MEAN-FIELD DYNAMO THEORY

K.-H. Rädler Astrophysical Institute Potsdam

OUTLINE

- INTRODUCTION
 Electrodynamics of conducting moving matter and the kinematic dynamo problem
- MEAN-FIELD ELECTRODYNAMICS
- MEAN-FIELD MAGNETOFLUIDDYNAMICS
- MEAN-FIELD ASPECTS OF THE KARLSRUHE DYNAMO

ELECTRODYNAMICS OF CONDUCTING MOVING MATTER

Basic equations

(Pre-)Maxwell equations

Faraday's law Ampere's law ...

$$\nabla \times E = -\partial_t B$$
, $\nabla \times H = J$, $\nabla \cdot B = 0$

Constitutive equations

$$B = \mu H$$
, $J = \sigma(E + U \times B + E^{(\text{ext})})$

Electromagnetic potentials

$$\nabla \times \boldsymbol{E} = -\partial_t \boldsymbol{B}$$
, $\nabla \cdot \boldsymbol{B} = 0$

equivalent to

$$B = \nabla \times A$$
, $E = -\partial_t A + \nabla \phi$.

 $oldsymbol{A}$ and ϕ not uniquely defined.

 $m{B}$ and $m{E}$ invariant under $m{A} o m{A} + m{
abla} \chi$ and $\phi o \phi - \chi$ with arbitrary χ

Coulomb gauge
$$\nabla \cdot A = 0$$

Lorentz convention $\nabla \cdot A + \partial_t \phi = 0$

Biot-Savart's law

$$\nabla \times \boldsymbol{E} = -\partial_t \boldsymbol{B}, \quad \nabla \cdot \boldsymbol{B} = 0$$

equivalent to

$$B = \nabla \times A$$
, $E = -\partial_t A + \nabla \phi$

$$\nabla \times B = \mu J$$

$$\Rightarrow \nabla^2 A = -\mu J$$

Assume proper behavior of J at infinity

$$\Rightarrow A(x,t) = \frac{\mu}{4\pi} \int_{\infty} \frac{J(x',t)}{|x-x'|} d^3x'$$

$$\Rightarrow B(x,t) = -\frac{\mu}{4\pi} \int_{\infty} \frac{(x-x') \times J(x',t)}{|x-x'|^3} d^3x'$$

Biot-Savart's law

$$\nabla \times B = \mu J$$

$$\Rightarrow \nabla^2 A = -\mu J$$

$$\Rightarrow A(x,t) = \frac{\mu}{t}$$

$$\Rightarrow A(x,t) = \frac{\mu}{4\pi} \int_{\infty} \frac{J(x',t)}{|x-x'|} d^3x'$$
$$= \frac{\mu}{4\pi} \int_{\infty} \frac{J(x-x',t)}{|x'|} d^3x'$$

$$\Rightarrow B(x,t) = -\frac{\mu}{4\pi} \int_{\infty} \frac{(x - x') \times J(x',t)}{|x - x'|^3} d^3x'$$
$$= \frac{\mu}{4\pi} \int_{\infty} \frac{\nabla \times J(x - x',t)}{|x'|} d^3x'$$

Integral does not change if J o J +
abla arphi !

Induction equation

$$\nabla \times E = -\partial_t B$$
, $\nabla \times B = \mu J$, $\nabla \cdot B = 0$, $E = \frac{J}{\sigma} - U \times B - E^{(\text{ext})}$

$$\Rightarrow
abla \Big(\eta
abla imes B - U imes B \Big) + \partial_t B =
abla imes E^{(\text{ext})} \,, \quad
abla \cdot B = 0$$
 $\eta = 1/\mu \sigma$ magnetic diffusivity

Magnetic Reynolds number
$$Rm = \frac{U_{\rm c}L_{\rm c}}{\eta}$$

$$|\mathbf{\nabla} \times (U \times B)|/|\mathbf{\nabla} \times (\eta \mathbf{\nabla} \times B)| \approx Rm$$

Magnetic energy

$$abla imes E = -\partial_t B$$
, $abla imes B = \mu J$, $abla imes B = 0$, $abla imes E = rac{J}{\sigma} - U imes B - E^{(\text{ext})}$

Magnetic energy density $B^2/2\mu$

$$\partial_t (B^2/2\mu) = -J \cdot E - \nabla \cdot S$$
, $S = E \times H$

S Pointing vector

Total magnetic energy $\int_{\infty} (B^2/2\mu) \, \mathrm{d}v$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\infty} \frac{B^2}{2\mu} \mathrm{d}v = -\int_{\mathcal{V}} \frac{J^2}{\sigma} \mathrm{d}v - \int_{\mathcal{V}} \boldsymbol{U} \cdot (\boldsymbol{J} \times \boldsymbol{B}) \, \mathrm{d}v - \int_{\mathcal{V}} \boldsymbol{J} \cdot \boldsymbol{E}^{(\mathrm{ext})} \mathrm{d}v$$

 \mathcal{V} finite fluid body, J=0 outside,

S vanishes at infinity stronger than $O(r^{-2})$

- Induction equation [2]
- \circ Conductor at rest (Rm = 0), η constant

$$\begin{split} \eta \nabla^2 B - \partial_t B &= -\nabla \times E^{(\text{ext})} \,, \quad \nabla \cdot B = 0 \\ \Rightarrow B(x,t) &= \int_{\infty} G^{(\eta)}(x-x',t-t_0) \, B(x',t_0) \, \mathrm{d}^3 x' \\ &+ \int_{t_0}^t \int_{\infty} G^{(\eta)}(x-x',t-t') \, \nabla' \times E^{(\text{ext})}(x',t') \, \mathrm{d}^3 x' \, \mathrm{d}t' \\ &\qquad \qquad (t>t_0) \end{split}$$
 with Green's function $G^{(\eta)}(x,t) = (4\pi\eta t)^{-3/2} \exp(-x^2/4\eta t)$ $G^{(\eta)}(x,t)$ satisfies
$$\eta \Delta G^{(\eta)} - \partial_t G^{(\eta)} = 0 \ \text{for} \ t>0 \\ G^{(\eta)} \to \delta^3(x) \ \text{as} \ t \to +0 \end{split}$$

Heat conduction equation

$$\eta \Delta T - \partial_t T = -q$$

$$\Rightarrow T(x,t) = \int_{\infty} G^{(\eta)}(x - x', t - t_0) T(x', t_0) d^3 x'$$

$$+ \int_{t_0}^t \int_{\infty} G^{(\eta)}(x - x', t - t') q(x', t') d^3 x' dt'$$

$$\eta \Delta G^{(\eta)} - \partial_t G^{(\eta)} = 0 \text{ for } t > 0$$

 $G^{(\eta)} \to \delta^3(x) \text{ as } t \to +0$

Magnetic flux

$$\Phi_{\mathsf{m}} = \int_{\mathcal{S}} \boldsymbol{B} \cdot \mathrm{d} \boldsymbol{s}$$

Assume that surface S moves with the fluid.

Then

$$\frac{\mathrm{d}\Phi_{\mathrm{m}}}{\mathrm{d}t} = \int_{\mathcal{S}} \left(\partial_t B - \nabla \times (U \times B) \right) \cdot \mathrm{d}s$$

$$= -\int_{\mathcal{S}} \nabla \times (E + U \times B) \cdot \mathrm{d}s = -\int_{\partial \mathcal{S}} (E + U \times B) \cdot \mathrm{d}l$$
Assume $J = \sigma(E + U \times B)$, i.e. $E^{(\mathrm{ext})} = 0$

$$\Rightarrow \frac{\mathrm{d}\Phi_{\mathrm{m}}}{\mathrm{d}t} = -\int_{\partial \mathcal{S}} \frac{J}{\sigma} \cdot \mathrm{d}l$$

Flux of vector field $oldsymbol{F}$ through a surface ${\mathcal S}$ moving with the velocity ${oldsymbol{v}}$

$$\Phi_F = \int_{\mathcal{S}} \boldsymbol{F} \cdot \mathrm{d}\boldsymbol{s}$$

$$\frac{d\Phi_F}{dt} = \int_{\mathcal{S}} \left(\partial_t \boldsymbol{F} - \boldsymbol{\nabla} \times (\boldsymbol{v} \times \boldsymbol{F}) + \boldsymbol{v} \left(\boldsymbol{\nabla} \cdot \boldsymbol{F} \right) \right) \cdot ds$$

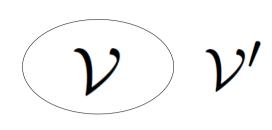
- Induction equation [3]
- \circ High-conductivity limit $(Rm o \infty)$, $m{E}^{(ext{ext})} = m{0}$

$$\partial_t B - \nabla \times (U \times B) = 0$$

equivalent to

$$\frac{\mathrm{d}\Phi_{\mathrm{m}}}{\mathrm{d}t}=$$
 0 for any material surface \mathcal{S}

⇒ Concept of frozen-in magnetic flux or frozen-in magnetic field lines \bullet Bondi and Gold theorem Consider finite fluid body surrounded by free space $\mathcal{V}\,,\,\,\mathcal{V}'$ simply connected



In
$$\mathcal{V}$$
: $B = \nabla \Phi$, $\Delta \Phi = 0$
$$\Delta \Phi = 0 \Rightarrow \Phi = -\sum_{n \ge 1, |m| \le n} \frac{c_n^m}{r^{n+1}} Y_n^m(\vartheta, \varphi)$$

$$\sum_{|m| \le 1} \frac{c_1^m}{r^2} Y_1^m(\vartheta, \varphi) = \frac{\mu}{4\pi} \frac{m \cdot r}{r^3}$$

$$m=rac{1}{2}\int_{\mathcal{V}} m{r} imes m{J} \, \mathrm{d}v$$
 magnetic dipole moment

In the case of an ideally conducting fluid all c_n^m bounded.

Bondi and Gold 1950, Rädler 1982

Representation of a magnetic field by poloidal and toroidal parts

Spherical coordinate system (r, ϑ, φ)

 \circ Axisymmetric vector field $m{F}$

$$m{F} = (F_r, F_{\vartheta}, F_{\varphi})\,, \ \partial F_r/\partial \varphi = \partial F_{\vartheta}/\partial \varphi = \partial F_{\varphi}/\partial \varphi = 0$$

Split $m{F}$ according to $m{F} = m{F}^{\mathsf{P}} + m{F}^{\mathsf{T}}$
with $m{F}^{\mathsf{P}} = (F_r, F_{\vartheta}, 0)\,, \ m{F}^{\mathsf{T}} = (0, 0, F_{\varphi})$
 $m{\nabla} \times m{F}^{\mathsf{P}}$ toroidal, $m{\nabla} \times m{F}^{\mathsf{T}}$ poloidal

Representation of a magnetic field by poloidal and toroidal parts [2]

\circ Arbitrary vector field $m{F}$

$$F = r \times \nabla U + r V + \nabla W$$

Put again
$$F = F^{\mathsf{P}} + F^{\mathsf{T}}$$
,

now with $\mathbf{F}^{\mathsf{P}} = \mathbf{r} \, V + \nabla W$, $\mathbf{F}^{\mathsf{T}} = \mathbf{r} \times \nabla U$, \Leftarrow unique definition!

i.e.
$$\mathbf{F}^{\mathsf{P}} = \left(rV + \frac{\partial W}{\partial r}, \frac{1}{r} \frac{\partial W}{\partial \vartheta}, \frac{1}{r \sin \vartheta} \frac{\partial W}{\partial \varphi}\right),$$

$$\mathbf{F}^{\mathsf{T}} = \left(0, -\frac{1}{\sin \vartheta} \frac{\partial U}{\partial \varphi}, \frac{\partial U}{\partial \vartheta}\right).$$

Again $oldsymbol{
abla} imes oldsymbol{F}^{ extsf{P}}$ toroidal, $oldsymbol{
abla} imes oldsymbol{F}^{ extsf{T}}$ poloidal.

- Representation of a magnetic field by poloidal and toroidal parts [3]
- Magnetic field B (satisfying $\nabla \cdot B = 0$) $B = B^{\mathsf{P}} + B^{\mathsf{T}}$ $B^{\mathsf{P}} = -\nabla \times (r \times \nabla S) = \nabla \times (\nabla \times (rS))$ $B^{\mathsf{T}} = -r \times \nabla T = \nabla \times (rT))$ $B^{\mathsf{P}} = \left(-\frac{1}{r}\Omega S, -\frac{1}{r}\frac{\partial}{\partial r}(r\frac{\partial S}{\partial \vartheta}), \frac{1}{r\sin\vartheta}\frac{\partial}{\partial r}(r\frac{\partial S}{\partial \varphi})\right)$ $B^{\mathsf{T}} = \left(0, \frac{1}{\sin\vartheta}\frac{\partial T}{\partial \varphi}, -\frac{\partial T}{\partial \vartheta}\right)$ $\Omega S = \frac{1}{\sin\vartheta}\frac{\partial}{\partial \vartheta}(\sin\vartheta\frac{\partial S}{\partial \vartheta}) + \frac{1}{\sin^2\vartheta}\frac{\partial^2 S}{\partial \varphi^2}$

$$abla imes B = 0$$
 outside a conducting sphere \Rightarrow $B^{ extsf{P}} =
abla \Phi$ but $B^{ extsf{T}} = 0$

Symmetry properties of the basic equations

$$egin{aligned}
abla imes E &= -\partial_t B \,, &
abla imes H &= J \,, &
abla \cdot B &= 0 \ B &= \mu H \,, & J &= \sigma (E + U imes B) & \mu \,, \, \sigma \text{ constants} \end{aligned}$$
 Define translation $F^{(\text{tr})}(x,t) = F(x + \Delta x,t)$ time shift $F^{(\text{ts})}(x,t) = F(x,t+\Delta t)$ rotation $F^{(\text{rot})}(x,t) = D^{-1}F(Dx,t) \,, \, \det(D) = 1$

reflexion $F^{(\text{refl})}(x,t) = D^{-1}F(Dx,t)$, $\det(D) = -1$, e.g. $D_{ij} = -\delta_{ij}$

```
If above equations satisfied with (E,B,H,J,U) then also with (E^{(\mathrm{tr})},B^{(\mathrm{tr})},H^{(\mathrm{tr})},J^{(\mathrm{tr})},U^{(\mathrm{tr})}) (E^{(\mathrm{ts})},B^{(\mathrm{ts})},H^{(\mathrm{ts})},J^{(\mathrm{ts})},U^{(\mathrm{ts})}) (E^{(\mathrm{rot})},B^{(\mathrm{rot})},H^{(\mathrm{rot})},J^{(\mathrm{rot})},U^{(\mathrm{rot})}) (E^{(\mathrm{refl})},-B^{(\mathrm{refl})},-H^{(\mathrm{refl})},J^{(\mathrm{refl})},U^{(\mathrm{refl})}).
```

THE KINEMATIC DYNAMO PROBLEM

Basic equations

Consider (simply connected) conducting body surrounded by free space

$$abla imes E = -\partial_t B\,, \;
abla imes B = \mu J\,, \;
abla \cdot B = 0 \quad \text{everywhere}$$
 $J = \sigma(E + U imes B) \; \text{in} \; \mathcal{V}\,, \quad J = 0 \; \text{in} \; \mathcal{V}'$ $B = O(a^{-3}) \; \text{as} \; a o \infty \quad a \; \text{distance from conducting body}$ or (equivalent) . . .

Basic equations

. . .

$$\nabla \times (\eta \nabla \times B - U \times B) + \partial_t B = 0$$
, $\nabla \cdot B = 0$ in \mathcal{V}

$$oldsymbol{
abla} imes B = 0 \; , \; \; oldsymbol{
abla} \cdot B = 0 \; \; (\ \Rightarrow \; B = oldsymbol{
abla} \Phi \, , \; \; \Delta \Phi = 0 \;) \; {
m in} \; \mathcal{V}'$$

$$[B]=0$$
 across $\partial \mathcal{V}$

$$B = O(a^{-3})$$
 as $a \to \infty$

DYNAMO: $B \longrightarrow 0$ as $t \to \infty$

Anti-dynamo theorems

No dynamo

- with a magnetic field which is symmetric about any axis Cowling 1934, Braginsky 1964, ...
- with a magnetic field which depends on two cartesian coordinates only
 in a fluid of infinite extend in the direction of the third cooordinate

No dynamo

- due to a non-radial flow in a spherical fluid body with steady spherically symmetric distribution of the magnetic diffusivity Elsasser 1946, Bullard and Gellman 1954, Ivers and James 1988, ...
- due to a planar flow in an infinitely extended fluid volume in which the magnetic diffusivity varies at most in the direction perpendicular to the flow planes

No spherical dynamos with purely poloidal or purely toroidal magnetic fields
Kaiser 1994, 1995