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Dynamo simulations

Solve induction equation and the Navier-Stokes equations simultaneously.
Most work has been done on convection-driven dynamos.

Anti-dynamo theorems tell us dynamo process is three-dimensional, so expect
3D magnetic fields.

(i) No dynamo can be maintained by a planar flow

(ux(x, y, z, t), uy(x, y, z, t), 0).

No restriction is placed on whether the field is 2D or not in this theorem.

(ii) Cowling’s theorem. An axisymmetric magnetic field vanishing at infinity
cannot be maintained by dynamo action.

(iii) A purely toroidal flow, that is one with u = ∇×Tr cannot maintain a
dynamo. Note that this means that there is no radial motion, ur = 0.
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In the Earth’s core, the flow is clearly 3D, and rotating convection leads to 3D
flows.

Simulations are therefore computationally demanding, and require clusters of
processors for serious study. Only models close to critical can be studied with
desktop machines.

Parallel programming (MPI) is required, and code construction is challenging.
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Rotating about z-axis. Gravity radially
inward, g = g0r. Centrifugal
acceleration small. Length scale d

is gap-width from inner to outer
boundary. Convection usually onsets
outside tangent cylinder.

Radius ratio inner/outer core for Earth is 0.35. Codes formulated in spherical
polars r, θ, φ, but cylindrical coordinates s, φ, z also useful.
Inner core boundary at r = 7/13 = 0.538, CMB at r = 20/13 = 1.538.
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Dimensionless equations of the model

We use the magnetic diffusion time d2/η as the unit if time. The unit of
velocity is then η/d, so the dimensionless velocity is a direct measure of the
magnetic Reynolds number. The unit of magnetic field is (Ωρµ0η)1/2 so a
magnetic field of strength 1 has an Elsasser number of 1. Recall that in the
Earth’s core this unit is about 14 Gauss.
The dimensional Boussinesq equation of motion is

ρ
Du
Dt

+ 2ρΩ× u = −∇p+ j×B + ρν∇2u + ρg(αT + ξ)r̂.

The buoyancy term has a thermal part αT , α being the coefficient of thermal
expansion, and a compositional component ξ, where ξ is the mass fraction of
light material (believed to be sulphur and oxygen in the core)
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The dimensionless form is

E

Pm

Du
Dt

+ 2ẑ× u = −∇p+ (∇×B)×B + E∇2u +
RaPm

Pr
(T + ξ)r

Here the unit of temperature is ∆T , the superadiabatic temperature difference
across the core, and the unit of ξ is α∆T .

Ekman number E = ν/Ωd2 ∼ 3× 10−9 (10−15)

Modified Rayleigh number Ra =
gα∆Td

Ωκ
∼ 103 (109)

Prandtl number Pr = ν/κ ∼ 1

Magnetic Prandtl number Pm = ν/η ∼ 1 (2× 10−6)

η magnetic diffusivity, ν turbulent kinematic viscosity,

κ is the turbulent thermal diffusivity.
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Estimate for the Rayleigh number comes from

Ra = PrPm−1gα∆Td/Ωη ∼ 10×10−5×10−3×2×106/7×10−5×2

∼ PrPm−1 × 103

Note that ∆T is not the actual temperature difference across the core, but
only the temperature difference above the adiabatic part which is very much
smaller.
Induction equation

∂B
∂t

= ∇2B +∇× (u×B)

Temperature and composition equations

∂T

∂t
=
Pm

Pr
∇2T − u · ∇T +Q,

∂ξ

∂t
=
Pm

Pc
∇2ξ − u · ∇ξ +Qξ

Continuity equations
∇ ·B = ∇ · u = 0

Here Pc = ν/κξ, κξ being the compositional diffusion: Pc is large.
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If we assume turbulent values of diffusivities, with Prandtl numbers unity, T
and ξ can be added to form co-density variable. Note this assumes boundary
conditions are the same.

Q and Qξ are internal heating sources and composition sources, if any.

Simplest assumption is to ignore compositional effects, and have no internal
heating. Then in the non-convecting state, the superadiabatic temperature in
the core is

T (r) = ∆T (r2CMB/r
2 − 1) ∗ r2ICB/(r2CMB − r2ICB)

and there is a flux coming through the ICB driving convection. Differential
heating.

Secular cooling is equivalent to a uniform heating, but actually more heat
is carried by conduction down adiabatic gradient as r increases, so uniform
cooling is a better model.

Model equations 7/36



8

Compositional convection and boundary conditions

In the geodynamo, compositional convection is at least as important as thermal
convection. Modelled as an imposed flux of composition at the the ICB, no
flux at the CMB. Requires uniform sink term (equivalent to a secular increase
in composition throughout the core).

Stress-free or No-slip? Does make a difference! Since E is far too big, better
to have stress-free?

Thermal boundary conditions? On ICB should be

∂θ

∂r
= L

∂θ

∂t

∂ξ

∂r
= L

∂θ

∂t
on the ICB, where θ is temperature difference T − Tref and ξ is difference
between composition and its reference state value.
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L is a dimensionless parameter dependent on the latent heat of freezing which
with conventional values is about 3 (somewhat remarkably!). Physically, cooler
fluid in descending plumes freezes iron on the core, releasing a latent heat
comparable to that of the secular cooling of the core.

In practice, T = 1 on the ICB, T = 0 on the CMB is the usual choice.

On CMB, in homogeneous models,

∂θ

∂r
= 0,

∂ξ

∂r
= 0

though there are strong reasons for believing the heat flux is inhomogeneous.

Magnetic boundary conditions: At CMB, match field onto the potential field
outside the core.

At the ICB, either assume the inner core is an insulator (simple, but incorrect),
or solve the magnetic diffusion equation in the inner core, and match the field
across the inner core.
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Homogeneous/Heterogeneous CMB boundaries?

Homogeneous boundaries have conditions independent of θ and φ.

Heterogeneous boundary conditions take into account that the heat flux
carried by mantle convection may vary strongly with latitude and (particularly)
longitude. Cold descending plates will give a large heat flux where they hit the
CMB.

It is usually the thermal boundary conditions that are taken as heterogeneous.

Seismic observations suggest a plausible form of heterogeneity.
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With homogeneous boundary conditions, there is always a solution with no
motion (and no field). This becomes unstable as the Rayleigh number is
increased through a critical value.

With heterogeneous boundaries, this is no longer true: there is fluid motion
at any Ra. At low Ra the form of the convection is determined by boundary
flux; at higher Ra this form becomes unstable and the pattern becomes more
complex.

When the dynamo comes in, will the magnetic field be locked to the CMB
heat flux pattern? This could account for some long term features in the
geomagnetic field.
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Interpreting dynamo simulations

Dynamo simulations cannot currently be run with Earth-like parameters, and
almost certainly never will be. How do we compare outputs with observations?

Viscosity and thermal diffusivity are very small in the core, but much larger
in simulations. We have to hope that the small-scale turbulence, which we
can’t resolve, is enhancing the effective diffusion without doing anything else
significant.

How can we test this? Only by exploring the range we can simulate carefully,
to see the asymptotic behaviour as viscous and thermal diffusion goes to zero.
Also look at simpler plane layer models.
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Rotation rate problem

Additional problem with rotation rate: if we enhance the thermal and viscous
diffusion by a factor 105, we have Pr ∼ Pm ∼ 1, but we still have E smaller
than we can handle. Effectively, dynamo simulations are run with much slower
rotation than the real thing.

With ν ≈ η ≈ 2m2s−1, E ∼ 3 × 10−9, whereas the smallest E we can
currently achieve is E ∼ 3× 10−6. This creates a problem, because it means
the Rossby number Ro = U∗/dΩ is much larger in simulations than in the
Earth’s core.

Inertia is more important in simulations than it should be.

Alternative is to increase ν to 106 or more, leaving κ ∼ η. Then Pr ∼
Pm ∼ 10, and Ω is increased, reducing the Rossby number, and hence the
importance of inertia. Evidence that at ν = 106 an asymptotic inertia-free
regime is reached.
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Benchmark Dynamo

E = 10−3, Pr = 1, Pm = 5, Ra = 100. No internal heating, No-slip
boundaries. Dynamo steady in (westward) drifting frame. Once started in the
m = 4 configuration, only harmonics m that are multiples of 4 are present.
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Westward drift in Benchmark Dynamo

The westward drift has angular velocity ω ≈ 3ν/d2.

How to estimate ν? Pm = ν/η = 5, η = 2m2 s−1 gives ω = 10−11. Real
thing is 5× 10−4/2.26× 106 ∼ 1.4× 10−10. Not unreasonable as Ra quite
low.

However, ν/Ωd2 = 10−3, Ω ∼ 7 × 10−5 gives ν = 3.6 × 105, giving
absurdly large westward drift.

Need scaling laws telling us how models behave in the low E and low Pm

limit to make sense of them.
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Spectral methods

Basic idea is to expand the fields in spherical harmonics, and to evolve the
coefficients with time. Advantage is that when solution is properly resolved
the coefficients of the high order harmonics become exponentially small.

Ŷ ml (θ, φ) = P
|m|
l (cos θ) eimφ

Schmidt normalised Legendre functions are used in geomagnetism, and
coefficients are complex.∫ 2π

0

∫ π

0

Ŷ ml Ŷ nk sin θ dθ dφ = 0, m 6= −n, l 6= k

= 2π
∫ π

0

[
P
|m|
l (cos θ)

]2
sin θ dθ

= 2π
2(2− δm0)

2l + 1
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Toroidal-Poloidal expansions

Any velocity and field satisfying ∇ · u = ∇ ·B = 0 can be written

u = ∇× (Tur) +∇×∇× (Pur)

B = ∇× (TBr) +∇×∇× (PBr)

automatically reducing from 3 dependent to 2 independent variables.

E(
1
Pm

∂

∂t
−∇2)u = Nu −∇p̂,

(
∂

∂t
−∇2)B = NB,

(
∂

∂t
− Pm
Pr
∇2)C = NC,

where the nonlinear terms, buoyancy and Coriolis force appear in N.
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Spectral equations

Take r̂ · ∇× and r̂· of the induction equation and r̂ · ∇× and r̂ · ∇ × ∇×
of the equation of motion to obtain

(
∂

∂t
−∇2)TB =

r

l(l + 1)
r̂ · ∇ ×NB,

(
∂

∂t
−∇2)PB =

r

l(l + 1)
r̂ ·NB.

and

E(
1
Pm

∂

∂t
−∇2)Tu =

r

l(l + 1)
r̂ · ∇ ×Nu,

E(
1
Pm

∂

∂t
−∇2)Pu = g,

−∇2g =
r

l(l + 1)
r̂ · ∇ ×∇×Nu.

The poloidal equation for velocity splits into 2 second order parts.
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Spectral expansions

Toroidal and poloidal coefficients all expanded in the form

A(r, θ, φ, t) =
∞∑
l=0

∑
|m|≤l

Alm Ŷ
m
l (θ, φ) (∗)

A real implies Alm = A∗l,−m (coefficients are conjugate-symmetric). Alm
are functions of r and t only. Now

(
∂

∂t
−∇2)A =

∞∑
l=0

∑
|m|≤l

(
∂

∂t
− 1
r2
∂

∂r
r2
∂

∂r
+
l(l + 1)
r2

)Alm

so our operator now only involves r and t.
At each timestep, we must get the nonlinear right-hand-side in the form (*)
and time-step the coefficients of each harmonic separately.
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Radial dependence and boundary conditions

Either finite differences or Chebyshev polynomials.
Alm(r, t) =

∑N
0 an(t)Tn(x), x = −1 + 2(r − ri)/(ro − ri)

Chebyshev methods are generally more accurate, but finite difference methods
are local, and therefore easier to parallelise. Typically put all variables at one
mesh point on one processor.
Insulating boundaries for the induction equation,

TB = 0,
(
∂

∂r
− l

r

)
PB = 0 on ri,

TB = 0,
(
∂

∂r
+
l + 1
r

)
PB = 0 on ro.

The potential field of degree l has r-dependence rl in the inner core and
r−l−1 in the mantle, and the boundary conditions come from matching the
value and radial derivative.
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Radial formulation for equation of motion

No-slip

T = 0, P = 0,
∂

∂r
Pu = 0.

Stress-free (
∂

∂r
− 1
r

)
Tu = 0, P = 0,

∂2

∂r2
Pu = 0.

A slight complication is that there are 4 bc’s on Pu and none on g. Use a
Green’s function method. For the no-slip case, solve

E(
1
Pm

∂

∂t
−∇2)P̂u = ĝ, −∇2ĝ =

r

l(l + 1)
r̂ · ∇ ×∇×Nu

with ∂rP̂u = 0 and ĝ = 0 on both boundaries. P̂u won’t be zero at the
boundaries, but
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we can add on multiples of P1 and P2

−E∇2Pi = gi, −∇2gi = 0, i = 1, 2

satisfying ∂rP̂i = 0, g1 = 0, 1, g2 = 1, 0 on boundaries ri, ro. Required
solution is Pu = P̂u + aP1 + bP2, a and b being solutions of[

P1(ri) P2(ri)
P1(ro) P2(ro)

] [
a

b

]
= −

[
P̂u(ri)
P̂u(ro)

]

P1 and P2 are time-independent, so they can be computed at the start and
stored, so the computational cost is negligible, and the method seems robust
and accurate.
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Implicit/Explicit timestepping

The diffusive parts of the spectral equations are time-stepped using implicit
Crank-Nicolson, (yt+1−yt)/δt = 0.5(∇2yt+1 +∇2yt) + nonlinear. which
allows a larger time-step than an explicit method, and is easy to implement
using banded matrices. Unfortunately, we cannot treat the nonlinear terms
implicitly.

Usually use Adams-Bashforth, nonlinear = 1.5Nt − 0.5Nt−1.

How do we choose the time-step? Use predictor-corrector method. First find
yt+1 as normal, then do a corrector by evaluating the nonlinear terms at t+ 1
and solving again using the Crank-Nicolson formula for the nonlinear terms.
Compare predictor and corrector: if very close, increase time-step, if too far
apart, reduce time-step.
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Workload of spectral methods

Most of the computer time is spent evaluating the nonlinear terms.

All differentiating is done in the spectral space, i.e. differentiating Legendre
functions, which have standard formulae.

To multiply nonlinear terms, we must evaluate ur, uθ etc on a grid, multiply
the relevant terms on each grid point, and then convert the values on the grid
back to spectral space.

In the φ direction fast Fourier transforms can be used to convert between
physical and spectral space. Unfortunately, no useful fast Legendre transforms
are available. Conversion in θ direction needs N2

θ operations.

Periodic box is significantly faster than spherical geometry.
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Finite volume, finite difference methods

Advantages: local, so better parallelisation. Possibility of fully implicit
methods.
Disadvantages: need to avoid high derivatives, so poloidal/toroidal
decomposition unattractive. Need to impose solenoidal conditions. Boundary
conditions awkward to implement. Less accurate. Pole singularity can only be
avoided by using complicated grids.
With today’s computers spectral methods seem to have the advantage, but if
we can access over 103 processors for every day runs, this could change.
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Results from spectral codes

Pr = Pm = 1, Ra = 750, E = 10−4.
Radial magnetic field snapshot at the
CMB
No internal heating. No-slip, fixed
temperature, insulating boundaries.
Very dipolar, doesn’t reverse. Field
slightly weaker at the poles.
Intense flux patches at high latitudes.
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Velocity field

Pr = Pm = 1, Ra = 750, E = 10−4.
Radial velocity snapshot at
r = 0.8rCMB.
Note the columnar nature of the
convection rolls.
Intense flux patches at the top of these
columnar rolls.
Pattern propagates westward.
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Lower Prandtl numbers

Pr = Pm = 0.2, Ra = 750,
E = 10−4.
Radial magnetic field snapshot at the
CMB
Much less dipolar. Field strength is
weaker.
This type of dynamo can reverse.
Rossby number is larger, and inertia is
playing a significant role.
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Flow at lower Prandtl numbers

Pr = Pm = 0.2, Ra = 750,
E = 10−4.
Radial velocity snapshot at
r = 0.8rCMB.
More activity near the poles,
less columnar convection rolls.

Between these patterns lies an Earth-like regime. Unfortunately, at the very
low E in the core, we are firmly in the dipolar regime, with inertia very small.
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Low inertia limit: field

Black:- Pr=Pm=5, Blue:- Pr=Pm=1,
Red:- Pr=Pm=0.5, Green:- Pr=Pm=0.2
Sequence of runs showing the low Rossby number inertia-free limit.
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Low inertia limit: velocity

Black:- Pr=Pm=5, Blue:- Pr=Pm=1,
Red:- Pr=Pm=0.5, Green:- Pr=Pm=0.2
Sequence of runs showing the low Rossby number inertia-free limit.
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Force balance: Lorentz, Buoyancy, Coriolis

Horizontal slice at z=0.5

Pr = Pm = 5

Pr = Pm = 1

Pr = Pm = 0.5

Pr = Pm = 0.2

Lorentz Buoyancy Coriolis
|(∇×B)×B|r Ra/r0|T | |2ẑ× u|r
Relative strength of radial components of forces: white =0, black=1.
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Force balance: Inertia, Viscous

Horizontal slice at z=0.5

Pr = Pm = 5

Pr = Pm = 1

Pr = Pm = 0.5

Pr = Pm = 0.2

Inertia Viscous
E Pm−1|(∇× u)× u|r E |∇2u|r
Relative strength of radial components of forces: white =0, black=1.
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Small E, low Pm dynamo

Dipolar dynamo at
E = 3 × 10−6, Pr = 1,
Pm = 0.1, Ra ≈ 50Racrit.

The magnetic Reynolds number again Rm ≈ 125, but now fluid Reynolds
number much higher Re ≈ 1250. Field has similar structure to the E = 10−4

run, but field strength is a little weaker, Λ = B2/ρµΩη ≈ 0.5.
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Small E, low Pm dynamo, Flow pattern

Left: radial velocity at r = 0.5r0. Right: radial velocity at r = 0.8r0.
At lower E the convective columns are much thinner, particularly further out
from the ICB.
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Small E, low Pm dynamo, Scale separation

Left: radial magnetic field at z = 0.2. Right: vorticity at z = 0.2.
Notice that the magnetic field is on a much larger scale in these low Pm

calculations. Temperature fluctuations on same scale as magnetic field.
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