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ELECTRODYNAMICS OF CONDUCTING MOVING MAT TER

e Basic equations

(Pre-)Maxwell equations

Faraday’'s law Ampere’s law

VxE=-0B, VxH=J, V.-B=0

Constitutive equations

Ohm’s law

B=uH, J=0(E+UxB+ E®&)
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e Electromagnetic potentials
VXE:—atB, V- B=0

equivalent to

B=VxA, E=-8A+Vé.

A and cb not uniquely defined.
B and E invariant under A — A 4+ Vx and ¢ — ¢ — x with arbitrary Y

Coulomb gauge V- A =0
Lorentz convention V - A 4+ 9¢+¢ = 0
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e Biot—Savart's law
V X B = -8B, V- B=20

equivalent to

B=VxA, E=_-0,A+Vo

V x B=uJ

= VZ2A = —puJ
Assume proper behavior of J at infinity

J(mfﬁt)dSQ:f
|z — x|

— A(x,t) :%/
7w Joo

— J(=', &
8 B =t [ ) R )
47 Joo . — /|3
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e Biot—Savart's law

V x B=puJ
= V2A = —uJ

dlx' .t
Ml == [ K0 g
4 Joo | — X! |
:i/ J('T_mf’t)d?)x!
4Tr.cx:;- |:13"|
—i JEn"
= B(o,) =L [ 2 2) XDy,
47 . OO |£C — az:"|3
H VXJ(SB—$;5t)d3 /
—_— T
47 Joo |33"|

Integral does not change if J — J 4+ Vi !
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e Induction equation

VxE=-0iB, VxB=uJ, V.B=0, FE= E—EIKB—E(EKH

a

=V(n£VxB-UxB)+8B=VxE®) V.B=0

n = 1/po magnetic diffusivity

Maagnetic Reynolds number Rm = %

IV x (U x B)|/|V x (nV x B)| ~ Rm
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e NMagnetic energy

‘V:{E:—StB, VxB =_u_J? v.B=D? E=£—U><B—EEEXU

o

Magnetic energy density B?/2u
o(B2/2u)=—-J-E—-V.-S8, S=ExH

S Pointing vector
Total magnetic energy [_(B*/2u)dv

2 2
a7 B = J—du—fU-(JxB}dv—fJ-E(ext)dv
dt Joo 2u V o V Vv
V finite fluid body, J = 0 outside,

S vanishes at infinity stronger than O(r—2)
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e Induction equation [2]
o Conductor at rest (Rm = 0), 1 constant

nV2B -9,B=-VxE®&Y Vv.B=0
— B(a, t)—/ G (@ — &'t — to) B(x', 1) d3«'
+/ / Gz — 2’ t— YV x E®V (2 ¢)d3 dt

(t > to)
with Green's function G (x,t) = (4mnt)=3/2 exp(—2z2/4nt)
G (x,t) satisfies

nAGM — 8,6 =0 for t >0
G 5 53(x) as t — +0
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Heat conduction equation

nAT — T = —q

i T(m:t)z/ G (x — o't — to) (o', to) d32

of OO0

t
-|—/ / (e — ' t—t) gz, t)d3 dt’
tg Joo

nAGT — 9,6 =0 for t> 0

am §3(x) as t — +0
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e Magnetic flux

qu:/qB-ds

Assume that surface & moves with the fluid.
Then
ddm [ /.
T_]S(dtB—Vx (U x B)) - ds
=—/5V><(E—|—U><B)-ds=—[ﬂ(E—l—UxB)-dl
o CFC
Assume J = o(E + U x B), ie. E(&Y) =9

dd ¥
:>—m:—/ — - dl
dt oS o
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Flux of vector field F

through a surface & moving with the velocity v

b :/F.d
2 S S

d:;F:[S(atFV><(U><F)—|—v(V~F))-ds
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e Induction equation [3]
o High-conductivity limit (Rm — ~o), E(&Y =0

OB -V x(UxB)=0

equivalent to

ddm
— O for any material surface &
dt
— Concept of frozen—in magnetic flux

or frozen—in magnetic field lines
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e Bondi and Gold theorem
Consider finite fluid body V/
surrounded by free space
V. V' simply connected

In V: B:VCD, AD =0

m

AP=0= d=- Y ,ELW‘(@:@)
n>1,/m|<n "
it L m-r
> YN0, 0) = 3
ml<1 r 47 r

m = % /V'r' x J dv magnetic dipole moment

In the case of an ideally conducting fluid all ¢]* bounded.
Bondi and Gold 1950, Radler 1982
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e Representation of a magnetic field by poloidal and toroidal parts

Spherical coordinate system (r, 4, ¢)

o Axisymmetric vector field F

Split F' according to F = FP + FT
with F¥ = (F,, Fy,0), F' = (0,0, F,)
V x FP toroidal, V x FT poloidal
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® Representation of a magnetic field by poloidal and toroidal parts [2]

o Arbitrary vector field F
F=rxVU+rV+VW

Put again F' = FF + FT,

now with FP =V + VW, FT =prx VU, <= unique definition!
oW lc‘?ﬂf 1 8%’)

or 'r 09 rsing Op/’

ie. FP = (-?"V +

1 oU oU
FT =(0,— —).
sind 0y OY
Again V x FP toroidal, V X FT poloidal.
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e Representation of a magnetic field by poloidal and toroidal parts [3]

o Magnetic field B (satisfying V- B =0 )
B=B"+B'

B = Vx(rxVS) =V x(V x(rS))

B' = »x VT =V x (7))

BP:(_EQS_ECJ oS, 1 0 dS))

) @T?db;dﬂ rsindor - dy
BT = (o )

Sm JOp OV .
1 dS 1 048
QS = ———(sin 99— .
sin 190‘19( dz)) * sin2 9 g2

V x B = 0 outside a conducting sphere = BP =Vo but BT =0
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e Symmetry properties of the basic equations

VxFE=-0B., VxH=J, V-B=0
B=uH, J=o0cF+UxDB) [, o constants

Define translation F™(z,t) = F(x 4+ Az, t)
time shift F®)(z.t) = F(a.,t + At)
rotation FUY(z,t) = D 'F(Dz,t). det(D) = 1
reflexion F*"(z,t) = D7'F(Dx,t), det(D) = —1,e.9. D;; = —6;;

If above equations satisfied with (E, B, H,J,U)
then also with (E® B g g gy
(E(ts)? B(ts}._ H(ts)! J(ts).‘ U(ts))
(E(rot)’ B(rot)’H(rot)! J{rot)’ U{rot})
(E(refl)’ _JB(reﬂ)1 _H(refl)’ J[refl)! U(reﬂ)).
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THE KINEMATIC DYNAMO PROBLEM
e Basic equations

Consider (simply connected) conducting body

surrounded by free space

VxE=-0B,VxB=uJ, V-B=0 -everywhere
J=0c(E+UxB) inV, J=0in)

B=0(a"3)asa— oo a distance from conducting body

or (equivalent) ...
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e Basic equations

VgV xB-UxB)+8B=0, V-B=0inV
Y B=U, V.B=0 = B=N%, Ad=—0)nl"
[B] = 0 across 0V

B=0(a"3)asa— oo

DYNAMO: B—#—-0 as t— o
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e Anti—dynamo theorems

MNo dynamo
< with a magnetic field which is symmetric about any axis
Cowling 1934, Braginsky 1964, ...
< with a magnetic field which depends on two cartesian coordinates only
in a fluid of infinite extend in the direction of the third cooordinate
No dynamo

< due to a non—radial flow in a spherical fluid body
with steady spherically symmetric distribution of the maagnetic diffusivity
Elsasser 1946, Bullard and Gellman 1954, Ivers and James 1983, ...
< due to a planar flow in an infinitely extended fluid volume
in which the magnetic diffusivity varies at most in the direction
perpendicular to the flow planes

Mo spherical dynamos with purely poloidal or purely torocidal magnetic fields
Kaiser 1994, 1905
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