
PDC Summer School 2010

PAPI performance hardware counters HOWTO

August 21, 2010

1 Introduction

PAPI is a library that monitors hardware events when a program runs. This makes it possible to

see e.g. exactly how many cache misses that occurred. When optimizing numerical codes this

is highly valuable information. Papiex is a tool that makes it easy to get access to performance

counters using PAPI. Here we describe how to run Papiex on Ferlin.

PAPI and PapiEx were mainly written by Phil Mucci. Please consult the PapiEx homepage1

for documentation and examples.

2 Modules

The relevant modules are included in the summer module. Otherwise, load modules

¿ module add i-compilers monitor papi papiex

The Intel compilers are not necessary to run Papiex, but we will use them in an example later.

3 Basic usage

You compile your program as usual, then call

¿ papiex -e ¡EVENT¿ ./my˙prog

where ¡EVENT¿ is the hardware event you want to profile (see next section). In some cases

multiple events can be monitored at the same time.

4 Available events

To see a list of all events that PAPI can profile on the current machine, do

¿ papi˙avail

Some of the most interesting counters on the Ferlin nodes are

1http://icl.cs.utk.edu/ mucci/papiex/

1

PAPI˙TOT˙CYC Total cycles

PAPI˙L1˙DCM Level 1 data cache misses

PAPI˙L1˙DCH Level 1 data cache hits

PAPI˙L1˙TCA Level 1 total cache accesses

PAPI˙L2˙TCM Level 2 cache misses

PAPI˙L2˙TCH Level 2 total cache hits

PAPI˙TLB˙DM Data translation lookaside buffer misses

PAPI˙FP˙INS Floating point instructions

PAPI˙FP˙OPS Floating point operations

PAPI˙VEC˙INS Vector/SIMD instructions

PAPI˙BR˙MSP Conditional branch instructions mispredicted

PAPI˙BR˙PRC Conditional branch instructions correctly predicted

5 Case study: Scale matrix

Consider the problem of multiplying each element of a matrix with a scalar, as in this C99 code:

#include ¡stdlib.h¿

int main(int args, char* argv[])

–

const int N = atoi(argv[1]);

double* mat = (double*) malloc(N*N*sizeof(double));

for(int i=0; i¡N*N; i++) /* initialize some values */

mat[i] = 2;

for(int i=0; i¡N; i++)

for(int j=0; j¡N; j++)

mat[i*N + j] *= 10.2; /* scale each value*/

free(mat);

˝

Build this program with

¿ icc -std=c99 scale˙mat.c -o scale˙mat

and run with

¿ ./scale˙mat ¡matrix size¿

2

You may wish to turn of optimizations (use the flag -O0) for some tests. Clearly in this example,

a cache miss should occur every 8 loads (since the cache line on Ferlin is 8 doubles). If this

wasn’t obvious, as in a real code, we could let PapiEx tell us this by doing

¿ papiex -e PAPI˙L2˙DCM ./scale˙mat 5000

PAPI˙L2˙DCM 3.13236e+06

This agrees with what we expect: 50002/8 = 3125000.

3

