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MEAN-FIELD ELECTRODYNAMICS

e Basic equations

Faraday’s law Ampere’s law

VxE=-00B, VxB=ul, V-B

|
o

Ohm’'s law

J=o(E+Ux B)

= Induction equation

V@VxB-UxB}HM%zm V.B

|
o

n=1/po
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e Mean fields
F=F4F'

Mean scalar field F defined by any averaging procedure
which(exactly or approximately) satisfies
Reynolds' averaging rules,

(R1) F+G=F+a

(R2) F=F = T'=o0

(R3) FG=FG = FG=FG, FG =0

(R4)  OF/oz = 0F Jox, OF]ot = OF /ot
~ TFTG=FG+TF &

Mean vector field F defined by averaging its components with respect to the
coordinate system chosen,
F=e¢F, F=F+F', F=e¢F,,
mean tensor fields analogously.
Notations F and (F) equivalent
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e Examples of averages

o Statistical or ensemble averages
F.)= [ Fetos@ds, [ olode=1

R1, R2, R3, R4 satisfied
Relation of averages to observable quantities?77

o Space averages

Fa,t) = / Fz — & t)g(€)d, f (&) = 1

R1, R4 satisfied,
R2, R3 in general not,
can be justified as approximation if (length) scale separation

o Special cases

L
1) = o f Fe-¢0ds €'=(0,0.6)

L L
(QE)Q/L/LF(m_éfg t) dSQ Clgg E" — (0?52353)

In the limit L — oo R1, R2, R3, R4 satisfied

F(x,t) =
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® Examples of averages [2]

o Statistical or ensemble averages ...
o Space averages ...
o Special cases ...

o Azimuthal average (Braginsky's average)

2T
Fr,0,1) = 2~ / F(r, 9, p,t)de
9]

R1, R2, R3, R4 satisfied
Average axisymmetric !

o Time averages
F(z,t) = /F(.’:ﬂ,t — 7)g(7)dr, /Q(T)d?‘ =

R1, R4 satisfied,
R2, R3 in general not,
can be justified as approximation if (time) scale separation
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O

@

Examples of averages [3]

Statistical or ensemble averages ...
Space averages ...
o Special cases ...

o Azimuthal average (Braginsky's average) ...

Time averages ...

Average defined by filtering of a spectrum

F(ax,t) =/ F(k.t)exp(ik - )dk

F(x,t) =/|| Kﬁ(k,t)exp(ik-m)d%

R1, R2, R4 satisfied,

R3 in general not,

can be justified as approximation

if length scale (i.e., wave number) separation
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e Basic mean—field equations

B=B+b,..-U=U-+4+u

Maxwell equations and Ohm's law for mean fields

VxE=-9B, VxB=uJ, V.-B=0
T=0(E+UxB+¢€)
Mean—field induction equation
Vx@VXE—UXE—ﬂ+@§:0,<%§:o
£ mean electromotive force due to fluctuations

8=<u><b>
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e The mean electromotive force €& = (u x b)
Ob—-VxUxb+uxb))—nVb=Vx(uxB), V.b=0

(uxb) =uxb—-—uxb

— b=>bO 4+ p®B where b© is a functional of w and U

and b® a functional of w, U and B,
which is linear in B

= £ =EO 4 B with £€© independent of B

and £€®) linear and homogeneous in B

0 o0

K;; depends on u and U only, vanishes for large |&| and .
EB) at (z,t) depends on the behavior of B
in some surroundings of (a,¢) only.
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® The mean electromotive force [2]

= £=£E0 4 B with £ independent of B
and £®) linear and homogeneous in B

ePan) = [ [ K@ t&nBie-&t-ndear
0 s’}

On this level the mean—field induction equation
IS a linear inhomogeneous integro—differential equation,

V@VXELJJXB—[fK@meﬁﬂﬂm—&h4%ﬁ@ﬂ

19B=V x &0
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® The mean electromotive force [3]

Assume until further notice that b decays to zero if B=10
(purely hydrodynamic “background turbulence”,

—. £0) decays to zero no small-scale dynamo)

E.i(:r,t)zfn /Kij(zr,t;E,T)Ej(:E—E,t—T)d3£dT

Assume weak variation of B in space and time,
IB;(z, t) OB;(x,t)

Bjw — &t —7) =Bj(x,) - — = - —L = —
B OB; = OB;
= &= aiBi bt iy, “t

aij _/ / Kij(x, t; & 7)d¢dr

zjk — / / KU(.T,t, E:T)gkd ng
Cij = — / / sz(iﬂ,t,E,T)TdE(de
J0O  Joo
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® The mean electromotive force [4]

0B C)BJ
E; —a?JB +szkd$ﬂ. + ¢ Y + .
very often simply & = a;;B;+b 9B; ()
” j ljh@ﬂ_’?k

Relation () is an approximation,
which needs to be checked in any application !

It requires (length) scale separation !

It reduces the mean—field induction equation
to a second—order parabolic differential equation,

V() VxB-UxB-acB-bo(VB)+0B=0
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e Definitions concerning turbulence

When speaking of "turbulence” we think until further notice simply
of irregular motions
and dot not refer to specific properties of, e.g., “developed turbulence’ .

Turbulence is called

< homogeneous
it all quantities depending on u
are invariant under translation of u (u(x.t) — u(x + Az, t))

o (statistically) steady
. under time shift in u (u(x,t) — u(x,t + At))

o axisymmetric w.r.t. a given axis
. under rotation of w about this axis

& isotropic
. under any rotation of w about any axis

o mirror—symmetric w.r.t. a given plane or a given point
. under reflexion of w about this plane or this point

KHR
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e A simple (academic) example:
u homogeneous isotropic turbulence, U = 0

Assume &; = ai; Bj + bijrOB;j/0xy
Homogeneity — a;j , bijr iIndependent of position
[sotropy — a;; = a0ij, bijr = B €k
- E=aB-38V xB
mean—field version of Ohm’s law
J =om(E 4+ a B) ocm=o0c/(1 4+ puoB) =c/(1+ 3/n)

Mmean—field conductivity
mean—field induction equation

?;mvzﬁ—l—afv x B=o0:B mtm=n-+03

mean—field diffusivity

a changes sign but S remains unchanged under reflexion of u
= o = 0 for mirror—symmetric turbulence

KHR
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® A simple example [2]

Concerning the behavior of a and g under reflexion of u

Relation & =aB -3V x B (1)
is a consequence of &b -V x (ux B4+ (uxb))—nV?b=0, V-b=0. (2)

Consider (1) at @ = 0 and write
(u(x,t) x b(x,1))(0.t) = a[u]B(0,t) — B[u](V x B)(0,t) . (3)

If (2) is satisfied with a set (u.b, B),
it is, too, with (u™" b B™"Y where u"(z.t) = —u(—=z.t) etc.

Therefore, in addition to (3), we have

(u(—z,t) x b(—z,1))(0,1) = —a[u™"|B(0,t) — f[u""](V x B)(0,t). (4)
Considering that (u(—=,t) x b(—=,t))(0,t) = (u(x,t) x b(x,t))(0,1)

the comparison of (3) and (4) delivers us

a[u™® = —afu], B = 8u].
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® A simple example [3]

o Approximations for the coefficients o« and 3
Second—order correlation approximation (SOCA)
= First—order smoothing approximation (FOSA)

hb—nV?b=Vx(uxB)., V.-b=0 = (uxb) canceled !

sufficient condition: |b|/|B| < 1

no growing solutions if B =0
Assume infinitely extended homogeneous fluid

b(x,t) =/ Gz — 2/t — to)b(a, to)d32’
o t
+ / / G (x —a' t — )V’ x (u(x', ') x B(x',¢))d3z'dt
tg o OO0

- &= /xf Ky(x,t:€,7)B,(x — &1 — r)d3¢ dr
40 o0

10GM (¢, 7)

Kij(x, t; €, 7) = ~z oe (€i51&k + €1&) (up(T, t) w(x — £, — 7))

(This result applies independent of homogeneity and isotropy of turbulence)
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® A simple example [4] O Approximations for a and 3 [2]
Accept SOCA so that
b —nV2b=V x (ux B). (x)
Let ue, Ae and 7. be
characteristic magnitude, lengths and time scale of .
Define parameter ¢ = \2/nte so that |9:b|/|nV?b| ~ q.
Define Strouhal number St = wueTe/Ac

and magnetic Reynolds number Rm = uc\¢/n.
If St = 1 then ¢ = Rm.

Case g > 1, often labeled “high—conductivity limit"
(x) = 0b=V x(ux B)
Case ¢ < 1, often labeled “low—conductivity limit"

(x) = nV?b=-V x (ux B)
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® A simple example [5] O Approximations for o and 3 [3]
Case ¢ > 1 — “high—conductivity limit"
ob=Vx(uxB), V-b=0

Sufficient (not necessary) condition of validity: St < 1.
No restriction concerning Rm !l

Ignore, for simplicity, variation of B with ¢t.

t—1io __
b(x.t) = b(x.t5) + V % ([D u(e,t —7) dr x B(x))
Assume t—tg sufficiently large so that (u(x,t) xb(x, tp)) vanishes, let t — —oc.

= & = a;;Bj + bijr0B; /0y, — No other derivatives of B!
o0
ajj = (€ik10jm + €ijkOmi) /o (up (@, t)Ouy(x,t — 7)/0xm) dr

9
b'i-jk — Eiﬂ/{; (‘u.l(ﬂi?, t)’u.k(:E, t— T)) dr

(These results apply independent of homogeneity and isotropy of turbulence)
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® A simple example [6] O Approximations for a and 3 [4] & Case ¢ > 1 [2]

Homogeneous isotropic turbulence: (---) independent of z,
5 = Ckcsg'j and bt’jk = .igfijk-

_1 — 1
=  a=3a;, 0O=z€biji

oo

=~ a= —%*/O (w(z,t) - (V x u(z, t —7)))dr

= —d(u(@. D) - (V x u(@. 1)
(u - (V x u)) kinetic helicity
8= %/{jx{u(m,t) cu(x,t —7))dr
= 1(w?(x, 1)) i)

Remember: sufficient condition for applicability is St &< 1 |
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® A simple example [7] O Approximations for a and 3 [5] <& Case g > 1 [3]

q — 2 &
5 = %(u > T C(' )
a

Recall: mean-field conductivity om =
14 38/n

Example: solar convection zone

c=3-10S/m — n=2.7-10°2m?/s

Assume
<u2>1/2:'uc=2-102m/5
A\c=5-10"m, T{g"ig):‘?'c:?)-lozs

- ¢~3-10°, Stx=10"! (— Rm =3.10°)

B/n~1.5- 104, om/oc~n/B~T- 107>
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® A simple example [8] O Approximations for a and 3 [6]
Case g < 1 — “low—conductivity limit"”

nV?b=-Vx(uxB), V.b=0

Sufficient (not necessary) condition of validity: Rm < 1

bezluxﬁ—kV---

7
Remember “Biot—Savart trick”
3&

b(z.1) = x (u(z +&t) x Bz + &, t))

€ilm 5jn + E-ijfé"ﬂ’?-ﬂ- 36

E; = —— 1 ' / (up(x, t)um(x + &. ﬁ))an (x + €. f)d
?T’T? o0
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® A simple example [9] O Approximations for a and 3 [7] O Case g1 [2]

1m0 1i10mn 3
8:,): " €ilm jn4‘|‘ Ea.,}f / (ug(:li t)um(m —I— &' ﬁ)> gnB (:I} _I_ &- IL) 5
)
Expansion B (:B—|—£ t) - B (:]‘3 t) B dBdEZBk f)

Higher derivatives of B neglected!
= 5 = a;; j+szkaBJ/C)$k

€10 + €::10mn e
a;; = im 3n4fm 17l9mn /DC<’“-I($‘ Dum(x + &, t)) s £3£
im0 10mn d>
b_é_jk o Ea.l'm, L ‘I_ Ez_jl mr / <“U1-jj($; t)u-m,(m _|_ £! f)) &'ngk_g
47 o0 g3

(These results apply independent of homogeneity and isotropy of turbulence)
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® A simple example [10] O Approximations for a and 3 [8] & Case g < 1 [3]

Homogeneous isotropic turbulence: (---) independent of x,

a = %{1--3',1' and g = %f;‘jkbijk
3
N o= _12];_1_?? / (u(x,t) - (Vxulz+£1))) d3£§
_ _1217?7 [ (a1 (€ x ula+& i)»d -
5= o [ u@+60)

Another (equivalent) representation of e and 3

u=VxyY+Vo, V¢=0 (¥) =0, (o) =0

= a = —%(u ) = —3—(?,[) (V x 1)) <+ independent of ¢
7]

8= 3—(('&/) )y — (°)) > O at least in imcompressible case
7]

Remember: sufficient condition for applicability is Rm < 1

KHR
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V= -V X u

bz, t) =+ [ YXullt) 3,

41 Joo | — x|

32
— [ Vxu@+en<®
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® A simple example [11] O Approximations for a and 3 [9]

o Arbitrary g

o = —%'/: /x G& ) (u(w,t) - (V x ule + &t — 7)) d3cdr

=3) LT e h xua et o) o

__/ / OC(&- T)<‘u,($:t) .u(m+£?t—7)>fd3§' dr

Statements like “a is the kinetic helicity” are very questionable!
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® A simple example [12] O Approximations for a and 3 [10]

o Derivations in Fourier space

Flz.t) = //F(k:, o) exp(i(k - @ — wt)) d3k duw

Consider homogeneous statistically steady turbulence,

Qi; (&, 7) = (ui(x, t) uj(x + &t +7)).

Fourier transform @ij(k, w) has to satisfy Bochner's theorem,

ng(k, w)XZ:X;‘ >0 for any (complex) X (k,w) .

KHR
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® A simple example [13]

o Dynamo action of homogeneous isotropic turbulence
Recall mmV?°B+aVxB-§B=0, V.-B=0 (%)

Look for solutions of the form B = %(B exp(i(k-x + pt))) (s3%)

= (nmkz—l—p)E—iaekxE:O, E-B=0

Chose, in a given Cartesian coordinate system, k = (0,0,k), k > 0O
= (nmk? + p)Bs +iakB, = 0, iakB:y — (ymk?* +p)B, =0, B. =0
Non—trivial solutions (xx) of (x) possible if (nmk? + p)? — (ak)? =0,

ie. p = —nmk? + |alk

Non—decaying solutions of (x) possible if

| > mmk
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® A simple example [14] O Dynamo action [1]

o Fluid sphere with homogeneous isotropic turbulence

surrounded by free space

mmV?°B+aVxB-0,B=0, V.-B=0 inV

VxB=0, V.B=0 (— B=V®d, Ad=0) in)

[B] =0 across oY

B =03 as r — o

Dimensionless parameter R, = |a|R/nm

Ansatz B = B(x) exp(pt) = eigenvalue problem for p = p(Ra)
Non—decaying solutions (p > 0) for R, > 4.49

Most easily excitable mode of dipole type
Voigtmann 1968

Conflict with Bondi-Gold theorem |

KHR
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e Other simple examples:

w axisymmetric turbulence, U = 0

E.g., inhomogeneous turbulence showing intensity gradient (V(u?) # 0)
homogeneous turbulence subject to Coriolis force (angular velocity €2)
homogeneous turbulence influenced by a mean magnetic field (E)

Assume again & = a; ;B + b;;;,0B; /0y,

AXxis of symmetry defined by unit vector e
a;j = a1d;j+ase;je+aze;e;
bij. = bie€ji+b20ijel +b3dpe;+baoje;
tbs€jjrer e+ beeiprejer+ brejpieiep+bgejejep.

Without loss of generality by = 0 and bg = bg

(€ijier + €jriei + €riej)er = €

KHR
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e Other simple examples [2]

Change of notation

a] — —«1, ap — —Q], A3 — —Qo

b1, bo, b3, bs, by, bg — combinations of 31, 31, 31, kK1, kK2, K3
—
E = —a;B—-a>(e-B)e—~vex B
—31VxB—-p3(e-(VxB)e—dex (V xB)

—r1e- (VB)®) —sex (e (VB)S) —ks3(e-(e- (VB)))e

(VB)) = 3(8B;/0x; + 0B;/0x;)
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e Other simple examples [3]

E invariant under reflexion of w at planes containing e

E.g. e =(0,0,1), reflexion at x = 0
FieW(z,y. 2) = —Fu(—x.y, 2)
Fgeﬂ(m, y,z) = Fy(—x,y,2)
F;eﬂ(m,y,z) = Fo(—z,y.2)

— a'%] ar =0 =k = k3 =0

— g — —7YEe X E

31 VxB-08:(e- (VxB)e—rnoex (e (VB)S)

KHR
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e Other simple examples [4]

€ invariant under reflexion of u at planes perpendicular to e
E.g. e =(0,0,1), reflexion at z =0

FreM(a,y, 2) = Fo(z,y, —2)

e (a,y,2) = Fy(a,y, —=2)

Frefl(e, y,2) = —Fo(z,y, —=2)

= Odlzagzﬁ,/zo

= €& = —p1VxB-p3(e- (VxB)e—-dex (V xB)
—r1e- (VB)® —ryex (e- (VB)®) —rz(e-(e- (VB)¥))e)
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e Other simple examples [5]
o Inhomogeneous turbulence

E = —~vexB
31V xB-p:(e-(VxB)e—roex (e (VB)®)

= J=0om- (E —~vex B—roex (e- (Vﬁ)(S)))
omij = o ((1 4+ poB1)8;; + pobaee;) *
anisotropic mean—field conductivity!
S| = om|E
J = UmJ_(EL —vex B

—3rpex ((e-V)BL +V (e EII)))

om| =0/ +po(B1+0B2)), omi=0c/(1+ poB1)
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e Other simple examples [6] o Inhomogeneous turbulence [2]

—ve x B < “~ effect”
31V xB—03:(e-(VxB)e—roex (e- (VB)®)

E

<& transport of mean magnetic flux in the absence of mean motion

&

“turbulent diamagnetism’ (Radler 1966)

<& Ytopological pumping’” (Drobyshevski et al. 1980)
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e Other simple examples [7] © Inhomogeneous turbulence [3]

1
T = 2%k €k
Accept again SOCA

1 oo
e = 5/0 ((u(z, 1) - V) u(e, t — ) 4+ u(z, )(V - ulz, t — 7)) dr

. for ¢ — oo o3¢
for g — O

Assume in addition incompressible fluid
1 >0
ye = EV/O ((e-u(x,t))(e-u(x.t —7)))dr for ¢ — oo

3
: V_/m«e-u(m,t))<e-u<m+£,t>>>dj for q— 0

e =
7 8mn
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e Other simple examples [3]
o Homogeneous turbulence subject to Coriolis force
Angular velocity 2 = Qe

E = —31VxB-03(e-(V xB)e
—de x (V x B)
—k1e-(VB)S) —kse x (e (VB)®)
—r3(e-(e- (VB)®))e)
= 31V XxB-73,(02-(V xB)Q
60 x (V x B) < " x J effect”

— e together with differential rotation capable of dynamo action
J=0om - (E—pubéQxJ—---) om mean—field conductivity tensor

Note that Q x (V x B) = —(Q-V)B+ V(Q - B)
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e Other simple examples [9] o Coriolis force
5 = l(b'“ — b )e;
4\Y1730 = Y313/%

Accept again SOCA

OO
c‘i:—%/o (u(x,t) xu(xe,t —7)) - e dr for g — oo (%)

3
161ﬁ [ (€ ut@.t) (& ul@+€.D) e% for q— 0

-~

For statistically steady turbulence (%) can be written as
OO
1
5= gfa (e, t) x (u(, t+7)—u(m, t—7)))-e dr  for g — oo
In this case only the part of (u(x,t) x u(x,t+ 7))
which is antisymmetric in = contributes to ¢ |

KHR
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e Other simple examples [10]

o Turbulence under the influence of a mean magnetic field
B =RBe

General form of € plus requirement &€ — —€ as B — — B leads to

£ = (a—a(B-(VxB)))B—(AVB*+(BV)B)xB-3VxB. ()

Identity

(AvB° - (B-V)B)xB+ (B (VxB))B-B°VxB=0
allows to bring () in the simpler form
£=(a-a(B-(VxB))B-~(VB°)xB-3VxB,

«, @, ... may depend on |B].

KHR Stockholm January 2010



e Other simple examples [11] o Mean magnetic field

£=(a-a(B-(VxB))B- (VB)xB—-3V xB
T he representation

applies with
~ 5 - —2 )
and also with
-2 _—— .
ajj = adjj +v€eViB™. bjj = —aB;B;— (d;;.

KHR Stockholm January 2010



e NMore general cases
Assume &; = a?ijj + b.é_jkﬁgj/aj:k

aj; = — i+ €Tk,  Quj = Qg
9B, e _
e = (VB = 3eu(V x B),
JB; _ (S
b.,,-jkg;‘ = —b;j(V x B)j — 5iju(VB)
bij = Bij + €Kk,  Kijk = Kikj
—
E=-a B-vxB-8-(VxB)-6x(VxB)—k-(VB)®
TJ=om (E+{U - xB-a-B-6x(VxB)-kr (VB)®)

omij = o (8 + poBi)

KHR Stockholm January 2010



e More

S
|

general cases [2]

—a-B
—~x B
—3-(V x B)
—d x (V x B)
k- (VB)®

Jm-(E

—|-(U_— v) x B

—a- B

—0 x (V x B)
e (VE)(S))

anisotropic a effect

~ effect, pumping

anisotropic magnetic diffusivity
d x J effect

mean-field conductivity

“effective velocity”
anisotropic « effect
d x J effect

KHR
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e More general cases [3]

ajj = —5(ai; + aji)
Vi = %ﬁijkajk
Bij = x(€iibjrr + €jrbirt)
5 = 7(bjji— bjij)
kije = —5(biji+ big)
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e Structure of £, from symmetry arguments

Adopt the concept of

scalars — pseudoscalars
polar axial vectors (E,J,U - —-B,H)
true — pseudo quantities (scalars, vectors, tensors)

E = aj; Ej + b; 1. E)Ej /O0xy.
E=-a- B-~xB-B-(VxB)—-6x(VxB) -k -(VB)®
Vectorial and tensorial construction elements for a;;, b.z-__j;ﬂ, a,v,3,0,K:
5i5. g (e0. = V(u?)), D= (VU)®)
€ijk, 2, W =V x U.
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® Structure of £ [2]
o Inhomogeneous turbulence on a rigidly rotating body

Vectorial and tensorial construction elements for &£:

isotropic tensors, g, 2
a;; = ai(g-Q)6; + (92 + 9:£2;)
+az(g-2)gig; + as(g - 2)Q2;Q2;
+as(€1m9; + €1m9i)912m + ae (€125 + €1mS2:) 912m

All coefficients are scalars, no pseudoscalars,

may depend on g2, Q2 and (g - Q)2

Steenbeck, Krause and Radler 1966 (SOCA, linearity in g and Q):
a1(g - Q) =k (u?)(Mgrc/n) Q- Viog(o\/(u?), k=1
C ’

In SOCA trace(ax) (NOT ay(g-£2) Il
determined by (u(x,t) - (V xu(x + &, t+71)))

KHR
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e Structure of £ [3] o Inhomogeneous turbulence on a rigidly rotating body [2]

Vi = 719i +72(9 - Q) + V3€i1m912m

Bij = B10ij + B2(g - ) (92 + 9i€2;) + B39i9; + 845282,
+035(g - Q)(Eéhngj + Ejimg-i.)glgm
+036(g - Q)(Eéimgj + Ejf-m,Q'i)Qme

6; = 01(g-Q)g; + 0282 4 03(9 - Q)€1 912m

All coefficients are scalars, no pseudoscalars, ...
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e Structure of £ [4] o Inhomogeneous turbulence on a rigidly rotating body [3]

Rijk

k1(g - Q) (05595 + 0;9;) + £2(0;;S2) + 0;552;)
+r3(eijign + €inig)ar + ralg - Q) (€191 + €ir19;) 2
+r5(g - Q) (€12 + €112) a1 + re (€182 + €1152;) €2
+r7(g - Q)gigigr + ~89i(9;2; + 9152;)

+r982;9;91 + r10(g - £2)9,$2;$2,

+r11(9 - ) (92 + 9182;5) + £1252;€2,2,
+r13(9 - Q)gé(gjekrﬂ-nz + Q,I;;Ejlm)glﬂm

+r14(9 - Q)€1 91912m

+H’159?'.(Qj€klm + QL’.EjEm)QﬂQm

+r162i(gj€ktm + ILEjim) 91S2m

+r17(g - Q)Q?ﬂ(QjEkl-m + lejlm)glﬂ?n

+r18(g Q)E-i.lmQijQZQm

All coefficients are scalars, no pseudoscalars, ...
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e Structure of £ [5]
o Inhomogeneous turbulence on a rotating body
in the presence of another mean motion
Vectorial and tensorial construction elements for &:
isotropic tensors, g, 2, W . D
For simplicity, however, linearity of £ in g, 2, W, D

= @1 (g 9)5334-@(9)(959‘4'9,?9')
o (g - W55 4 oSV (g, + ;W)
‘|'0~"(D (EilmDij + Ejg.m_D,{?f)Qm

Yi = u:.(o) i+ 'Y"(Q)E-ilmglgm + “f(H;)Eﬂmgfﬂ’rm + '}"(D)QIDH

Coefficients are scalars independent of g, Q, W and D
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e Structure of £ [6] o Inhomogeneous turbulence on a rotating body [2]

Bij

~(0 3D
= 8Os, 4 5Mp,

5; = 68, +sMw,

ki = D05 4 00:2) + £ (6,,W, + 85,W)
+1 ) (€1 Dyt + €D j0)

Coefficients are scalars independent of g, 2, W and D
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e Structure of £ [7] o Inhomogeneous turbulence on a rotating body [3]

£ = P DB -af(Q-B)g+ (g B)D)
—oi" (g W)B — oS (W -B)g+ (g - B)W)
—oPa(g.D) B
—("‘f’(o)g —+ "r"(Q)Q x 1+ "‘f"(w)g x W + "‘f’(D)Q - D) x B
3Ov xB-sP)D.(V x B)
— (59 4+ 5wy x (V x B)
(Y +Mwy . (vB)® — kP (D). (VB)®

Qjj = (EﬂmDﬂj + EjlmDIi)gm
Rijk = €10k T €k D1
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e Calculating the mean electromotive force
o Second—order and higher—order correlation approximation

Ob—-VxUxb-—nVxb)=Vx(uxB+(uxb)), V-b=0

Second—order correlation approximation: (u X b)" canceled
nth order correlation approximation: (u X b)" expressed

by (n — 1)th order results

Convergency proof by Krause 1968

KHR Stockholm January 2010



e Calculating e.m.f. [2]

o Test—field method
Schrinner et al. 2005 ... 2007

Recall that

o € = (u X b) is calculated on the basis of

Ib—Vx (Uxb+uxb—(uxb))—nVxb) =Vx(uxB), V-b=0,
o & is functional of w, U and B, which is linear in B.

Assume that & = a;;Bj 4 b;;1,0B/dx,. (%)

¢ aj; and szk are functionals of w and U only, independent of B.

Specify B to be a ‘“test—field” E(n),
denote the corresponding b and &€ by b(") ana £(M)
Then £ = a;; BV + b, 0BY joz),. (+%)

calculate £ for a number of B™ (n=1,2,...)
and solve the (sufficiently large) system of equations (**) for @; j and b?-_jk.
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e Calculating e.m.f. [3] o Test—field method [2]

Some comments

o T he test—fields should be linearly independent
and all higher than first-order spatial derivatives should be small

o T he test—fields need not to satisfy any boundary conditions,
and they need not to be solenoidal

o The test—field method works independent on whether u or U
depend on B,
is therefore suitable for investigating magnetic quenching

¢ TThe method described can be extended to more complex ansatzes
for £, e.g. with £€© or higher—order derivatives of B
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e Calculating e.m.f. [4]
o Some results for mean—field coefficients

1
it
T
-i‘_

0.1 1.0 10.0 100.0

ottt

0.1 1.0 10.0 100.0
R

m

Figure 6. Dependence of the normalized values of & and n; on Ry for
=22 i £ i i i
Sur et al. 2008 Re T_he vertical bars IEIE]’]D[E t.wme the error estimated by averaging
over subsections of the full time-series (see the text). The run with Ry =
220 (Re = 2.2) was done at a resolution of 5123 meshpoints.
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e Kinematic mean—field dynamo models
o Basic equations

Consider (simply connected) conducting body
surrounded by free space

VXxE=-0B,VxB=uyJ,V-B=0 everywhere

J=c(E4UxB+&) inV, J=0in)

B=0(a3)asa— oo a distance from conducting body

or (equivalent) - - -
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e Kinematic mean—field dynamo models [2] o Basic equations [2]

Vx(WWxB-UxB—-&)+0B=0, V-B=0inV
VxB=0, V-B=0 (= B=V®d, A®=0)in)

[B] = 0 across 0V

B=0(a3)asa— o

MEAN-FIELD DYNAMO: B—#—0 as t—
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e Kinematic mean—field dynamo models [3] o Basic equations [3]

& Magnetic energy stored in the mean field

d ; B 7 I _
S 2 gy =— —dt;ﬂ—/ U.(JxB)dv+ [ T-Edv
dt Joo 2 oy o oV oY

d B’
MEAN-FIELD DYNAMO: — [ Z_dv>0

dt Joo 21

¢ EXxistence of a mean—field dynamo
implies the existence of a dynamo in the original sense.

o Mean fields are not subject Cowling’s theorem (unless £ - B = 0).
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e Kinematic mean—field dynamo models [4]
o “Traditional” assumptions

Shape of the fluid body and distribution of magnetic diffusivity
symmetric about rotation axis
symmetric about equatorial plane
steady

All mean quantities depending on U(= U + u) are invariant under
rotation of U about rotation axis
reflexion of U about equatorial plane
time shift in U

Some consequences

o T — F(mer} + U(rot)

—(mer)

U
o {u-(V xu)) symmetric about rotation axis,

and U(mt) symmetric about rotation axis and equatorial plane, steady

antisymmetric about equatorial plane, steady

KHR
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e Kinematic mean—field dynamo models [5] o “Traditional” assumptions [2

¢ The solutions B of the basic equations
are superpositions of modes of the form

B = 9%(1’3 exp(imo + (A + iu.:)t))

B — symmetric about rotation axis

— antisymmetric or symmetric about equatorial plane

— steady (Am or Sm modes)
m integer, A and w real

DYNAMO: A >0

For w = 0 monotonic, for w # 0 oscillatory time dependence.
If w %= 0 axisymmetric (m = 0) modes are intrinsically oscillatory,
non—axisymmetric (m #= 0) modes are waves

traveling in azimuthal direction.
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e Kinematic mean—field dynamo models [6]
o Basic dynamo mechanisms

In all cases investigated so far
interplay between the poloidal and toroidal parts
of the mean magnetic field

o a2 mechanism
works with a—effect alone
preferably non—oscillatory magnetic fields

axisymmetric and non—axisymmetric fields
Steenbeck & Krause 1969, ....
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e Kinematic mean—field dynamo models [7] o Basic dynamo mechanisms [2]

¢ aw Mechanism
works with a—effect and differential rotation
oscillatory and non—oscillatory magnetic fields
preferably axisymmetric fields
Steenbeck & Krause 1969, ....
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e Kinematic mean—field dynamo models [8] o Basic dynamo mechanisms [3]

¢ dw mechanism
works, e.g., with Q x J—effect (no a—effect!!!) and differential rotation
non—oscillatory magnetic fields
preferably axisymmetric fields
Radler 1969, ....
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