
PDC Summer School 2010

Brief notes on serial performance measurement

August 21, 2010

For high performance scientific computing software serial (single node)
performance is vitally important. This begs the questions “is my code effi-
cient?” To answer that question performance measurement tools are needed.
These, often referred to as profilers, fall into three categories:

Sampling Sampling profilers are based on interrupting the execution of a
program and collecting statistics. This will, for instance, reveal which
functions/subroutines the program spent the most time in. Hence, a
sampling profiler is typically the choice for investigating where it is
worth optimizing a program. Two examples (on Linux):

• Intel VTune. Commercial and expensive (free non-commercial
download for Linux). Fancy GUI, loads of very advanced features.

• gprof (the GNU profiler): Command-line interface, part of stan-
dard build environment, free. First (re)compile your code with
the compiler flags -pg -g added. Run the code as usual (this
produces a file called gmon.out in the working directory). Then,
invoke gprof with gprof ./my_prog. To get line-by-line output,
ie. on which lines in the code most times was spent, do

> gprof --flat-profile -l ./my_prog

Hardware counters Profilers based on hardware counters profile low-level
hardware events. Registers used by the hardware manufacturers to
debug and evaluate their designs are left and can be used for detailed
profiling.

The tool for this on Linux is called PAPI and was developed by Phil
J. Mucci. It is free, but quite hard to install (it involves the Linux
kernel and several dependencies).

Hardware counters give detailed information not available with sam-
pling profilers. This includes the number of cache misses, branches
mispredicted, floating-point operations retired, total number of load

1



instructions etc. With this information (and some work) you can an-
swer two basic questions: “is the program efficient?” and “why is it
not efficient?”. Or rather, if the programmer knows enough about the
hardware, PAPI will help him answer the second question.

See separate handout for the invocation of PAPI (papiex).

Emulators The last category of profilers attempt to give detailed informa-
tion via hardware emulation instead of hardware counters. This has
the benefit of being much simpler to install, but will only cover some
aspects of the CPU. They typically focus on the memory hierarchy,
i.e. cache statistics (which is often the most interesting metric to pro-
grammers). Note, however, that the results are only as accurate as
the emulator. If the emulator has incorrect or incomplete parameters
for the present architecture it will give a warning (and those warnings
are important). Two notable tools are:

• Accumem Commercial, GUI, user-friendly. Developed by Prof.
Erik Hagersten.

• Valgrind Every C-programmer should (!) know and use Valgrind
to check for memory leaks and indexing errors. It has several
other capabilities, including a cache profiler called cachegrind.
Invoke with

> valgrind --tool=cachegrind ./my_prog

2


