MEAN-FIELD DYNAMO THEORY

K.-H. Rädler Astrophysical Institute Potsdam

OUTLINE

- INTRODUCTION
 Electrodynamics of conducting moving matter and the kinematic dynamo problem
- MEAN-FIELD ELECTRODYNAMICS
- MEAN-FIELD MAGNETOFLUIDDYNAMICS
- MEAN-FIELD ASPECTS OF THE KARLSRUHE DYNAMO

MEAN-FIELD ELECTRODYNAMICS

Basic equations

Faraday's law Ampere's law ...

$$\nabla \times E = -\partial_t B$$
, $\nabla \times B = \mu J$, $\nabla \cdot B = 0$

Ohm's law

$$J = \sigma(E + U \times B)$$

⇒ Induction equation

$$\nabla (\eta \nabla \times \boldsymbol{B} - \boldsymbol{U} \times \boldsymbol{B}) + \partial_t \boldsymbol{B} = 0, \quad \nabla \cdot \boldsymbol{B} = 0$$
 $\eta = 1/\mu \sigma$

Mean fields

$$F = \overline{F} + F'$$

Mean scalar field \overline{F} defined by any averaging procedure which(exactly or approximately) satisfies Reynolds' averaging rules,

$$(R1) \qquad \overline{F+G} = \overline{F} + \overline{G}$$

$$(R2) \qquad \overline{\overline{F}} = \overline{F} \quad \rightleftharpoons \quad \overline{F'} = 0$$

(R3)
$$\overline{F} \overline{G} = \overline{F} \overline{G} \implies \overline{F} \overline{G} = \overline{F} \overline{G}, \quad \overline{F} \overline{G'} = 0$$

(R4)
$$\overline{\partial F/\partial x} = \partial \overline{F}/\partial x$$
, $\overline{\partial F/\partial t} = \partial \overline{F}/\partial t$
 $\Rightarrow \overline{F} \overline{G} = \overline{F} \overline{G} + \overline{F'} \overline{G'}$

Mean vector field \overline{F} defined by averaging its components with respect to the coordinate system chosen,

$$F = e_i F_i, \quad F = \overline{F} + F', \quad \overline{F} = e_i \overline{F}_i,$$

mean tensor fields analogously.

Notations \overline{F} and $\langle F \rangle$ equivalent

Examples of averages

Statistical or ensemble averages

$$\overline{F}(x,t) = \int F(x,t;q)g(q)dq, \quad \int g(q)dq = 1$$

R1, R2, R3, R4 satisfied

Relation of averages to observable quantities???

Space averages

$$\overline{F}(x,t) = \int F(x-\xi,t)g(\xi)d^3\xi, \quad \int g(\xi)d^3\xi = 1$$

R1, R4 satisfied,

R2, R3 in general not,

can be justified as approximation if (length) scale separation

Special cases

$$\overline{F}(x,t) = \frac{1}{2L} \int_{-L}^{L} F(x - \xi'', t) d\xi_3 \quad \xi'' = (0, 0, \xi_3)$$

$$\overline{F}(x,t) = \frac{1}{(2L)^2} \int_{-L}^{L} \int_{-L}^{L} F(x-\xi',t) \, d\xi_2 \, d\xi_3 \qquad \xi' = (0,\xi_2,\xi_3)$$

In the limit $L \to \infty$ R1, R2, R3, R4 satisfied

- Examples of averages [2]
- Statistical or ensemble averages ...
- o Space averages ...
 - ⋄ Special cases ...
 - Azimuthal average (Braginsky's average)

$$\overline{F}(r,\vartheta,t) = \frac{1}{2\pi} \int_0^{2\pi} F(r,\vartheta,\varphi,t) d\varphi$$

R1, R2, R3, R4 satisfied Average axisymmetric!!

Time averages

$$\overline{F}(x,t) = \int F(x,t-\tau)g(\tau)d\tau, \quad \int g(\tau)d\tau = 1$$

R1, R4 satisfied,

R2, R3 in general not,

can be justified as approximation if (time) scale separation

- Examples of averages [3]
- Statistical or ensemble averages ...
- Space averages ...
 - Special cases ...
 - Azimuthal average (Braginsky's average) ...
- Time averages ...
- Average defined by filtering of a spectrum

$$F(x,t) = \int_{\infty} \hat{F}(k,t) \exp(\mathrm{i}k \cdot x) \mathrm{d}^3k$$

$$\overline{F}(x,t) = \int_{|k| < K} \hat{F}(k,t) \exp(\mathrm{i}k \cdot x) \mathrm{d}^3k$$

R1, R2, R4 satisfied, R3 in general not, can be justified as approximation if length scale (i.e., wave number) separation Basic mean-field equations

$$B = \overline{B} + b$$
, \cdots $U = \overline{U} + u$

Maxwell equations and Ohm's law for mean fields

$$abla imes \overline{E} = -\partial_t \overline{B}, \quad \nabla imes \overline{B} = \mu \overline{J}, \quad \nabla \cdot \overline{B} = 0$$

$$\overline{J} = \sigma(\overline{E} + \overline{U} imes \overline{B} + \mathcal{E})$$

Mean-field induction equation

$$\nabla \times \left(\eta \nabla \times \overline{B} - \overline{U} \times \overline{B} - \mathcal{E} \right) + \partial_t \overline{B} = 0, \quad \nabla \cdot \overline{B} = 0$$

E mean electromotive force due to fluctuations

$$\mathcal{E} = \langle u \times b \rangle$$

ullet The mean electromotive force $oldsymbol{\mathcal{E}} = \langle oldsymbol{u} imes oldsymbol{b}
angle$

$$\partial_t b - \nabla \times (\overline{U} \times b + (u \times b)') - \eta \nabla^2 b = \nabla \times (u \times \overline{B}), \quad \nabla \cdot b = 0$$

$$(u \times b)' = u \times b - \overline{u \times b}$$

- \Rightarrow $b=b^{(0)}+b^{(\overline{B})}$, where $b^{(0)}$ is a functional of u and \overline{U} and $b^{(\overline{B})}$ a functional of u, \overline{U} and \overline{B} , which is linear in \overline{B}
- \Rightarrow $\mathcal{E}=\mathcal{E}^{(0)}+\mathcal{E}^{(\overline{B})},$ with $\mathcal{E}^{(0)}$ independent of \overline{B} and $\mathcal{E}^{(\overline{B})}$ linear and homogeneous in \overline{B}

$$\mathcal{E}_i^{(\overline{B})}(x,t) = \int_0^\infty \int_\infty K_{ij}(x,t;\boldsymbol{\xi},\tau) \overline{B}_j(x-\boldsymbol{\xi},t-\tau) \mathrm{d}^3\boldsymbol{\xi} \, \mathrm{d}\tau$$

 K_{ij} depends on $m{u}$ and $m{\overline{U}}$ only, vanishes for large $|\pmb{\xi}|$ and au. $m{\mathcal{E}}^{(\overline{B})}$ at (\pmb{x},t) depends on the behavior of $m{\overline{B}}$ in some surroundings of (\pmb{x},t) only.

• The mean electromotive force [2]

. . .

$$\Rightarrow$$
 $\mathcal{E}=\mathcal{E}^{(0)}+\mathcal{E}^{(\overline{B})}$, with $\mathcal{E}^{(0)}$ independent of \overline{B} and $\mathcal{E}^{(\overline{B})}$ linear and homogeneous in \overline{B}

$$\mathcal{E}_{i}^{(\overline{B})}(x,t) = \int_{0}^{\infty} \int_{\infty} K_{ij}(x,t;\boldsymbol{\xi},\tau) \overline{B}_{j}(x-\boldsymbol{\xi},t-\tau) \mathrm{d}^{3}\boldsymbol{\xi} \, \mathrm{d}\tau$$

On this level the mean—field induction equation is a linear inhomogeneous integro—differential equation,

$$oldsymbol{
abla} \left(\eta oldsymbol{
abla} imes \overline{B} - \overline{U} imes \overline{B} - \iint K(x,t;oldsymbol{\xi}, au) \circ \overline{B}(x-oldsymbol{\xi},t- au) \, \mathrm{d}^3 oldsymbol{\xi} \, \mathrm{d} au
ight)
onumber \ + \partial_t \overline{B} = oldsymbol{
abla} imes oldsymbol{\mathcal{E}}^{(0)}$$

• The mean electromotive force [3]

Assume until further notice that b decays to zero if $\overline{B}=0$ (purely hydrodynamic "background turbulence",

$$\Rightarrow \mathcal{E}^{(0)}$$
 decays to zero no small-scale dynamo) $\mathcal{E}_i(x,t) = \int_0^\infty \int_\infty K_{ij}(x,t;\boldsymbol{\xi}, au) \overline{B}_j(x-\boldsymbol{\xi},t- au) \mathrm{d}^3 \boldsymbol{\xi} \, \mathrm{d} au$

Assume weak variation of \overline{B} in space and time,

$$\overline{B}_{j}(x - \xi, t - \tau) = \overline{B}_{j}(x, t) - \frac{\partial B_{j}(x, t)}{\partial x_{k}} \xi_{k} - \frac{\partial B_{j}(x, t)}{\partial t} \tau - \cdots$$

$$\Rightarrow \mathcal{E}_{i} = a_{ij}\overline{B}_{j} + b_{ijk}\frac{\partial \overline{B}_{j}}{\partial x_{k}} + c_{ij}\frac{\partial \overline{B}_{j}}{\partial t} + \cdots$$

$$a_{ij} = \int_{0}^{\infty} \int_{\infty} K_{ij}(x, t; \xi, \tau) d^{3}\xi d\tau$$

$$b_{ijk} = -\int_{0}^{\infty} \int_{\infty} K_{ij}(x, t; \xi, \tau) \xi_{k} d^{3}\xi d\tau$$

$$c_{ij} = -\int_{0}^{\infty} \int_{\infty} K_{ij}(x, t; \xi, \tau) \tau d^{3}\xi d\tau$$

• The mean electromotive force [4]

. . .

$$\mathcal{E}_{i} = a_{ij}\overline{B}_{j} + b_{ijk}\frac{\partial\overline{B}_{j}}{\partial x_{k}} + c_{ij}\frac{\partial\overline{B}_{j}}{\partial t} + \cdots$$

$$\text{very often simply} \quad \mathcal{E}_{i} = a_{ij}\overline{B}_{j} + b_{ijk}\frac{\partial\overline{B}_{j}}{\partial x_{k}} \qquad (*)$$

Relation (*) is an approximation, which needs to be checked in any application !!!

It requires (length) scale separation !!!

It reduces the mean—field induction equation to a second—order parabolic differential equation,

$$\nabla (\eta \nabla \times \overline{B} - \overline{U} \times \overline{B} - a \circ \overline{B} - b \circ (\nabla \overline{B})) + \partial_t \overline{B} = 0$$

Definitions concerning turbulence

When speaking of "turbulence" we think until further notice simply of irregular motions and dot not refer to specific properties of, e.g., "developed turbulence".

Turbulence is called

```
⋄ homogeneous
```

```
if all quantities depending on u are invariant under translation of u (u(x,t) \longrightarrow u(x+\Delta x,t))
```

- ⋄ (statistically) steady
 - ... under time shift in u $(u(x,t) \longrightarrow u(x,t+\Delta t))$
- ⋄ axisymmetric w.r.t. a given axis
 - \dots under rotation of u about this axis
- ⋄ isotropic
 - \dots under any rotation of u about any axis
- ⋄ mirror—symmetric w.r.t. a given plane or a given point
 - \dots under reflexion of u about this plane or this point

- A simple (academic) example:
- u homogeneous isotropic turbulence, $\overline{U}=0$

Assume
$$\mathcal{E}_i = a_{ij}\overline{B}_j + b_{ijk}\partial\overline{B}_j/\partial x_k$$

Homogeneity $\longrightarrow a_{ij}$, b_{ijk} independent of position

Isotropy
$$\longrightarrow a_{ij} = \alpha \, \delta_{ij}, \ b_{ijk} = \beta \, \epsilon_{ijk}$$

$$\Rightarrow \quad \mathcal{E} = \alpha \, \overline{B} - \beta \, \nabla \times \overline{B}$$

mean-field version of Ohm's law

$$\overline{J} = \sigma_{\rm m}(\overline{E} + \alpha \overline{B})$$
 $\sigma_{\rm m} = \sigma/(1 + \mu \sigma \beta) = \sigma/(1 + \beta/\eta)$ mean-field conductivity

mean-field induction equation

$$\eta_{\mathsf{I}} \nabla^2 \overline{B} + \alpha \nabla \times \overline{B} = \partial_t \overline{B}$$

$$\eta_{\rm m} = \eta + \beta$$

mean-field diffusivity

 α changes sign but β remains unchanged under reflexion of u $\Rightarrow \alpha = 0$ for mirror-symmetric turbulence

• A simple example [2]

Concerning the behavior of lpha and eta under reflexion of $oldsymbol{u}$

Relation
$$\mathcal{E} = \alpha \overline{B} - \beta \nabla \times \overline{B}$$
 (1) is a consequence of $\partial_t b - \nabla \times (u \times \overline{B} + (u \times b)') - \eta \nabla^2 b = 0$, $\nabla \cdot b = 0$. (2)

Consider (1) at x = 0 and write

$$\langle u(x,t) \times b(x,t) \rangle (0,t) = \alpha[u] \overline{B}(0,t) - \beta[u] (\nabla \times \overline{B})(0,t).$$
 (3)

If (2) is satisfied with a set (u,b,\overline{B}) , it is, too, with $(u^{\text{refl}},b^{\text{refl}},\overline{B}^{\text{refl}})$, where $u^{\text{refl}}(x,t)=-u(-x,t)$ etc.

Therefore, in addition to (3), we have

$$\langle u(-x,t) \times b(-x,t) \rangle(0,t) = -\alpha [u^{\mathsf{refl}}] \overline{B}(0,t) - \beta [u^{\mathsf{refl}}] (\nabla \times \overline{B})(0,t)$$
. (4)

Considering that $\langle u(-x,t) \times b(-x,t) \rangle(0,t) = \langle u(x,t) \times b(x,t) \rangle(0,t)$ the comparison of (3) and (4) delivers us

$$\alpha[u^{\text{refl}}] = -\alpha[u], \quad \beta[u^{\text{refl}}] = \beta[u].$$

- A simple example [3]
- \circ Approximations for the coefficients α and β

Second-order correlation approximation (SOCA)

= First-order smoothing approximation (FOSA)

$$\partial_t b - \eta \nabla^2 b = \nabla \times (u \times \overline{B}), \quad \nabla \cdot b = 0 \quad \leftarrow \quad (u \times b)' \text{ canceled } !$$

sufficient condition: $|b|/|\overline{B}|\ll 1$

no growing solutions if $\overline{B}=0$

Assume infinitely extended homogeneous fluid

$$b(x,t) = \int_{\infty} G^{(\eta)}(x - x', t - t_0)b(x, t_0)d^3x'$$

$$+ \int_{t_0}^t \int_{\infty} G^{(\eta)}(x - x', t - t')\nabla' \times (u(x', t') \times \overline{B}(x', t'))d^3x'dt$$

$$\Rightarrow \mathcal{E}_i = \int_0^\infty \int_{\infty} K_{ij}(x, t; \xi, \tau)\overline{B}_j(x - \xi, t - \tau)d^3\xi d\tau$$

$$K_{ij}(x, t; \xi, \tau) = -\frac{1}{\xi} \frac{\partial G^{(\eta)}(\xi, \tau)}{\partial \xi} (\epsilon_{ijl}\xi_k + \epsilon_{jkl}\xi_i)\langle u_k(x, t) u_l(x - \xi, t - \tau)\rangle$$

(This result applies independent of homogeneity and isotropy of turbulence)

• A simple example [4] • Approximations for α and β [2]

Accept SOCA so that

$$\partial_t b - \eta \nabla^2 b = \nabla \times (u \times \overline{B}). \quad (*)$$

Let u_c , λ_c and au_c be characteristic magnitude, lengths and time scale of $m{u}$.

Define parameter $q = \lambda_c^2/\eta \tau_c$ so that $|\partial_t \mathbf{b}|/|\eta \nabla^2 \mathbf{b}| \approx q$.

Define Strouhal number $St = u_c \tau_c / \lambda_c$

and magnetic Reynolds number $Rm = u_c \lambda_c / \eta$.

If St = 1 then q = Rm.

Case $q\gg 1$, often labeled "high-conductivity limit"

$$(*) \Rightarrow \partial_t b = \nabla imes (u imes \overline{B})$$

Case $q \ll 1$, often labeled "low-conductivity limit"

$$(*) \Rightarrow \eta \nabla^2 b = -\nabla \times (u \times \overline{B})$$

• A simple example [5] \circ Approximations for α and β [3]

Case $q\gg 1$ – "high-conductivity limit"

$$\partial_t b = \nabla \times (u \times \overline{B}), \quad \nabla \cdot b = 0$$

Sufficient (not necessary) condition of validity: $St \ll 1$.

No restriction concerning Rm !!!

Ignore, for simplicity, variation of \overline{B} with t.

$$b(x,t) = b(x,t_0) + \nabla \times \left(\int_0^{t-t_0} u(x,t-\tau) \, d\tau \times \overline{B}(x) \right)$$

Assume $t-t_0$ sufficiently large so that $\langle u(x,t) \times b(x,t_0) \rangle$ vanishes, let $t \to -\infty$.

$$\Rightarrow \quad \mathcal{E}_i = a_{ij}\overline{B}_j + b_{ijk}\partial\overline{B}_j/\partial x_k \qquad \qquad \text{No other derivatives of } \overline{B}!$$

$$a_{ij} = (\epsilon_{ikl}\delta_{jm} + \epsilon_{ijk}\delta_{ml}) \int_0^\infty \langle u_k(x,t)\partial u_l(x,t-\tau)/\partial x_m\rangle \,\mathrm{d}\tau$$

$$b_{ijk} = \epsilon_{ijl} \int_0^\infty \langle u_l(x,t)u_k(x,t-\tau)\rangle \,\mathrm{d}\tau$$

(These results apply independent of homogeneity and isotropy of turbulence)

• A simple example [6] \circ Approximations for α and β [4] \diamond Case $q\gg 1$ [2]

Homogeneous isotropic turbulence: $\langle \cdots \rangle$ independent of x, $a_{ij} = \alpha \delta_{ij}$ and $b_{ijk} = \beta \epsilon_{ijk}$.

$$\Rightarrow \quad \alpha = \frac{1}{3}a_{ii}, \quad \beta = \frac{1}{6}\epsilon_{ijk}b_{ijk}$$

$$\Rightarrow \quad \alpha = -\frac{1}{3} \int_0^\infty \langle \boldsymbol{u}(\boldsymbol{x},t) \cdot (\boldsymbol{\nabla} \times \boldsymbol{u}(\boldsymbol{x},t-\tau)) \rangle \, \mathrm{d}\tau$$

$$= -\frac{1}{3} \langle \boldsymbol{u}(\boldsymbol{x},t) \cdot (\boldsymbol{\nabla} \times \boldsymbol{u}(\boldsymbol{x},t)) \rangle \, \tau_{\mathrm{C}}^{(\alpha)}$$

$$\langle \boldsymbol{u} \cdot (\boldsymbol{\nabla} \times \boldsymbol{u}) \rangle \text{ kinetic helicity}$$

$$\beta = \frac{1}{3} \int_0^\infty \langle u(x,t) \cdot u(x,t-\tau) \rangle d\tau$$
$$= \frac{1}{3} \langle u^2(x,t) \rangle \tau_{\mathsf{C}}^{(\beta)}$$

Remember: sufficient condition for applicability is $St \ll 1$!

• A simple example [7] \circ Approximations for α and β [5] \diamond Case $q\gg 1$ [3]

. . .

$$\beta = \frac{1}{3} \langle u^2 \rangle \, \tau_{\rm C}^{(\beta)}$$

Recall: mean-field conductivity $\sigma_{\rm m} = \frac{\sigma}{1 + \beta/\eta}$

Example: solar convection zone

Assume
$$\sigma = 3 \cdot 10^3 \,\text{S/m} \rightarrow \eta = 2.7 \cdot 10^2 \,\text{m}^2/\text{s}$$

$$\langle u^2 \rangle^{1/2} = u_{\text{C}} = 2 \cdot 10^2 \,\text{m/s}$$

$$\lambda_{\text{C}} = 5 \cdot 10^5 \,\text{m} \,, \ \tau_{\text{C}}^{(\beta)} = \tau_{\text{C}} = 3 \cdot 10^2 \,\text{s}$$

$$\Rightarrow q \approx 3 \cdot 10^6 \,, \ St \approx 10^{-1} \ (\rightarrow Rm = 3 \cdot 10^5)$$

$$\beta/\eta \approx 1.5 \cdot 10^4 \,, \ \sigma_{\text{m}}/\sigma \approx \eta/\beta \approx 7 \cdot 10^{-5}$$

• A simple example [8] \circ Approximations for α and β [6]

Case $q \ll 1$ – "low–conductivity limit"

$$\eta \nabla^2 b = -\nabla \times (u \times \overline{B}), \quad \nabla \cdot b = 0$$

Sufficient (not necessary) condition of validity: $Rm \ll 1$

$$\mathbf{
abla} imes \mathbf{b} = rac{1}{\eta} \mathbf{u} imes \overline{\mathbf{B}} + \mathbf{
abla} \cdots$$

Remember "Biot-Savart trick"

$$b(x,t) = \frac{1}{4\pi\eta} \int_{\infty} \boldsymbol{\xi} \times (\boldsymbol{u}(x+\boldsymbol{\xi},t) \times \overline{\boldsymbol{B}}(x+\boldsymbol{\xi},t)) \frac{\mathrm{d}^{3}\boldsymbol{\xi}}{\boldsymbol{\xi}^{3}}$$

$$\mathcal{E}_{i} = \frac{\epsilon_{ilm}\delta_{jn} + \epsilon_{ijl}\delta_{mn}}{4\pi\eta} \int_{\infty} \langle u_{l}(\boldsymbol{x},t)u_{m}(\boldsymbol{x}+\boldsymbol{\xi},t)\rangle \, \xi_{n}\overline{B}_{j}(\boldsymbol{x}+\boldsymbol{\xi},t) \frac{\mathsf{d}^{3}\xi}{\xi}$$

ullet A simple example [9] ullet Approximations for lpha and eta [7] ullet Case $q\ll 1$ [2]

$$\mathcal{E}_{i} = \frac{\epsilon_{ilm}\delta_{jn} + \epsilon_{ijl}\delta_{mn}}{4\pi\eta} \int_{\infty} \langle u_{l}(x,t)u_{m}(x+\xi,t)\rangle \, \xi_{n}\overline{B}_{j}(x+\xi,t) \frac{\mathrm{d}^{3}\xi}{\xi}$$
Expansion
$$\overline{B}_{j}(x+\xi,t) = \overline{B}_{j}(x,t) + \xi_{k}\frac{\partial \overline{B}_{j}(x,t)}{\partial x_{k}}$$

 \Rightarrow $\mathcal{E}_i = a_{ij}\overline{B}_j + b_{ijk}\partial\overline{B}_j/\partial x_k$ Higher derivatives of \overline{B} neglected!

$$a_{ij} = \frac{\epsilon_{ilm}\delta_{jn} + \epsilon_{ijl}\delta_{mn}}{4\pi\eta} \int_{\infty} \langle u_l(x,t)u_m(x+\xi,t)\rangle \, \xi_n \frac{\mathrm{d}^3\xi}{\xi^3}$$

$$b_{ijk} = \frac{\epsilon_{ilm}\delta_{jn} + \epsilon_{ijl}\delta_{mn}}{4\pi\eta} \int_{\infty} \langle u_l(\boldsymbol{x},t)u_m(\boldsymbol{x}+\boldsymbol{\xi},t)\rangle \, \xi_n \xi_k \frac{\mathrm{d}^3 \xi}{\xi^3}$$

(These results apply independent of homogeneity and isotropy of turbulence)

• A simple example [10] \circ Approximations for α and β [8] \diamond Case $q \ll 1$ [3]

Homogeneous isotropic turbulence: $\langle \cdots \rangle$ independent of x, $\alpha = \frac{1}{3}a_{ii}$ and $\beta = \frac{1}{6}\epsilon_{ijk}b_{ijk}$

$$\Rightarrow \quad \alpha = -\frac{1}{12\pi\eta} \int_{\infty} \langle u(x,t) \cdot (\nabla \times u(x+\xi,t)) \rangle \frac{\mathrm{d}^{3}\xi}{\xi}$$

$$= -\frac{1}{12\pi\eta} \int_{\infty} \langle u(x,t) \cdot (\xi \times u(x+\xi,t)) \rangle \frac{\mathrm{d}^{3}\xi}{\xi^{3}}$$

$$\beta = \frac{1}{36\pi\eta} \int_{\infty} \langle u(x,t) \cdot u(x+\xi,t) \rangle \frac{\mathrm{d}^{3}\xi}{\xi^{3}}$$

Another (equivalent) representation of α and β

$$\begin{split} u &= \nabla \times \psi + \nabla \phi \,, \quad \nabla \cdot \psi = 0 \,, \quad \langle \psi \rangle = 0 \,, \quad \langle \phi \rangle = 0 \\ \Rightarrow \alpha &= -\frac{1}{3\eta} \langle u \cdot \psi \rangle = -\frac{1}{3\eta} \langle \psi \cdot (\nabla \times \psi) \rangle \quad \leftarrow \text{independent of } \phi \\ \beta &= \frac{1}{3\eta} (\langle \psi^2 \rangle - \langle \phi^2 \rangle) \quad > 0 \text{ at least in imcompressible case} \end{split}$$

Remember: sufficient condition for applicability is $\,Rm\ll 1\,$

$$\nabla^2 \psi = -\nabla \times u$$

$$\psi(x,t) = \frac{1}{4\pi} \int_{\infty} \frac{\nabla \times u(\xi,t)}{|\xi - x|} d^3 \xi$$

$$= \frac{1}{4\pi} \int_{\infty} \nabla \times u(x + \xi,t) \frac{d^3 \xi}{\xi}$$

- A simple example [11] Approximations for α and β [9]
- \diamond Arbitrary q

$$\alpha = -\frac{1}{3} \int_0^\infty \int_\infty G(\xi, \tau) \langle u(x, t) \cdot (\nabla \times u(x + \xi, t - \tau)) \rangle d^3 \xi d\tau$$

$$= -\frac{1}{3} \int_0^\infty \int_\infty \frac{\partial G(\xi, \tau)}{\partial \xi} \langle u(x, t) \times u(x + \xi, t - \tau) \rangle \cdot \frac{\xi}{\xi} d^3 \xi d\tau$$

$$\beta = -\frac{1}{9} \int_0^\infty \int_\infty \frac{\partial G(\xi, \tau)}{\partial \xi} \langle \boldsymbol{u}(\boldsymbol{x}, t) \cdot \boldsymbol{u}(\boldsymbol{x} + \boldsymbol{\xi}, t - \tau) \rangle \, \xi \, \mathrm{d}^3 \xi \, \mathrm{d}\tau$$

Statements like " α is the kinetic helicity" are very questionable!

- A simple example [12] Approximations for α and β [10]
- Derivations in Fourier space

$$F(x,t) = \iint \widehat{F}(k,\omega) \exp(\mathrm{i}(k \cdot x - \omega t)) \,\mathrm{d}^3 k \,\mathrm{d}\omega$$

Consider homogeneous statistically steady turbulence,

$$Q_{ij}(\boldsymbol{\xi},\tau) = \langle u_i(\boldsymbol{x},t) \, u_j(\boldsymbol{x}+\boldsymbol{\xi},t+\tau) \rangle \, .$$

Fourier transform $\widehat{Q}_{ij}(m{k},\omega)$ has to satisfy Bochner's theorem,

$$\widehat{Q}_{ij}(\boldsymbol{k},\omega)X_iX_j^*\geq 0$$
 for any (complex) $\boldsymbol{X}(\boldsymbol{k},\omega)$.

- A simple example [13]
- Dynamo action of homogeneous isotropic turbulence

Recall
$$\eta_{\rm m} \nabla^2 \overline{B} + \alpha \nabla \times \overline{B} - \partial_t \overline{B} = 0$$
, $\nabla \cdot \overline{B} = 0$ (*)

Look for solutions of the form $\overline{B} = \Re \left(\hat{B} \exp(\mathrm{i} (k \cdot x + pt)) \right)$ (**)

 $\Rightarrow \qquad (\eta_{\rm m} k^2 + p) \hat{B} - \mathrm{i} \alpha k \times \hat{B} = 0$, $k \cdot \hat{B} = 0$

Chose, in a given Cartesian coordinate system, $k = (0,0,k)$, $k > 0$
 $\Rightarrow \qquad (\eta_{\rm m} k^2 + p) \hat{B}_x + \mathrm{i} \alpha k \hat{B}_y = 0$, $\mathrm{i} \alpha k \hat{B}_x - (\eta_{\rm m} k^2 + p) \hat{B}_y = 0$, $\hat{B}_z = 0$

Non-trivial solutions (**) of (*) possible if $(\eta_{\rm m} k^2 + p)^2 - (\alpha k)^2 = 0$, i.e. $p = -\eta_{\rm m} k^2 \pm |\alpha| k$

Non-decaying solutions of (*) possible if $|\alpha| \geq \eta_{\rm m} k$

- A simple example [14] Dynamo action [1]
- Fluid sphere with homogeneous isotropic turbulence surrounded by free space

$$\eta_{\mathsf{m}} \nabla^2 \overline{B} + \alpha \nabla \times \overline{B} - \partial_t \overline{B} = 0$$
, $\nabla \cdot \overline{B} = 0$ in \mathcal{V} $\nabla \times \overline{B} = 0$, $\nabla \cdot \overline{B} = 0$ ($\rightarrow \overline{B} = \nabla \Phi$, $\Delta \Phi = 0$) in \mathcal{V}' $[\overline{B}] = 0$ across $\partial \mathcal{V}$ $\overline{B} = \mathrm{O}(r^{-3})$ as $r \to \infty$ Dimensionless parameter $R_{\alpha} = |\alpha| R/\eta_{\mathsf{m}}$ Ansatz $\overline{B} = \hat{B}(x) \exp(pt) \Rightarrow \text{ eigenvalue problem for } p = p(R_{\alpha})$ Non-decaying solutions $(p \ge 0)$ for $R_{\alpha} \ge 4.49$ Most easily excitable mode of dipole type

Voigtmann 1968

Conflict with Bondi-Gold theorem!

- Other simple examples:
- u axisymmetric turbulence, $\overline{U}=0$
- E.g., inhomogeneous turbulence showing intensity gradient $(\nabla \langle u^2 \rangle \neq 0)$ homogeneous turbulence subject to Coriolis force (angular velocity Ω) homogeneous turbulence influenced by a mean magnetic field (\overline{B})

Assume again
$$\mathcal{E}_i = a_{ij}\overline{B}_j + b_{ijk}\partial\overline{B}_j/\partial x_k$$

Axis of symmetry defined by unit vector $oldsymbol{e}$

$$a_{ij} = a_1 \, \delta_{ij} + a_2 \, \epsilon_{ijl} \, e_l + a_3 \, e_i \, e_j$$

$$b_{ijk} = b_1 \, \epsilon_{ijk} + b_2 \, \delta_{ij} \, e_k + b_3 \, \delta_{ik} \, e_j + b_4 \, \delta_{jk} \, e_i$$

$$+ b_5 \, \epsilon_{ijl} \, e_k \, e_l + b_6 \, \epsilon_{ikl} \, e_j \, e_l + b_7 \, \epsilon_{jkl} \, e_i \, e_l + b_8 \, e_i \, e_j \, e_k \, .$$

Without loss of generality $b_4 = 0$ and $b_5 = b_6$

$$(\epsilon_{ijl}e_k + \epsilon_{jkl}e_i + \epsilon_{kil}e_j)e_l = \epsilon_{ijk}$$

Other simple examples [2]

. . .

Change of notation

$$\begin{array}{ll} a_1 \rightarrow -\alpha_1 \,,\; a_2 \rightarrow -\alpha_1 \,,\; a_3 \rightarrow -\alpha_2 \\ b_1, b_2, b_3, b_5, b_7, b_8 \,\,\rightarrow \,\, \text{combinations of} \, \beta_1, \beta_1, \beta_1, \kappa_1, \kappa_2, \kappa_3 \end{array}$$

$$\Rightarrow$$

$$\mathcal{E} = -\alpha_{1} \overline{B} - \alpha_{2} (e \cdot \overline{B}) e - \gamma e \times \overline{B}$$

$$-\beta_{1} \nabla \times \overline{B} - \beta_{2} (e \cdot (\nabla \times \overline{B})) e - \delta e \times (\nabla \times \overline{B})$$

$$-\kappa_{1} e \cdot (\nabla \overline{B})^{(s)} - \kappa_{2} e \times (e \cdot (\nabla \overline{B})^{(s)}) - \kappa_{3} (e \cdot (e \cdot (\nabla \overline{B})^{(s)})) e$$

$$(\nabla \overline{B})_{ij}^{(s)} = \frac{1}{2} (\partial \overline{B}_i / \partial x_j + \partial \overline{B}_j / \partial x_i)$$

• Other simple examples [3]

 ${m \mathcal E}$ invariant under reflexion of ${m u}$ at planes containing ${m e}$

E.g.
$$e = (0, 0, 1)$$
, reflexion at $x = 0$
 $F_x^{\text{refl}}(x, y, z) = -F_x(-x, y, z)$
 $F_y^{\text{refl}}(x, y, z) = F_y(-x, y, z)$
 $F_z^{\text{refl}}(x, y, z) = F_x(-x, y, z)$

$$\Rightarrow$$
 $\alpha_1 = \alpha_2 = \delta = \kappa_1 = \kappa_3 = 0$

$$\Rightarrow \quad \mathcal{E} = -\gamma \, e \times \overline{B} \\ -\beta_1 \, \nabla \times \overline{B} - \beta_2 \, (e \cdot (\nabla \times \overline{B})) e - \kappa_2 \, e \times (e \cdot (\nabla \overline{B})^{(s)})$$

• Other simple examples [4]

 ${m \mathcal{E}}$ invariant under reflexion of ${m u}$ at planes perpendicular to ${m e}$

E.g.
$$e = (0,0,1)$$
, reflexion at $z = 0$ $F_x^{\text{refl}}(x,y,z) = F_x(x,y,-z)$ $F_y^{\text{refl}}(x,y,z) = F_y(x,y,-z)$ $F_z^{\text{refl}}(x,y,z) = -F_x(x,y,-z)$

$$\Rightarrow$$
 $\alpha_1 = \alpha_2 = \gamma = 0$

$$\Rightarrow \mathcal{E} = -\beta_1 \nabla \times \overline{B} - \beta_2 (e \cdot (\nabla \times \overline{B})) e - \delta e \times (\nabla \times \overline{B}) \\ -\kappa_1 e \cdot (\nabla \overline{B})^{(s)} - \kappa_2 e \times (e \cdot (\nabla \overline{B})^{(s)}) - \kappa_3 (e \cdot (e \cdot (\nabla \overline{B})^{(s)})) e)$$

- Other simple examples [5]
- o Inhomogeneous turbulence

$$\begin{split} \mathcal{E} &= -\gamma\,e\times\overline{B} \\ &-\beta_1\,\nabla\times\overline{B} - \beta_2\,(e\cdot(\nabla\times\overline{B}))e - \kappa_2\,e\times(e\cdot(\nabla\overline{B})^{(\mathsf{S})}) \\ \Rightarrow &\,\overline{J} = \sigma_{\mathsf{m}}\cdot\left(\overline{E} - \gamma\,e\times\overline{B} - \kappa_2\,e\times(e\cdot(\nabla\overline{B})^{(\mathsf{S})})\right) \\ &\sigma_{\mathsf{m}\,ij} = \sigma\,((1+\mu\sigma\beta_1)\delta_{ij} + \mu\sigma\beta_2e_ie_j)^{-1} \\ &\quad \text{anisotropic mean-field conductivity!} \\ &\,\overline{J}_{\parallel} \; = \; \sigma_{\mathsf{m}\parallel}\overline{E}_{\parallel} \end{split}$$

$$\begin{aligned} J_{\parallel} &= \sigma_{\text{m}\parallel} E_{\parallel} \\ \overline{J}_{\perp} &= \sigma_{\text{m}\perp} \left(\overline{E}_{\perp} - \gamma \, e \times \overline{B}_{\perp} \right. \\ &\left. - \frac{1}{2} \kappa_{2} \, e \times ((e \cdot \nabla_{\parallel}) \overline{B}_{\perp} + \nabla_{\perp} (e \cdot \overline{B}_{\parallel})) \right) \\ \sigma_{\text{m}\parallel} &= \sigma/(1 + \mu \sigma(\beta_{1} + \beta_{2})) \,, \quad \sigma_{\text{m}\perp} = \sigma/(1 + \mu \sigma\beta_{1}) \end{aligned}$$

• Other simple examples [6] o Inhomogeneous turbulence [2]

$$\mathcal{E} = -\gamma e \times \overline{B} \iff \text{``}\gamma \text{ effect''}$$
$$-\beta_1 \nabla \times \overline{B} - \beta_2 (e \cdot (\nabla \times \overline{B})) e - \kappa_2 e \times (e \cdot (\nabla \overline{B})^{(s)})$$

- transport of mean magnetic flux in the absence of mean motion
- "turbulent diamagnetism" (Rädler 1966)
- "topological pumping" (Drobyshevski et al. 1980)

Other simple examples [7] o Inhomogeneous turbulence [3]

$$\gamma = \frac{1}{2} \epsilon_{ijk} a_{ij} e_k$$

Accept again SOCA

$$\gamma e = \frac{1}{2} \int_0^\infty \langle (u(x,t) \cdot \nabla) \, u(x,t-\tau) + u(x,t) (\nabla \cdot u(x,t-\tau)) \rangle \, \mathrm{d}\tau$$
 for $q \to \infty$
$$\gamma e = \frac{1}{8\pi\eta} \int_\infty \langle (u(x,t) \cdot \nabla) \, u(x+\xi,t) + u(x,t) (\nabla \cdot u(x+\xi,t)) \rangle \, \frac{\mathrm{d}^3 \xi}{\xi}$$
 for $q \to 0$

Assume in addition incompressible fluid

$$\gamma e = \frac{1}{2} \nabla \int_0^\infty \langle (e \cdot u(x,t))(e \cdot u(x,t-\tau)) \rangle \, \mathrm{d}\tau \qquad \text{for } q \to \infty$$

$$\gamma e = \frac{1}{8\pi \eta} \nabla \int_\infty \langle (e \cdot u(x,t))(e \cdot u(x+\xi,t)) \rangle \frac{\mathrm{d}^3 \xi}{\xi} \qquad \text{for } q \to 0$$

- Other simple examples [8]
- \circ Homogeneous turbulence subject to Coriolis force Angular velocity $\Omega = \Omega \, e$

$$\mathcal{E} = -\beta_{1} \, \nabla \times \overline{B} - \beta_{2} \, (e \cdot (\nabla \times \overline{B})) e$$

$$-\delta \, e \times (\nabla \times \overline{B})$$

$$-\kappa_{1} \, e \cdot (\nabla \overline{B})^{(s)} - \kappa_{2} \, e \times (e \cdot (\nabla \overline{B})^{(s)})$$

$$-\kappa_{3} \, (e \cdot (e \cdot (\nabla \overline{B})^{(s)})) \, e)$$

$$= -\beta_{1} \, \nabla \times \overline{B} - \tilde{\beta}_{2} \, (\Omega \cdot (\nabla \times \overline{B})) \Omega$$

$$-\tilde{\delta} \, \Omega \times (\nabla \times \overline{B}) \qquad \Leftarrow \text{``}\Omega \times \overline{J} \text{ effect''}$$

$$- \cdots \text{ together with differential rotation capable of dynamo action}$$

$$\overline{J} = \sigma_{\text{m}} \cdot (\overline{E} - \mu \tilde{\delta} \, \Omega \times \overline{J} - \cdots) \quad \sigma_{\text{m}} \text{ mean-field conductivity tensor}$$

$$\text{Note that } \Omega \times (\nabla \times \overline{B}) = -(\Omega \cdot \nabla) \overline{B} + \nabla(\Omega \cdot \overline{B})$$

• Other simple examples [9] o Coriolis force

$$\delta = \frac{1}{4}(b_{jji} - b_{jij})e_i$$

Accept again SOCA

$$\delta = -\frac{1}{4} \int_0^\infty \langle u(x,t) \times u(x,t-\tau) \rangle \cdot e \, d\tau \qquad \text{for } q \to \infty \qquad (*)$$

$$\delta = \frac{1}{16\pi\eta} \int_{\infty} \langle \boldsymbol{\xi} \times \boldsymbol{u}(\boldsymbol{x}, t) \left(\boldsymbol{\xi} \cdot \boldsymbol{u}(\boldsymbol{x} + \boldsymbol{\xi}, t) \right) \rangle \cdot e^{\frac{\mathsf{d}^3 \boldsymbol{\xi}}{\boldsymbol{\xi}^3}} \qquad \text{for } q \to 0$$

For statistically steady turbulence (*) can be written as

$$\delta = \frac{1}{8} \int_0^\infty \langle u(x,t) \times (u(x,t+\tau) - u(x,t-\tau)) \rangle \cdot e \, d\tau \qquad \text{for } q \to \infty$$

In this case only the part of $\langle u(x,t) imes u(x,t+ au)
angle$

which is antisymmetric in au contributes to δ !

- Other simple examples [10]
- \circ Turbulence under the influence of a mean magnetic field $\overline{B}=\overline{B}\,e$

General form of ${\mathcal E}$ plus requirement ${\mathcal E} o -{\mathcal E}$ as $\overline B o -\overline B$ leads to

$$\mathcal{E} = \left(\alpha - \tilde{\alpha} \left(\overline{B} \cdot (\nabla \times \overline{B})\right)\right) \overline{B} - \gamma \left(\frac{1}{2} \nabla \overline{B}^2 + (\overline{B} \cdot \nabla) \overline{B}\right) \times \overline{B} - \beta \nabla \times \overline{B}. \quad (*)$$

Identity

$$\left(\frac{1}{2}\nabla \overline{B}^2 - (\overline{B}\cdot\nabla)\overline{B}\right) \times \overline{B} + (\overline{B}\cdot(\nabla\times\overline{B}))\overline{B} - \overline{B}^2\nabla\times\overline{B} = 0$$

allows to bring (*) in the simpler form

$$\mathcal{E} = (\alpha - \tilde{\alpha} (\overline{B} \cdot (\nabla \times \overline{B})))\overline{B} - \gamma (\nabla \overline{B}^2) \times \overline{B} - \beta \nabla \times \overline{B},$$
 $\alpha, \tilde{\alpha}, \dots$ may depend on $|\overline{B}|$.

Other simple examples [11]

 Mean magnetic field

. . .

$$\mathcal{E} = (\alpha - \tilde{\alpha} (\overline{B} \cdot (\nabla \times \overline{B}))) \overline{B} - \gamma (\nabla \overline{B}^2) \times \overline{B} - \beta \nabla \times \overline{B}$$

The representation

$$\mathcal{E}_i = a_{ij}\overline{B}_j + b_{ij}(\boldsymbol{\nabla}\times\overline{\boldsymbol{B}})_j$$

applies with

$$a_{ij} = (\alpha - \tilde{\alpha}(\overline{B} \cdot (\nabla \times \overline{B})))\delta_{ij} + \gamma \epsilon_{ijk} \nabla_k \overline{B}^2, \quad b_{ij} = -\beta \delta_{ij}$$

and also with

$$a_{ij} = \alpha \delta_{ij} + \gamma \epsilon_{ijk} \nabla_k \overline{B}^2, \quad b_{ij} = -\tilde{\alpha} \overline{B}_i \overline{B}_j - \beta \delta_{ij}.$$

More general cases

Assume
$$\mathcal{E}_{i} = a_{ij}\overline{B}_{j} + b_{ijk}\partial\overline{B}_{j}/\partial x_{k}$$

$$a_{ij} = -\alpha_{ij} + \epsilon_{ijk}\gamma_{k}, \quad \alpha_{ij} = \alpha_{ji}$$

$$\frac{\partial \overline{B}_{j}}{\partial x_{k}} = (\nabla \overline{B})_{jk}^{(s)} - \frac{1}{2}\epsilon_{jkl}(\nabla \times \overline{B})_{l}$$

$$b_{ijk}\frac{\partial \overline{B}_{j}}{\partial x_{k}} = -b_{ij}(\nabla \times \overline{B})_{j} - \kappa_{ijk}(\nabla \overline{B})_{jk}^{(s)}$$

$$b_{ij} = \beta_{ij} + \epsilon_{ijk}\delta_{k}, \quad \kappa_{ijk} = \kappa_{ikj}$$

$$\Rightarrow$$

$$\mathcal{E} = -\alpha \cdot \overline{B} - \gamma \times \overline{B} - \beta \cdot (\nabla \times \overline{B}) - \delta \times (\nabla \times \overline{B}) - \kappa \cdot (\nabla \overline{B})^{(s)}$$

$$\overline{J} = \sigma_{\mathbf{m}} \cdot (\overline{E} + (\overline{U} - \gamma) \times \overline{B} - \alpha \cdot \overline{B} - \delta \times (\nabla \times \overline{B}) - \kappa \cdot (\nabla \overline{B})^{(s)})$$

$$\sigma_{\mathbf{m}|\mathbf{j}|} = \sigma \left(\delta_{ij} + \mu \sigma \beta_{ij}\right)^{-1}$$

• More general cases [2]

. . .

$$\begin{array}{ll} \mathcal{E} &=& -\alpha \cdot \overline{B} & \text{anisotropic } \alpha \text{ effect} \\ &-\gamma \times \overline{B} & \gamma \text{ effect, pumping} \\ &-\beta \cdot (\nabla \times \overline{B}) & \text{anisotropic magnetic diffusivity} \\ &-\delta \times (\nabla \times \overline{B}) & \delta \times \overline{J} \text{ effect} \\ &-\kappa \cdot (\nabla \overline{B})^{(\mathsf{S})} & \cdots \end{array}$$

$$\begin{array}{lll} \overline{J} &=& \sigma_{\mathrm{IM}} \cdot \left(\overline{E} & \text{mean-field conductivity} \right. \\ && + (\overline{U} - \gamma) \times \overline{B} & \text{"effective velocity"} \\ && -\alpha \cdot \overline{B} & \text{anisotropic } \alpha \text{ effect} \\ && -\delta \times (\nabla \times \overline{B}) & \delta \times \overline{J} \text{ effect} \\ && -\kappa \cdot (\nabla \overline{B})^{(\mathrm{S})} \right) & \cdots \end{array}$$

More general cases [3]

• • •

$$\alpha_{ij} = -\frac{1}{2}(a_{ij} + a_{ji})$$

$$\gamma_i = \frac{1}{2}\epsilon_{ijk}a_{jk}$$

$$\beta_{ij} = \frac{1}{4}(\epsilon_{ikl}b_{jkl} + \epsilon_{jkl}b_{ikl})$$

$$\delta_i = \frac{1}{4}(b_{jji} - b_{jij})$$

$$\kappa_{ijk} = -\frac{1}{2}(b_{ijk} + b_{ikj})$$

ullet Structure of $oldsymbol{\mathcal{E}}$, from symmetry arguments

Adopt the concept of

scalars — pseudoscalars polar — axial vectors
$$(E, J, U - B, H)$$
 true — pseudo quantities (scalars, vectors, tensors)

$$\mathcal{E}_{i} = a_{ij} \, \overline{B}_{j} + b_{ijk} \, \partial \overline{B}_{j} / \partial x_{k}$$

$$\mathcal{E} = -\alpha \cdot \overline{B} - \gamma \times \overline{B} - \beta \cdot (\nabla \times \overline{B}) - \delta \times (\nabla \times \overline{B}) - \kappa \cdot (\nabla \overline{B})^{(s)}$$

Vectorial and tensorial construction elements for $a_{ij}, b_{ijk}, \alpha, \gamma, \beta, \delta, \kappa$:

$$\delta_{ij},~g~(\text{e.g.}=m{
abla}\langle u^2
angle),~D=(m{
abla}\overline{U})^{(s)},~\cdots$$
 $\epsilon_{ijk},~\Omega,~W=m{
abla} imes\overline{U},~\cdots$

- Structure of \mathcal{E} [2]
- Inhomogeneous turbulence on a rigidly rotating body

Vectorial and tensorial construction elements for \mathcal{E} :

isotropic tensors,
$$oldsymbol{g}$$
 , Ω

$$\alpha_{ij} = \underline{\alpha_1(\boldsymbol{g} \cdot \boldsymbol{\Omega})\delta_{ij} + \alpha_2(g_i\Omega_j + g_i\Omega_j)} + \alpha_3(\boldsymbol{g} \cdot \boldsymbol{\Omega})g_ig_j + \alpha_4(\boldsymbol{g} \cdot \boldsymbol{\Omega})\Omega_i\Omega_j + \alpha_5(\epsilon_{ilm}g_j + \epsilon_{jlm}g_i)g_l\Omega_m + \alpha_6(\epsilon_{ilm}\Omega_j + \epsilon_{jlm}\Omega_i)g_l\Omega_m$$

All coefficients are scalars, no pseudoscalars, may depend on g^2 , Ω^2 and $(g \cdot \Omega)^2$

Steenbeck, Krause and Rädler 1966 (SOCA, linearity in g and Ω):

$$\alpha_1(\boldsymbol{g}\cdot\boldsymbol{\Omega}) = \kappa \langle \boldsymbol{u}^2 \rangle (\lambda_{\rm C}^2 \tau_{\rm C}/\eta) \, \boldsymbol{\Omega} \cdot \boldsymbol{\nabla} \log(\varrho \sqrt{\langle \boldsymbol{u}^2 \rangle}) \,, \quad \kappa \approx 1$$

In SOCA trace(
$$\alpha$$
) (NOT $\alpha_1(g \cdot \Omega)$!!!)

determined by
$$\langle u(x,t)\cdot(\mathbf{\nabla}\times u(x+\pmb{\xi},t+ au))
angle$$

ullet Structure of $oldsymbol{\mathcal{E}}$ [3] \circ Inhomogeneous turbulence on a rigidly rotating body [2]

. . .

$$\gamma_i = \gamma_1 g_i + \gamma_2 (\mathbf{g} \cdot \Omega) \Omega_i + \gamma_3 \epsilon_{ilm} g_l \Omega_m$$

$$\beta_{ij} = \beta_1 \delta_{ij} + \beta_2 (\mathbf{g} \cdot \Omega) (g_i \Omega_j + g_i \Omega_j) + \beta_3 g_i g_j + \beta_4 \Omega_i \Omega_j + \beta_5 (\mathbf{g} \cdot \Omega) (\epsilon_{ilm} g_j + \epsilon_{jlm} g_i) g_l \Omega_m + \beta_6 (\mathbf{g} \cdot \Omega) (\epsilon_{ilm} \Omega_j + \epsilon_{jlm} \Omega_i) g_l \Omega_m$$

$$\delta_i = \delta_1(g \cdot \Omega)g_i + \delta_2\Omega_i + \delta_3(g \cdot \Omega)\epsilon_{ilm}g_l\Omega_m$$

All coefficients are scalars, no pseudoscalars, ...

• Structure of \mathcal{E} [4] • Inhomogeneous turbulence on a rigidly rotating body [3]

$$\kappa_{ijk} = \kappa_{1}(g \cdot \Omega)(\delta_{ij}g_{k} + \delta_{ik}g_{j}) + \kappa_{2}(\delta_{ij}\Omega_{k} + \delta_{ik}\Omega_{j})$$

$$+\kappa_{3}(\epsilon_{ijl}g_{k} + \epsilon_{ikl}g_{j})g_{l} + \kappa_{4}(g \cdot \Omega)(\epsilon_{ijl}g_{k} + \epsilon_{ikl}g_{j})\Omega_{l}$$

$$+\kappa_{5}(g \cdot \Omega)(\epsilon_{ijl}\Omega_{k} + \epsilon_{ikl}\Omega_{j})g_{l} + \kappa_{6}(\epsilon_{ijl}\Omega_{k} + \epsilon_{ikl}\Omega_{j})\Omega_{l}$$

$$+\kappa_{7}(g \cdot \Omega)g_{i}g_{j}g_{k} + \kappa_{8}g_{i}(g_{j}\Omega_{k} + g_{k}\Omega_{j})$$

$$+\kappa_{9}\Omega_{i}g_{j}g_{k} + \kappa_{10}(g \cdot \Omega)g_{i}\Omega_{j}\Omega_{k}$$

$$+\kappa_{11}(g \cdot \Omega)\Omega_{i}(g_{j}\Omega_{k} + g_{k}\Omega_{j}) + \kappa_{12}\Omega_{i}\Omega_{j}\Omega_{k}$$

$$+\kappa_{13}(g \cdot \Omega)g_{i}(g_{j}\epsilon_{klm} + g_{k}\epsilon_{jlm})g_{l}\Omega_{m}$$

$$+\kappa_{14}(g \cdot \Omega)\epsilon_{ilm}g_{j}g_{k}g_{l}\Omega_{m}$$

$$+\kappa_{15}g_{i}(\Omega_{j}\epsilon_{klm} + \Omega_{k}\epsilon_{jlm})g_{l}\Omega_{m}$$

$$+\kappa_{16}\Omega_{i}(g_{j}\epsilon_{klm} + g_{k}\epsilon_{jlm})g_{l}\Omega_{m}$$

$$+\kappa_{17}(g \cdot \Omega)\Omega_{i}(\Omega_{j}\epsilon_{klm} + \Omega_{k}\epsilon_{jlm})g_{l}\Omega_{m}$$

$$+\kappa_{18}(g \cdot \Omega)\epsilon_{ilm}\Omega_{j}\Omega_{k}g_{l}\Omega_{m}$$

All coefficients are scalars, no pseudoscalars, ...

- Structure of \mathcal{E} [5]
- Inhomogeneous turbulence on a rotating body in the presence of another mean motion

Vectorial and tensorial construction elements for \mathcal{E} :

isotropic tensors, $oldsymbol{g}\,,\,\,\Omega\,,\,\,oldsymbol{W}\,,\,\,oldsymbol{D}$

For simplicity, however, linearity of ${m {\cal E}}$ in ${m g}\,,\,\,\Omega\,,\,\,{m W}\,,\,\,{m D}$

$$\alpha_{ij} = \alpha_1^{(\Omega)} (\mathbf{g} \cdot \Omega) \delta_{ij} + \alpha_2^{(\Omega)} (g_i \Omega_j + g_j \Omega_i) + \underline{\alpha_1^{(W)}} (\mathbf{g} \cdot \mathbf{W}) \delta_{ij} + \alpha_2^{(W)} (g_i W_j + g_j W_i) + \underline{\alpha^{(D)}} (\epsilon_{ilm} D_{lj} + \epsilon_{jlm} D_{li}) g_m$$

$$\gamma_i = \underline{\gamma^{(0)}g_i} + \underline{\gamma^{(\Omega)}}\epsilon_{ilm}g_l\Omega_m + \underline{\gamma^{(W)}}\epsilon_{ilm}g_lW_m + \underline{\gamma^{(D)}}g_lD_{il}$$

Coefficients are scalars independent of g, Ω , W and D

ullet Structure of ${\mathcal E}$ [6] \circ Inhomogeneous turbulence on a rotating body [2]

. . .

$$\beta_{ij} = \beta^{(0)}\delta_{ij} + \beta^{(D)}D_{ij}$$

$$\delta_i = \delta^{(\Omega)} \Omega_i + \delta^{(W)} W_i$$

$$\kappa_{ijk} = \kappa^{(\Omega)}(\delta_{ij}\Omega_k + \delta_{ik}\Omega_j) + \kappa^{(W)}(\delta_{ij}W_k + \delta_{ik}W_j) + \kappa^{(D)}(\epsilon_{ijl}D_{kl} + \epsilon_{ikl}D_{jl})$$

Coefficients are scalars independent of g, Ω , W and D

• Structure of \mathcal{E} [7] \circ Inhomogeneous turbulence on a rotating body [3]

. . .

$$\mathcal{E} = -\alpha_{1}^{(\Omega)}(g \cdot \Omega)\overline{B} - \alpha_{2}^{(\Omega)}((\Omega \cdot \overline{B})g + (g \cdot \overline{B})\Omega)$$

$$-\alpha_{1}^{(W)}(g \cdot W)\overline{B} - \alpha_{2}^{(W)}((W \cdot \overline{B})g + (g \cdot \overline{B})W)$$

$$-\alpha^{(D)}\widehat{\alpha}(g, D) \cdot \overline{B}$$

$$-(\gamma^{(0)}g + \gamma^{(\Omega)}g \times \Omega + \gamma^{(W)}g \times W + \gamma^{(D)}g \cdot D) \times \overline{B}$$

$$-\beta^{(0)}\nabla \times \overline{B} - \beta^{(D)}D \cdot (\nabla \times \overline{B})$$

$$-(\delta^{(\Omega)}\Omega + \delta^{(W)}W) \times (\nabla \times \overline{B})$$

$$-(\kappa^{(\Omega)}\Omega + \kappa^{(W)}W) \cdot (\nabla \overline{B})^{(s)} - \kappa^{(D)}\widehat{\kappa}(D) \cdot (\nabla \overline{B})^{(s)}$$

$$\widehat{\alpha}_{ij} = (\epsilon_{ilm}D_{lj} + \epsilon_{jlm}D_{li})g_{m}$$

$$\widehat{\kappa}_{ijk} = \epsilon_{ijl}D_{kl} + \epsilon_{ikl}D_{jl}$$

- Calculating the mean electromotive force
- Second—order and higher—order correlation approximation

$$\partial_t b - \nabla \times (\overline{U} \times b - \eta \nabla \times b) = \nabla \times (u \times \overline{B} + (u \times b)'), \ \nabla \cdot b = 0$$

Second—order correlation approximation: (m u imes m b)' canceled nth order correlation approximation: (m u imes m b)' expressed by (n-1)th order results

Convergency proof by Krause 1968

- Calculating e.m.f. [2]
- Test-field method

Schrinner et al. 2005 ... 2007

Recall that

 \diamond $\mathcal{E} = \langle u imes b
angle$ is calculated on the basis of

$$\partial_t b - \nabla \times (\overline{U} \times b + u \times b - \langle u \times b \rangle) - \eta \nabla \times b) = \nabla \times (u \times \overline{B}), \quad \nabla \cdot b = 0,$$

 \diamond ${\cal E}$ is functional of u, \overline{U} and \overline{B} , which is linear in \overline{B} .

Assume that
$$\mathcal{E}_i = a_{ij}\overline{B}_j + b_{ijk}\partial \overline{B}_j/\partial x_k$$
. (*)

 \diamond a_{ij} and b_{ijk} are functionals of $m{u}$ and $m{\overline{U}}$ only, independent of $m{\overline{B}}$.

Specify \overline{B} to be a "test-field" $\overline{B}^{(n)}$, denote the corresponding b and \mathcal{E} by $b^{(n)}$ and $\mathcal{E}^{(n)}$. Then $\mathcal{E}_i^{(n)} = a_{ij}\overline{B}_i^{(n)} + b_{ijk}\partial\overline{B}_i^{(n)}/\partial x_k$. (**)

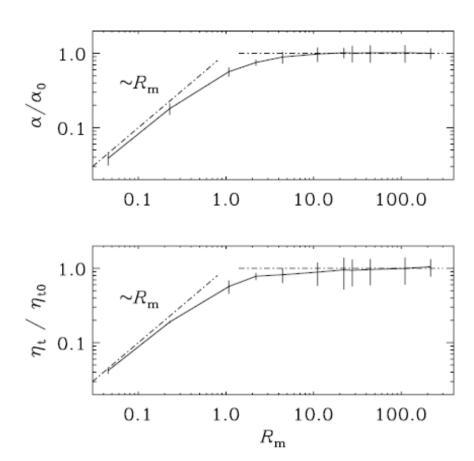
Calculate $\mathcal{E}^{(n)}$ for a number of $\overline{B}^{(n)}$ $(n=1,2,\ldots)$ and solve the (sufficiently large) system of equations (**) for a_{ij} and b_{ijk} .

• Calculating e.m.f. [3] o Test-field method [2]

Some comments

- The test-fields should be linearly independent and all higher than first-order spatial derivatives should be small
- The test-fields need not to satisfy any boundary conditions, and they need not to be solenoidal
- \diamond The test-field method works independent on whether u or \overline{U} depend on \overline{B} , is therefore suitable for investigating magnetic quenching
- \diamond The method described can be extended to more complex ansatzes for \mathcal{E} , e.g. with $\mathcal{E}^{(0)}$ or higher-order derivatives of \overline{B}

- Calculating e.m.f. [4]
- Some results for mean-field coefficients



Sur et al. 2008

Figure 6. Dependence of the normalized values of α and η_t on R_m for Re = 2. 2. The vertical bars denote twice the error estimated by averaging over subsections of the full time-series (see the text). The run with $R_m = 220$ (Re = 2.2) was done at a resolution of 512^3 meshpoints.

- Kinematic mean-field dynamo models
- Basic equations

Consider (simply connected) conducting body surrounded by free space

◆ Kinematic mean-field dynamo models [2] ○ Basic equations [2]

. . .

$$\nabla \times (\eta \nabla \times \overline{B} - \overline{U} \times \overline{B} - \mathcal{E}) + \partial_t \overline{B} = 0 , \quad \nabla \cdot \overline{B} = 0 \text{ in } \mathcal{V}$$

$$\nabla \times \overline{B} = 0 , \quad \nabla \cdot \overline{B} = 0 \quad (\Rightarrow \overline{B} = \nabla \Phi, \quad \Delta \Phi = 0) \text{ in } \mathcal{V}'$$

$$[\overline{B}] = 0 \text{ across } \partial \mathcal{V}$$

$$\overline{B} = O(a^{-3}) \text{ as } a \to \infty$$

MEAN-FIELD DYNAMO: $\overline{B} \not\longrightarrow 0$ as $t \to \infty$

Kinematic mean-field dynamo models [3] ○ Basic equations [3]

Magnetic energy stored in the mean field

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\infty} \frac{\overline{B}^2}{2\mu} \mathrm{d}v = -\int_{\partial \mathcal{V}} \frac{\overline{J}^2}{\sigma} \, \mathrm{d}v - \int_{\partial \mathcal{V}} \overline{\boldsymbol{U}} \cdot (\overline{\boldsymbol{J}} \times \overline{\boldsymbol{B}}) \, \mathrm{d}v + \int_{\partial \mathcal{V}} \overline{\boldsymbol{J}} \cdot \boldsymbol{\mathcal{E}} \, \mathrm{d}v$$

MEAN-FIELD DYNAMO:
$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\infty}\frac{\overline{B}^2}{2\mu}\mathrm{d}v\geq 0$$

- Existence of a mean—field dynamo implies the existence of a dynamo in the original sense.
- \diamond Mean fields are not subject Cowling's theorem (unless $\mathcal{E} \cdot \overline{B} = 0$).

- Kinematic mean-field dynamo models [4]
- "Traditional" assumptions

```
Shape of the fluid body and distribution of magnetic diffusivity symmetric about rotation axis symmetric about equatorial plane steady
```

All mean quantities depending on $U(=\overline{U}+u)$ are invariant under rotation of U about rotation axis reflexion of U about equatorial plane time shift in U

Some consequences

- ◆ Kinematic mean-field dynamo models [5] "Traditional" assumptions [2
- \diamond The solutions \overline{B} of the basic equations are superpositions of modes of the form

$$\overline{B} = \Re \left(\hat{B} \exp(\mathrm{i} m \phi + (\lambda + \mathrm{i} \omega) t) \right)$$

- \hat{B} symmetric about rotation axis
 - antisymmetric or symmetric about equatorial plane
 - steady (Am or Sm modes)

m integer, λ and ω real

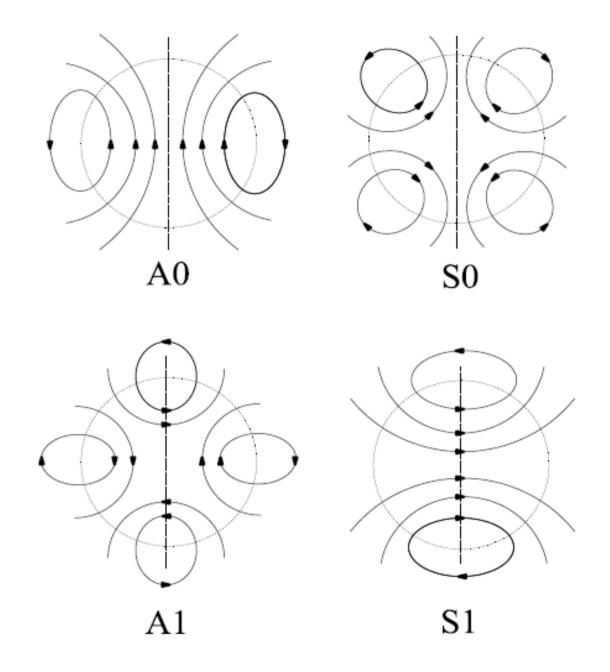
DYNAMO: $\lambda \geq 0$

For $\omega = 0$ monotonic, for $\omega \neq 0$ oscillatory time dependence.

If $\omega \neq 0$ axisymmetric (m = 0) modes are intrinsically oscillatory,

non-axisymmetric $(m \neq 0)$ modes are waves

traveling in azimuthal direction.



- Kinematic mean-field dynamo models [6]
- Basic dynamo mechanisms

In all cases investigated so far interplay between the poloidal and toroidal parts of the mean magnetic field

$\diamond \alpha^2$ mechanism

works with $\alpha-{\rm effect}$ alone preferably non-oscillatory magnetic fields axisymmetric and non-axisymmetric fields

Steenbeck & Krause 1969,

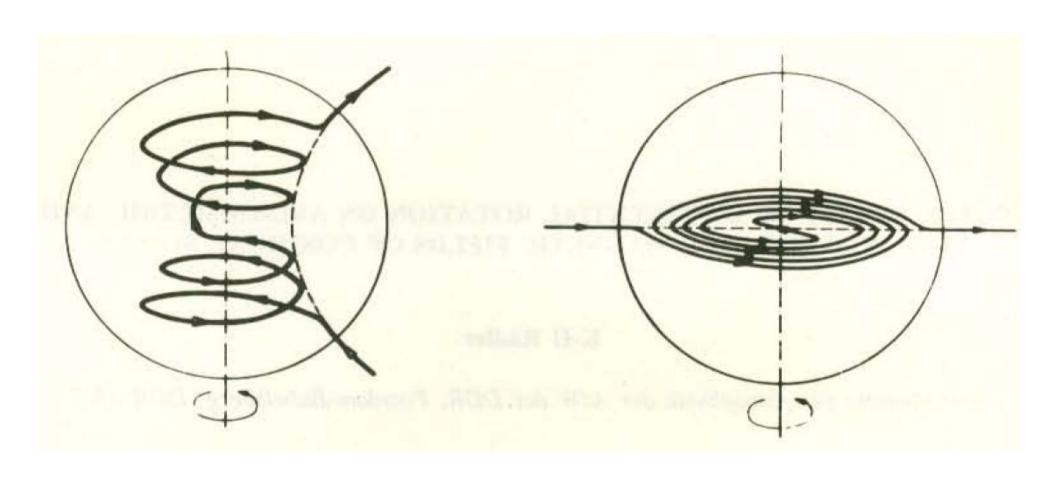
◆ Kinematic mean-field dynamo models [7] ○ Basic dynamo mechanisms [2]

$\diamond \alpha \omega$ mechanism

works with α -effect and differential rotation oscillatory and non-oscillatory magnetic fields preferably axisymmetric fields

Steenbeck & Krause 1969,





• Kinematic mean-field dynamo models [8] o Basic dynamo mechanisms [3]

\diamond $\delta\omega$ mechanism

```
works, e.g., with \Omega \times J-effect (no \alpha-effect!!!) and differential rotation non-oscillatory magnetic fields preferably axisymmetric fields
```

Rädler 1969,