The simplest and yet the most unorthodox explanation for the PAMELA anomaly -Galactic Arm SNRs

Tsvi Piran, Nir J. SHaviv (Hebrew U) Ehud Nakar (Tel Aviv U) Astro-ph/09020376 Phys. Rev. Lett. 2009

The PAMELA's anomaly:

Tuesday, January 26, 2010

A new source of positrions (and electrons) that becomes dominant at ~10 GeV

• The standard solutions require Dark Mater - NEW PHYSICS

Pulsars - NEW ASTROPHYSICS

Is there a simpler solution?

(e.g. review by Strong, Moskalenko & Ptuskin)

(e.g. review by Strong, Moskalenko & Ptuskin)

• Largely uniform (cylindrical symmetric) CR source distribution in the disk.

(e.g. review by Strong, Moskalenko & Ptuskin)

• Largely uniform (cylindrical symmetric) CR source distribution in the disk.

• Isotropic, regidity dependent, diffusion $D \propto E^{\delta}$

(e.g. review by Strong, Moskalenko & Ptuskin)

• Largely uniform (cylindrical symmetric) CR source distribution in the disk.

• Isotropic, regidity dependent, diffusion $D \propto E^{\delta}$

(e.g. review by Strong, Moskalenko & Ptuskin)

• Largely uniform (cylindrical symmetric) CR source distribution in the disk.

- Isotropic, regidity dependent, diffusion $D \propto E^{\delta}$
- CR diffuse in a halo with a scale height $l_H \sim 4 \text{ kpc}$
- Possible additions: galactic wind

(e.g. review by Strong, Moskalenko & Ptuskin)

• Largely uniform (cylindrical symmetric) CR source distribution in the disk.

- Isotropic, regidity dependent, diffusion $D \propto E^{\delta}$
- CR diffuse in a halo with a scale height $l_H \sim 4 \text{ kpc}$
- Possible additions: galactic wind

stochastic CR reacceleration

These models fit the data well

Typical parameter values $D(E>E_0) = D_0 (E/E_0)^{\delta}$ $D_0 = 3-5 \times 10^{28} \text{ cm}^2/\text{s}$ $E_0 \sim 3 \text{ GeV}$ $\delta = 0.3-0.6$ $I_H = 2-4 \text{ kpc}$

Standard View

- Electrons and Protons are mostly accelerated by supernova/ interstellar medium (ISM) shocks.
- Pairs (and hence Positrons) are produced by CR protons interacting with the ISM (Positrons are secondaries)
- Positron/Electron ratio should decrease with energy!
- Cooling affect electrons and positrons in the same way.

Standard model predictions for electron and positron spectrum

Positrons are secondaries : $CR+ISM \rightarrow pairs$

Standard model predictions for electron and positron spectrum

But - PAMELA

10²

Tuesday, January 26, 2010

• A <u>uniform</u> CR source distribution in the gaseous disk

- A <u>uniform</u> CR source distribution in the gaseous disk
- Sources accelerate *p* and *e*⁻ to a similar power-law spectrum

- A <u>uniform</u> CR source distribution in the gaseous disk
- Sources accelerate *p* and *e*⁻ to a <u>similar</u> power-law spectrum
- •CRs diffuse isotropically with a rigidity dependent (but <u>spatially</u> <u>constant</u>) diffusion coefficient $D(E > E_0) = D_0 (E/E_0)^{\delta}$

- A <u>uniform</u> CR source distribution in the gaseous disk
- Sources accelerate *p* and *e*⁻ to a <u>similar</u> power-law spectrum •CRs diffuse isotropically with a rigidity dependent (but <u>spatially</u> <u>constant</u>) diffusion coefficient - $D(E > E_0) = D_0 (E/E_0)^{\delta}$
- CRs diffuse in a halo with <u>an energy independent scale height</u> $l_H \sim kpc$, i.e. all CRs can escape once they reach a height l_H above the disk.
- Positrons are produced <u>only as secondaries</u> by CR-ISM interaction <u>outside of the acceleration site</u>

- A <u>uniform</u> CR source distribution in the gaseous disk
- Sources accelerate *p* and *e*⁻ to a <u>similar</u> power-law spectrum •CRs diffuse isotropically with a rigidity dependent (but <u>spatially</u> <u>constant</u>) diffusion coefficient - $D(E > E_0) = D_0 (E/E_0)^{\delta}$
- CRs diffuse in a halo with <u>an energy independent scale height</u> $l_H \sim kpc$, i.e. all CRs can escape once they reach a height l_H above the disk.
- Positrons are produced <u>only as secondaries</u> by CR-ISM interaction <u>outside of the acceleration site</u>

The PAMELA anomaly

- A <u>uniform</u> CR source distribution in the gaseous disk
- Sources accelerate *p* and *e*⁻ to a <u>similar</u> power-law spectrum •CRs diffuse isotropically with a rigidity dependent (but <u>spatially</u> <u>constant</u>) diffusion coefficient - $D(E > E_0) = D_0 (E/E_0)^{\delta}$
- CRs diffuse in a halo with <u>an energy independent scale height</u> $l_H \sim kpc$, i.e. all CRs can escape once they reach a height l_H above the disk.
- Positrons are produced <u>only as secondaries</u> by CR-ISM interaction <u>outside of the acceleration site</u>

The PAMELA anomaly

At least one of the model assumptions is wrong

- A <u>uniform</u> CR source distribution in the gaseous disk
- Sources accelerate *p* and *e*⁻ to a <u>Similar</u> power-law spectrum •CRs diffuse isotropically with a rigidity dependent (but <u>spatially</u> <u>constant</u>) diffusion coefficient - $D(E > E_0) = D_0 (E/E_0)^{\delta}$
- CRs diffuse in a halo with <u>an energy independent scale height</u> $l_H \sim kpc$, i.e. all CRs can escape once they reach a height l_H above the disk.

Positrons are produced <u>only as secondaries</u> by CR-ISM interaction outside of the acceleration site

The most popular solution (measured by # of papers) A new, yet unaccounted for, primary source of pairs

Dark Mater - NEW PHYSICS

- A <u>uniform</u> CR source distribution in the gaseous disk
- Sources accelerate p and e to a <u>Similar</u> power-law spectrum
- •CRs diffuse isotropically with a rigidity dependent (but <u>spatially</u> <u>constant</u>) diffusion coefficient $D(E > E_0) = D_0 (E/E_0)^{\delta}$
- CRs diffuse in a halo with <u>an energy independent scale height</u> $l_H \sim kpc$, i.e. all CRs can escape once they reach a height l_H above the disk.

 Positrons are produced <u>only as secondaries</u> by CR-ISM interaction <u>outside of the acceleration site</u>

There are no observations that directly rule out this assumption (Delahaye et al 09, Katz et al. 09).

<u>The PAMELA anomaly can be explained in many ways by violating</u> <u>one or more of these assumptions.</u>

- A <u>uniform</u> CR source distribution in the gaseous disk
- Sources accelerate *p* and *e*⁻ to a <u>Similar</u> power-law spectrum
- •CRs diffuse isotropically with a rigidity dependent (but <u>spatially</u> <u>constant</u>) diffusion coefficient $D(E > E_0) = D_0 (E/E_0)^{\delta}$
- CRs diffuse in a halo with <u>an energy independent scale height</u> $l_H \sim kpc$, i.e. all CRs can escape once they reach a height l_H above the disk.
- Positrons are produced <u>only as secondaries</u> by CR-ISM interaction

Production of secondaries within the acceleration site (Blasi 09; Blasi & Serpico 09)

- <u>A uniform</u> CR source distribution in the gaseous disk
- Sources accelerate *p* and *e*⁻ to a Similar power-law spectrum

•CRs diffuse isotropically with a rigidity dependent, <u>spatially constant</u>, diffusion coefficient - $D(E>E_0) = D_0 (E/E_0)^{\delta}$

- CRs diffuse in a halo with <u>an energy independent scale height</u> $l_H \sim kpc$, i.e. all CRs can escape once they reach a height l_H above the disk.
- Positrons are produced <u>only as secondaries</u> by CR-ISM interaction <u>outside of the acceleration site</u>

Nested sources ' (Cowsik & Burch 09)

• A <u>uniform</u> CR source distribution in the gaseous disk

• Sources accelerate *p* and *e*⁻ to a <u>Similar</u> power-law spectrum

•CRs diffuse isotropically with a rigidity dependent (but <u>spatially</u> <u>constant</u>) diffusion coefficient - $D(E > E_0) = D_0 (E/E_0)^{\delta}$

• CRs diffuse in a halo with <u>an energy independent scale height</u> $l_H \sim kpc$, i.e. all CRs can escape once they reach a height l_H above the disk.

• Positrons are produced <u>only as secondaries</u> by CR-ISM interaction <u>outside of the acceleration site</u>

Inhomogebeity in the SNR distribution (Shaviv, Nakar & Piran 09)

SNR are the canonical sources of CRs

Mechanism exists (1st order diffusive / shock acceleration)
Ginzburg & Syrovatskii (1963) -Energy requirements agree with CR density/lifetime (assuming ~

3% - I0% efficiency)

 Observations of Synchrotron from SNe reveals efficient electron acceleration

SNR are the canonical sources of CRs

- Mechanism exists (1st order diffusive / shock acceleration)
- Ginzburg & Syrovatskii (1963) -Energy requirements agree with CR density/lifetime (assuming ~ 3% - 10% efficiency)

 Observations of Synchrotron from SNe reveals efficient electron acceleration

Most SNe occur in the spiral arms

- In the Milky Way: Almost all SNe are non-Type la, and occur where almost all star formation takes place: In the Spiral Arms
- Meteorites: Show that density changes by a factor of > 2.5
- Deconvolved Synchrotron: Shows arm to interarm ratio of ~ 3

What are Spiral Arms?

Why Primarily Spiral Arms?

The nearest spiral arms are Sagittarius-Carina and Perseus at a distance of ~1-2 kpc:

Consider a <u>localized Source</u> of CR electrons at a distance d

 Above some energy, the electrons don't have enough time to reach us before cooling.

t_{cool}(E,d)=t_{diffuse}(E,d)

 $d \approx I \ kpc \ for \ E \approx 20 \ GEV$

This means that...

- Above E_b ~ 20 GeV, the electrons will start cooling and disappear.
- Positrons however, form continuously along the way from proton-ISM interactions.
- Therefore the positron/electron ratio will increase

• Primary electron cool and disappear before reaching earth

Primary electron cool and disappear before reaching earth
Secondary electron/positron form nearer and can reach earth before cooling

Technical Complications

CRs escape from the galaxy at a vertical hight of ~lkpc

$$\Phi_{e^-}(x) \propto \frac{\exp\left[-2\sqrt{\tau_x/\tau_c + \tau_x/\tau_e}\right]}{D\sqrt{1 + \tau_e/\tau_c}}$$

 And the production of positrion/ electrons by protons

$$\Phi_{e^+}(x) \propto \frac{\tau_c}{D} \left(\exp\left[-\sqrt{\frac{2\tau_x}{\tau_e}} \right] - \frac{1}{\sqrt{1 + \tau_e/\tau_c}} \exp\left[-\sqrt{\frac{2\tau_x}{\tau_c}} + \frac{2\tau_x}{\tau_e} \right] \right).$$

Eqs. 3 and 4 show that for a source at a distance d from Earth, a turnover in ϕ^+/ϕ^- is observed at E_b which satisfies $\tau_c(E_b) \approx \min\{\tau_x(E_b), (\tau_e(E_b)\tau_x(E_b))^{1/2}\}. \phi^+/\phi^$ for $E < E_b$ decreases, while it increases for $E > E_b$. At the same time the typical age of CR protons with energy E_b is $a \sim \max\{\tau_e, (\tau_e \tau_d)^{1/2}\}$. Therefore a natural prediction of the model is $a(E_b) \gtrsim \tau_c(E_b)$ and a comparison of the two observables can be used as a consistency test for the model. Moreover, over a wide range of the parameter space for which $d \gtrsim l_H$, the model predicts $a(E_b) \approx \tau_c(E_b)$ regardless of the value of the diffusion coefficient D.

A simplied Model

d=1 kpc δ=1/3

Tuesday, January 26, 2010

Short scale inhomogeneities

In the near vicinity (<0.5 kpc, <0.5 Myr) the discrete nature of the sources must be taken into account

			Single SNR observed e- sp	ectrum		
Nearby SNRs			$1 - t = 2.5 \ 10^4 yr$		· · · · · ·	
SNR	R(kpc)	T(yr)	$\int_{-1000}^{1000} = 2 - t = 5 \ 10^4 \text{yr}$	1		
Cygnus Loop	0.44	$2.0 imes10^4$	$\int_{0}^{0} \frac{100}{100} = 5 + 4 + 10^{5} \text{yr}$	2		
Vela	0.30	$1.1 imes 10^4$	E	3		\setminus
Monogem	0.30	$8.6 imes10^4$		4		
Loop1	0.17	$2.0 imes10^5$		5)	
Geminga	0.4	$3.4 imes10^5$		/		
Yoshida et al. 03						
			0.1 1 10 Atoyan et al .95	100 E (GeV)	1000	10⁴
Didn't reach us yet			reached us	Alre: dowi	ady coo n	led

Wiggles in the Fermi Data

Dark matter

Pros:

• Can explain the data

Cons:

Require a revolution in physics while it is based on weak supporting evidence
non-standard model (many degrees of freedom)

Predictions:

Rising positron fraction above 100
 GeV

Pulsars:

Pros:

• A known site where relativistic pairs are produced

Cons:

• Unknown fraction of energy and spectrum of the pairs escaping to the ISM

Predictions:

• Rising positron fraction above 100 GeV

Galactic Arm SNRs:

Pros:

- No new source or physics is required
- If Core collapse SNe are major CR source then the effect must be there at some level
- Predict CR age (10 GeV) \approx cooling time (10 GeV)

Cons:

- Affect the whole set of CR observations and therefore must be confronted with all available data
- The effect is not dominant for all the parameter space allowed by the observations.

Predictions:

• A flattening and then a falling positron fraction above a few hundred GeV

Conclusions

- The observed rising e⁺/e⁻ ratio requires revisions in one or more of the standard model for CR positron
- There are well known astrophysical effects that can potentially produce the observations.

The Galactic Arms SNR model:

- A *realistic* distribution of SNRs must be included in the models, even if this is not the main source of rising e⁺/e⁻ ratio
- This model is the only one (so far) that explains PAMELA+Fermi+H.E.S.S. and predicts a flat and later decrease in e⁺/ (e⁺+e⁻) ratio above a few hundred GeV.

The End?