 

Pe
comb = sqrt(pe

tkr x pe
cal) 
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Good agreement over whole spectrum no CT cut 
need at low energies 



  Critical for high energies 
–  Shower leakage from CAL 

  Select subsample of events 
with long path-length (HI-X0) 
–  X0>13  

–  12 in CAL + minimum 
track length in TKR + 
events contained in a 
single CAL module 

 Energy resolution X ~ 2 – 4 
–  Down to 5% at 1 TeV (68% 

containment half-width) 
 Instrument acceptance to ~ 

5% of standard and limited to 
a specific portion of 
instrument phase space 
–  Much higher systematics 

15.9 X0 avg 
1TeV shower peaks 

at 10.9X0 



  Consistent within their own 
systematics 

  the LAT energy resolution is adequate to 
detect prominent spectral features 

  the Fermi spectrum is NOT dependent on the 
energy resolution of the bulk of the events 

  already demonstrated by 
simulation of LAT response to 
spectral features with 
artificially worsened resolution 
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~ 7 GeV is the natural lower limit 



  Determine geomagnetic 
cutoff energy as a 
function of geomagnetic 
orbital coordinates 

–  Higher McIlwainL, 
lower cutoff energy 

  Measure spectrum for 
primary component 
above cutoff 

  Recombine spectra into 
global spectrum 
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Provides extension to lower energies 
Provides consistency check with HE analysis up to ~100 GeV 
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  Fermi CRE measurement extended down to 7 GeV and to 1 
year statistics 

  Event selection checks with long path-length requests indicate 
no dependence of the measured spectrum on energy 
resolution 

  Spectrum adds valuable information below 10 GeV where 
strong constraints to propagation models can be imposed 

  Several possible interpretations possible 
–  see many talks in this meeting 

  Further work  
–  extend energy above 1 TeV to find TeV spectral cut-off  
–  Reduce systematics to constrain different components in 

the overall spectrum 
–  Search for anisotropies (see Mazziotta’s talk) 
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BACKUP 
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  Sensitivity to spectral features 
demonstrated 

  Spectrum with best possible energy 
resolution compatible with main 
spectrum 

  Event rate before background 
subtraction does not show any 
feature 
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  Performance is a trade-off among: 
–  electron-acceptance – hadron contamination - systematics 

  Geometry factor 
–  ~ 3 m2sr (50 GeV) to ~ 1 m2sr (1 TeV) 
–  > 10x wrt previous experiments 

  Rejection power: ~ 1:103   (20 GeV) to ~ 1:104 (1 TeV) 
  Maximum residual contamination ~ 20% (1 TeV) 
  Maximum systematic uncertainty ~ 20% (1 TeV) 



  Several papers already published to explain electron spectrum 
–  Together with other observations (positron fraction, diffuse γ-ray) 

Source stocasticity 

Grasso et al. 2009 

Dark Matter  

Strumia et al. 2009 

Pulsars 

Grasso et al. 2009 

Secondary CR acc. 

Blasi 2009 



•  “Measurement of the Cosmic Ray e++e- Spectrum from 
20 GeV to 1 TeV with the Fermi Large Area 
Telescope” (05/2009) 
–  Cited across a broad range - cosmic-ray, 

astronomy, particle physics (D0, BABAR) 
•  “Fermi/Large Area Telescope Bright Gamma-Ray 

Source List” (07/2009) 
•  “Fermi Observations of High-Energy Gamma-Ray 

Emission from GRB 080916C” (03/2009) 
•  “Bright Active Galactic Nuclei Source List from the 

First Three Months of the Fermi Large Area Telescope 
All-Sky Survey” (07/2009) 

•  “The Fermi Gamma-Ray Space Telescope Discovers 
the Pulsar in the Young Galactic Supernova Remnant 
CTA 1” (11/2008) 

~190 

~85 

~74 

~62 

~41 



Tracker/Converter (TKR): 
•  Si-strip detectors 
•  ~80 m2 of silicon (total) 
•  W conversion foils 
•  1.5 X0 on-axis 
•  18XY planes   
•  ~106 digital elx chans 
•  Highly granular  
•  High precision tracking 
•  Average plane PHA 

Calorimeter (CAL): 
•  1536 CsI(Tl) crystals 
•  8.6 X0 on-axis 
•  large elx dynamic range 
(2MeV-60GeV per xtal) 
•  Hodoscopic (8x12) 
•  Shower profile recon 
•  leakage correction 
•  EM vs HAD separation 

Anti-Coincidence (ACD): 
•  Segmented (89 tiles + 8 ribbons) 
•  Self-veto @ high energy limited 
•  0.9997 detection efficiency  

LAT: 
•  modular - 4x4 array  
•   3ton – 650watts 

γ	
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