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Disclaimer

 I worked for Apple developing OpenCL
 I’m biased

 Please point out my biases. They help me
get a better perspective and may reveal
something.
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What is OpenCL?
Low-level language for high-performance

heterogeneous data-parallel computation.

 Access to all compute devices in your system:
 CPUs
 GPUs
 Accelerators (e.g., CELL… unless IBM cancels Cell)

 Based on C99
 Portable across devices
 Vector intrinsics and math libraries
 Guaranteed precision for operations
 Open standard

Low-level -- doesn’t try to do everything for you, but…
High-performance -- you can control all the details to get the maximum
performance. This is essential to be successful as a performance-
oriented standard. (Things like Java have succeeded here as standards
for reasons other than performance.)
Heterogeneous -- runs across all your devices; same code runs on any
device.
Data-parallel -- this is the only model that supports good performance
today. OpenCL has task-parallelism, but it is largely an after-thought
and will not get you good performance on today’s hardware.
Vector intrinsics will map to the correct instructions
automatically. This means you don’t have to write SSE code
anymore and you’ll still get good performance on scalar devices.
The precision is important as historically GPUs have not cared
about accuracy as long as the images looked “good”. These
requirements are forcing them to take accuracy seriously.�
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Open Standard?

 Huge industry support
 Driving hardware requirements

This is a big deal. Note that the big three hardware companies are here
(Intel, AMD, and Nvidia), but that there are also a lot of embedded
companies (Nokia, Ericsson, ARM, TI). This standard is going to be all
over the place in the future. Notably absent is Microsoft with their
competing direct compute standard as part of DX11.
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Demo

The demo is a Mandelbrot fractal generator where you can see the
performance difference between straight C code and OpenCL on the
CPU, GPU, and combined CPU+GPU.
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What is OpenCL Good For?

 Anything that is:
 Computationally intensive
 Data-parallel
 Single-precision*

I am going to focus on the GPU but OpenCL can
run on the CPU as well.

*This is changing, the others are not.

These three requirements are important. If your algorithm is not
computationally intensive and data-parallel you are going to have a
hard time getting a speedup on any 100+ core architecture like a GPU.
This is not going to change significantly in the future, although there will
be more support for non-data-parallel models. So if you can adjust your
algorithm to this model you will be doing yourself a favor for whatever
architecture/programming system is popular in the future.
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Computational Intensity
 Proportion of math ops : memory ops

Remember: memory is slow, math is fast

 Loop body: Low-intensity:
A[i] = B[i] + C[i] 1:3
A[i] = B[i] + C[i] * D[i] 2:4
A[i]++ 1:2

 Loop body: High(er)-intensity:
Temp+= A[i]*A[i] 2:1
A[i] = exp(temp)*erf(temp) X:1

This is a reminder of how important this is from my previous lecture.
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Peak GBs and GFLOPs
 Intel Nehalem

 32 GB/s @ 50 Gflops (3 GHz, 4 cores)
 Load 8 doubles per 50 flops
 Need 6 flops per unique double

 AMD 5870
 154 GB/s @ 544 Gflops  (850 MHz, 1600 “cores”)
 Load 19 doubles per 544 flops
 Need 29 flops per unique double

 Nvidia C2050 (Fermi)
 144 GB/s @ 515 Gflops (1.15 GHz, 448 “cores”)
 Load 18 doubles per 515 flops
 Need 29 flops per unique double

Less than this and you are bandwidth-bound.

Important! You should always have a feeling for your storage and
bandwidth requirements when trying to estimate what performance to
expect.
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Real World
Intel Nehalem 3GHz (2009)

Core

Core

Core

Core

Latency

DRAML3L2L1

D. Molka, et. al., Memory Performance and Cache Coherency Effects on an Intel Nehalem Multiprocessor System, PACT 2009.

1 double/cycle per core

1.3 double/cycle per core

1.9 double/cycle per core

0.4-1.0 double/cycle
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Data-Parallelism
 Same independent operations on lots of data*

 Examples:
 Modify every pixel in an image with the same filter
 Update every point in a grid using the same formula

*Performance may fall off a cliff if not exactly the same.

In the image each output pixel is generated by operating on a set of
input pixels. Each output result is independent of the other output
results, consists of an identical calculation, and therefore can be done
in parallel. This algorithm allows OpenCL to run each pixel calculation
in parallel, thereby maximizing throughput.
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Single Precision

32 bits should be enough for anything…

Single Precision Double Precision

This is changing. Expect double precision everywhere in 1 year.

Double precision on high-end cards (Nvidia Fermi, AMD) is available at
approximately half the single-precision performance. More importantly,
you only need half the bandwidth to access single-precision data. Try to
take advantage of this wherever you can.
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OpenCL Compute Model
 Parallelism is defined by the 1D, 2D, or 3D

global dimensions for each kernel execution
 A work-item (thread) is executed for every point in the

global dimensions

 Examples
1k audio: 1024 1024 work-items
HD video: 1920x1080 2M work-items
3D MRI: 256x256x256 16M work-items
HD per line: 1080 1080 work-items
HD per 8x8 block: 240x135 32k work-items

Note that the correct global dimensions for a problem depend on what
you want to do. If you want to process each pixel of an HD image in
parallel, then 1920x1080 is the right size. If you want to process each
line in parallel, then 1080x1x1 would be better, or if you want to
process the image in 8x8 blocks, you would use 240x135.
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Local Dimensions
 The global dimensions are broken down into

local work-groups

 Each work-group is logically executed together on one
compute unit

 Synchronization is only allowed between
work-items in the same work-group
This is important.
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Local Dimensions and
Synchronization

Global domain: 20x20
Work-group size: 4x4

Synchronization OK.
Same work-group

No Synchronization.
Different work-groups

Work-group size limited by
hardware. (~512)

Implications for algorithms:
e.g., reduction size.
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Synchronization Example:
Reduction
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Parallel reduction does the reduction on sets of data at each step,
thereby reducing the amount of data at each step.
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Synchronization Example:
Reduction
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When assigning threads to do the reduction in parallel, each step
needs to wait for the threads in the previous step to finish so it can be
sure the results are valid before it continues. In this case, thread 0
needs to wait for thread 1 at each step.
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Synchronization Example:
Reduction
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Work-group size = 4 Work-group size = 4

Invalid Synchronization

Thread 2 is waiting for threads 4 and 5.
But 4 and 5 are in a different work-group.

In OpenCL, the work-group size can play an important role here. If the
work-group size is too small, the reduction may need to synchronize
across work-groups which is not supported in OpenCL. Here thread 2
on the second reduction step is trying to wait for the results of threads 4
and 5, which are in a different work-group. Since this type of
synchronization is not supported, the results will be undefined. To
handle this in OpenCL you need to restructure your algorithm.
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Why Limited Synchronization?
 Scales well in hardware

 Only work-items within a work-group need to communicate
 GPUs run 32-128 work-groups in parallel

Cheap
Expensive

This type of scaling is going to be the case for all architectures. If you
can keep your synchronization local (even if the hardware supports
global) you will get better performance.
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What About Spinlocks in OpenCL?
while (!lock[n]) {}

Compute Device

work-group
0

work-group
1

work-group
2

work-group
3

work-group
4

work-group
5

work-group
6

work-group
7

work-group
4

work-group
5

work-group
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work-group
7

work-group
4

work-group
5

work-group
6

work-group
7

work-group
4

work-group
5

work-group
6

work-group
7

work-item 3 in
work-group 0

waiting on

work-item 66 in
work-group 4

Problem: no guarantee that work-group 4 will get to run until
work-group 0 finishes: no forward progress.

Spinlocks are explicitly not allowed between work-groups in OpenCL
because there is no guarantee that the scheduler on the device will
make forward progress.
E.g., in this example, the scheduler may have decided that work-group
4 will run on the same compute unit as work-group 0, and it may well
wait for work-group 0 to finish before running 4.
This would mean that work-group 4 would never run (because work-
group 0 is waiting for work-group 4 before it will finish) and the kernel
will hang.
Until there are guarantees about the thread schedulers, this type of
synchronization is not permitted in OpenCL.
With that said, on Nvidia hardware, at least, if you have no more work-
groups than streaming multiprocessors, you can get away with this.
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Choosing Local and Global
Dimensions

 Global dimensions
 Natural division for the problem
 Too few: no latency hiding

(GPU; SMT CPU)
 Too many: (too little work each) too much overhead

(particularly CPU)
 In general:

 GPU: >2000 (multiple of 16 or 64)
 CPU: ~2*#CPU cores*

 Local dimensions
 May be determined by the algorithm
 Optimize for best processor utilization

(hardware-specific)

*It would be very cool to have a compiler that ran multiple work-items on once CPU
core at the same time via vector ops.

Picking the best local dimension size is very hardware dependent. Most
GPUs operate on chunks of 16 or 64 work-items at a time, so you want
to make sure your local dimensions are an even multiple of that value.
(If not, some portion of the hardware will be unutilized.) Unfortunately
the fine-tuning of this parameter is algorithm and hardware dependent,
so there is no way to know the optimal number without testing.
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Device

OpenCL Memory Model

Private Private Private Private

…
Compute unit

work
item

work
item

…

Compute unit

work
item

work
item

…

Local Local

Global Memory

Host

Host Memory 1-16GB

0.25-4GB

16-48kB
10x Global BW

Registers

PCIe (slow)

Each compute-unit on the compute-device (e.g., CPU or GPU)
processes a number of work-items in parallel. In the architecture
example shown earlier, the GPU compute-unit had 8 processor cores
and could execute 8 work-items in parallel. CPUs typically execute 1
work-item per compute-unit in parallel. Note that this is a physical
mapping, whereas the logical mapping may be different. In practice
GPUs may run many more work-items per compute-unit by time
multiplexing them. The only requirement of OpenCL is that every work-
group be run on one physical compute-unit so all work-items in the
work-group can synchronize.
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Device

Global Memory

OpenCL Memory Model

Private Private Private Private

…
Compute unit

work
item

work
item

…

Compute unit

work
item

work
item

…

Local Local

Host

Host Memory

~5GB/s

data

50-200GB/s

data

The user must manually allocate and move data to the global memory.
From there all work-items can access it.
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Device

Global Memorydata

OpenCL Memory Model

Private Private Private Private

…
Compute unit

work
item

work
item

…

Compute unit

work
item

work
item

…

Local Local

Host

Host Memorydata

~1000GB/s

~5GB/s

50-200GB/s

Using local memory is much more complicated. The user must not only
allocate the data, but have the kernel code running on each work-item
copy the appropriate data from the global memory into the local
memory before it can be used. This is quite complicated (as are all
software-managed memories) but the advantage is a tremendous
amount of bandwidth.
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Moving Data
 No automatic data movement
 You must explicitly:

 Allocate global data
 Write to it from the host
 Allocate local data
 Copy data from global to local (and back)

 But…
 You get full control for performance!

(Isn’t this great?)
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Host

Context

OpenCL Execution Model

float4[]float4[]float4[]

Q
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Devices

Memory
Objects

Your
Application

Your OpenCL
Computation

A compute context indicates which devices share which memory
objects. This is necessary so OpenCL can know how to move the data
around to the appropriate device when you are ready to use it. Your
application interacts with the compute devices by submitting work to
command queues for each device.
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OpenCL Execution Model
 Devices

 CPU, GPU, Accelerator
 Contexts

 A collection of devices that share data
 Queues

 Submit (enqueue) work to devices

 Notes:
 Queues are asynchronous with respect to each other
 No automatic distribution of work across devices

This last point is annoying. You have to manually split up and send
your work to multiple GPUs or across the CPU and GPU. OpenCL 1.1
provides a feature to help with this that lets you provide an offset to the
global dimensions for each execution.
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OpenCL Kernels
 A unit of code that is executed in parallel
 C99 syntax (no recursion or function ptrs)
 Think of the kernel as the “inner loop”

Regular C:

void calcSin(float *data) {
  for (int id=0; id<1024; id++)
    data[id] = sin(data[id]);
}

OpenCL Kernel:

void kernel calcSin(global float *data) {
  int id = get_global_id(0);
  data[id] = sin(data[id]);
}

The C code is run in parallel by having OpenCL split up the outer loop
in parallel. Each compute kernel then determines which work it should
do by calling get_global_id(), and then doing the work for that iteration.



28

An OpenCL Program
1. Get the devices
2. Create contexts and queues
3. Create programs and kernels
4. Create memory objects
5. Enqueue writes to initialize memory objects
6. Enqueue kernel executions
7. Wait for them to finish
8. Enqueue reads to get back data
9. Repeat 5-8
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OpenCL Hello World

 Get the device
 Create a context
 Create a command queue

clGetDeviceIDs(NULL, CL_DEVICE_TYPE_DEFAULT,
1, &device, NULL);

context = clCreateContext(NULL, 1, &device,
NULL, NULL, NULL);

queue = clCreateCommandQueue(context, device,
 (cl_command_queue_properties)0, NULL);

This example has no error checking. This is very foolish.

Changing CL_DEVICE_TYPE_DEFAULT to CL_DEVICE_TYPE_GPU
will get a GPU device if there is one. Always check error returns, and
use a context callback function to get more detailed information.
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OpenCL Hello World

 Create a program with the source
 Build the program and create a kernel

char *source = {
"kernel calcSin(global float *data) { \n”
"  int id = get_global_id(0); \n”
"  data[id] = sin(data[id]); \n”
"}                          \n"};

program = clCreateProgramWithSource(context, 1,
(const char**)&source, NULL, NULL);

clBuildProgram(program, 0,
NULL, NULL, NULL, NULL);

kernel = clCreateKernel(program, "calcSin", NULL);

The source for the kernel here is just a string. You can read this from a
file, generate it via sprintf, or include it as a constant in your code. If
you want more security, you can build a binary and store that, but the
interface for doing so is very primitive today. Unless you are executing
on exactly the same hardware that generated the binary there is no
guarantee it will work. I would advise avoiding binary kernels for the
immediate future.



31

OpenCL Hello World

 Create and initialize the input

buffer = clCreateBuffer(context, CL_MEM_COPY_HOST_PTR,
sizeof(cl_float)*10240,
data, NULL);

Note that the buffer specifies the context so OpenCL knows
which devices may share it.

By specifying CL_MEM_COPY_HOST_PTR the data from the pointer
“data” will be copied into the memory buffer when it is created.
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OpenCL Hello World

 Set the kernel arguments
 Enqueue the kernel

clSetKernelArg(kernel, 0, sizeof(buffer), &buffer);

size_t global_dimensions[] = {LENGTH,0,0};

clEnqueueNDRangeKernel(queue, kernel,
1, NULL, global_dimensions, NULL,

 0, NULL, NULL);

Local dimensions are NULL. OpenCL will pick reasonable
ones automatically. (Or so you hope…)

Note that you’ve just enqueued the kernel. It may or may not execute
depending on what else is going on and the whims of the runtime.
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OpenCL Hello World

 Read back the results

clEnqueueReadBuffer(queue, buffer,
CL_TRUE,
0, sizeof(cl_float)*LENGTH,
data, 0, NULL, NULL);

The CL_TRUE argument specifies that the call should block
until the read is complete. Otherwise you would have to
explicitly wait for it to finish.

Specifying CL_TRUE for blocking here is the same as executing
clEnqueueReadBuffer non-blocking and then calling clWait().
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OpenCL Hello World

The Demo



35

More OpenCL

 Querying Devices
 Images
 Events
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Querying Devices
 Lots of information via clGetDeviceInfo()

 CL_DEVICE_MAX_COMPUTE_UNITS*
Number of compute units that can run work-groups in parallel

 CL_DEVICE_MAX_CLOCK_FREQUENCY*

 CL_DEVICE_GLOBAL_MEM_SIZE*
Total global memory available on the device

 CL_DEVICE_IMAGE_SUPPORT
Some GPUs don’t support images today (shocking, I know…)

 CL_DEVICE_EXTENSIONS
double precision, atomic operations, OpenGL integration

*Unfortunately this doesn’t tell you how much memory is available right
now or which device will run your kernel fastest.

Use the * data carefully. They are all maximums and don’t tell you how
much you will actually get. Your best bet is to iteratively time your
kernel execution and adjust parameters for best performance as you
run.
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Images
 2D and 3D Native Image Types

 R, RG, RGB, RGBA, INTENSITY, LUMINANCE
 8/16/32 bit signed/unsigned, float
 Linear interpolation, edge wrapping and clamping

 Why?
 Hardware accelerated access (linear interpolation) on GPUs
 Want to enable this fast path
 GPUs cache texture lookups today

 But…
 Slow on the CPU (which is why Larabee did this in HW)
 Not all formats supported on all devices (check first)
 Writing to images is not fast, and can be very slow

Not all devices support images. Some don’t have the hardware and
have to emulate them (CPUs, CELL) and some just don’t have support
yet (AMD GPUs as of Fall 2009).
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Events

 Subtle point made earlier:
Queues for different devices are asynchronous

with respect to each other
 Implication:

 You must explicitly synchronize operations
between devices

(Also applies to out-of-order queues)
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Events

 Every clEnqueue() command can:
 Return an event to track it
 Accept an event wait-list

 Events can also report profiling information
 Enqueue->Submit->Start->End

clEnqueueNDRangeKernel(queue, kernel,
1, NULL, global_dimensions, NULL,

 numberOfEventsInList, &waitList,
eventReturned);
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Event Example

 Kernel A output -> Kernel B input
 Kernel A runs on the CPU
 Kernel B runs on the GPU
 Need to ensure that B waits for A to finish

clEnqueueNDRangeKernel(CPU_queue, kernelA,
1, NULL, global_dimensions, NULL,
0, NULL, kernelA_event);

clEnqueueNDRangeKernel(GPU_queue, kernelB,
1, NULL, global_dimensions, NULL,
1, &kernelA_event, NULL);
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OpenCL GPU Performance
Optimizations (Runtime)

 Host-Device Memory (100x)
 PCIe is slow and has a large overhead
 Do a lot of compute for every transfer
 Keep data on the device as long as possible
 Producer-consumer kernel chains

 Kernel Launch Overhead (100x)
 First compile is very slow (ms)
 Kernels take a long time to get started on the GPU
 Amortize launch overhead with long-running kernels
 Amortize compilation time with many kernel executions

Achilles Heel!
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OpenCL GPU Performance
Optimizations (Kernel)

 Memory Accesses (~10x)
 Ordering matters for coalescing
 Addresses should be sequential across threads
 Newer hardware is more forgiving

 Local Memory (~10x)
 Much larger bandwidth
 Must manually manage
 Look out for bank conflicts

 Divergent execution (up to 8x)
 Vectors (2-4x on today’s hardware)

 On vector HW this is critical (AMD GPUs, CPUs)
 OpenCL will scalarize automatically if needed

 Math (2x on intensive workloads)
 fast_ and native_ variants may be faster (at reduced precision)
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OpenCL Debugging (Or Not)
 Poor debugging support on GPUs

 Except for Nvidia on Windows
 Advice:

 Start on the CPU
 At least you can use printf()…

 Watch out for system watchdog timers
 Long-running kernels will lock the screen
 Your kernel will be killed after a few seconds
 Your app will crash
 Your users will be sad
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What is OpenCL? (Honestly)

1. Manual memory management and parallelization
You choose the global dimensions and allocate data

2. A framework with C-like computation kernels
Not really a language

3. If your algorithm is a good fit for the hardware
E.g., data-parallel

4. Code is portable, but performance is not
Different vendors/versions require different optimizations

5. Hardware and software only support data-parallel
There is task-parallel support, but not on today’s GPUs

Low-level1 language2 for high-performance3

heterogeneous4 data-parallel5 computation.



45

Why Use OpenCL?
 Industry standard

 Here to stay
 Vendor neutral

 Optimized for GPUs
 10-100x the performance of CPUs
 10-100x the efficiency of CPUs

 Driving future hardware
 CPUs and GPUs are converging
 Running fast on OpenCL now is a good bet for the future
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Why Not Use OpenCL?

 Immature
 Limited heterogeneous support (S)
 Limited profiling tools (S+H)
 Limited debugging tools (S+H)
 Reduced performance (S)

(compared to previous solutions, e.g. CUDA)

(S) - software development: changing rapidly
(H) - hardware development needed (>1 year)
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Cynicism Aside…
 OpenCL is the best step yet towards

platform-independent massively-parallel
computing

 You can see order-of-magnitude speedups on
real code on shipping hardware

 Just don’t expect it to solve your problems
automagically, and be prepared for a few bumps
on the way
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References
 Apple’s Developer Conference Tutorial

 Introduction and Advanced Sessions
(Intel, AMD, and Nvidia)

 http://developer.apple.com/videos/wwdc/2010/
 Nvidia’s OpenCL Guides

 Programming and Best Practices
(Nvidia-specific)

 http://developer.nvidia.com/object/opencl.html
 AMD Introductory Videos

 http://developer.amd.com/documentation/videos/OpenCLTe
chnicalOverviewVideoSeries/Pages/default.aspx

The Apple sessions are very good and the Nvidia documentation is
excellent, but very Nvidia-centric.
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Getting Started

 CPU+GPU:
 AMD (linux/windows) or Nvidia on Mac

 GPU:
 Nvidia (avoid AMD SIMDness)
 Strongly recommend Fermi (caches)
 Nvidia’s Parallel Nsight for Visual Studio

 Debugging:
 Nvidia is the only player today

For CPU+GPU your best bet today is all AMD on linux windows or
Nvidia+Intel on a Mac.
In general, Nvidia’s GPU hardware and software on windows with visual
studio is the best bet today.
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Good Match for a GPU?
 Data-parallel?
 Computationally intensive?
 Avoid global synchronization?
 Need lots of bandwidth?
 Use single-precision?
 Small caches okay?

 If yes, then you’re all set.
 If not, consider changing algorithm.
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Questions?


