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l The free lunch is over

“But if you want your application to benefit from the
continued exponential throughput advances in hew
processors, it will need to be a well-written concurrent
application. And that’s easier said than done, because
not all problems are inherently parallelizable and
because concurrent programming is hard.”

The Free Lunch Is Over

A Fundamental Turn Toward Concurrency in Software

By Herb Sutter
[http://www.gotw.ca/publications/concurrency-ddj.htm]
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LRZ’s job mix

Performance per core versus number of cores
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. My favorite “Dongarra” slides

[http://www.netlib.org/utk/people/JackDongarra/SLIDES/dongarra-i1sc2004.pdf]
[http://www.netlib.org/utk/people/JackDongarra/SLIDES/sc09-exascale-
panel.pdf]
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Real Crisis With HPC Ts With The
Soltwarc

Programming is stuck
3 Arguably hasn't changed since the 70's
Ir's time for a change
3 Complexity Is rising dramatically
> highly parallel and distributed systems
3~ From 10 To 100 To 1000 To 10000 To 100000 of processorsil
> mulridisciplinary applications
A supercomputer application and software are usually
much more long-lived than a hardware
¥ Hardware life typically five years at most.
> Fortran and € are the main programming models
Sofrware is a major cost component of modern
ftechnologies.
> The tradition in HPC system procurement is to assume that
the software is free.

[
L]

el

Some Current Unmet Needs

+ Performance ~ Portability
+ Fault folerance
+ Beilter programming models
> Global shared address space
> Wisible locality
> McrYbe_ coming soon {since incremental, yet offering
rea be_ne_flfsg:
> Global Address Space (6GAS) languages: UPC, Co-Array
Fortran, Titanium)
= CAkinor” extensions fo existing languages
> More convenient than MPI
> Have performance fransparency via explicit remote memory
references
+ The critical c¥ple of protoryping. assessment. and
commercialization must be a long-—fterm. sustaining
investment, notr a one rtime, crash program.
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[ESP: The Need

o The largest scale systems are becoming
more complex, with designs supported by
consortium

The software community has responded slowly
o Significant architectural changes evolving
Software must dramatically change
o Our ad hoc community coordinates poorly, both with
other software components and with the vendors

Computational science could achieve more with
improved development and coordination

A Call to Action

Hardware has changed dramatically while software ecosystem
has remained stagnant

Previous approaches have not looked at co-design of multiple
levels in the system software stack (OS, runtime, compiler,
libraries, application frameworks)

Need to exploit new hardware trends (e.g., manycore,
heterogeneity) that cannot be handled by existing software
stack, memory per socket trends

Emerging software technologies exist, but have not been fully
integrated with system software, e.g., UPC, Cilk, CUDA, HPCS

Community codes unprepared for sea change in architectures

No global evaluation of key missing components

wwwexascale.org



New languages enter the HPC world

Hardware Accelerators
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Hardware 2010

http://download.intel.com/pressroom/

Intel MIC arChitecture archive/reference/ISC_2010_Skaugen keynote.pdf
“Knights Ferry”
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l Pros and Cons for HWA

Pros:

HWA can help to tackle research problems
(in many cases they are simply less expensive than traditional solutions)

HWA help to shrink the physical footprint of systems

HWA can help to reduce the power consumption
both of the machine and the cooling system

cons:

You need to make use of them,
otherwise they simply waste energy

HWA will probably increase the error-rate
HWA are no solution for scalability problems
HWA are difficult to program (?)
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Examples of emerging languages

The quest for a
parallel language
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Overview

CUDA

OpenCL
UPC PGl Comp.
CAF Fortress Rapidmind

Chapel
PGAS o

DARPA
HPCS

Super-

scalar
miscC ||k
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KNF

Clear-
speed
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Partitioned Global Address Space language

PGAS
l

The concept and it’s different implementations
UPC vs. CAF: some fundamental differences
Performance improvements?

Ease-of-use?

Planned hardware
(interconnect) support




UPC

Unified Parallel C — a PGAS example

# include <upc.h>
# define CHUNK (int) (N/THREADS)

shared [CHUNK] double vecA[N];
shared [CHUNK] double wvecB[N];

int main () {

if (MYTHREAD == 0) {
printf (“Main thread\n");

}

upc barrier;

upc_forall (j=0; J<N; Jj++; &al[j]) |
vecB[]] = 2*vecA[]];

}

upc barrier;

: (o=

g,_itﬂ; wvﬂ
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CUDA

The Compute Unified Device Architecture for Nvidia GPUs

host code:

// allocate memory on gpu //Tf . ‘\\\
cudaMalloc (ptr, size); GPGPU programmlng
cudaMemcpy (dst, src, size, dir:host2dev); de-facto standard

77 L el - Small lightweight
kernel<<<gridSize, blockSize>>> (funcParams) ; kernels

/) copy results back - Parallelization through
cudaMemcpy (...,...,..., dir:dev2host); hyper-threading

cudaFree; . - .

\ Hiding cache misses /
device code: and latency through
__global  wvoid kernel (float* vecA, float* vecB, int ﬁ?ﬂ§ét“ﬂk?t width) {

. . , !
unsigned int x = blockIdx.x*blockDim.x + threadIdx.x; Q{IZ E}iﬂ
unsigned int y = blockIdx.y*blockDim.y + threadIdx.y; E} 51///
if (x < width && y < height) {

vecB[y*width+x] = 2*vecA[y*width+x];




CAPS hmpp

GPGPU programming using simple directives

#fpragma hmpp kernel codelet, target=CUDA,
args|[vecA, height, width].io= in, args[vecB].io=inout
void kernel (float *vecA, float *vecB, int height, int width)

for (x= 0; x<width; x++) //, ‘\\
o {y= U7 weheilehics i) - What is CAPS hmpp?
vecB[y*widht+x]= 2*vecA[y*width+x]; o '
) - Similar to the PGl acc.
compiler approach
int main() { - Similarities with
OpenMP

#fpragma hmpp kernel allocate \ 4//

#fpragma hmpp kernel advancedload, args[vecA,vecB, y..]- .
Limitations

fpragma hmpp kernel callsite &
fpragma hmpp kernel args[...].advancedload=true
kernel (vecA, vecB, height, width);

fpragma hmpp kernel release

16



RapidMind

as a placeholder for Intel Ct (not yet publicly released)

#include <rapidmind/platform.hpp>
using namespace RapidMind;

int main () {

// declaration
Array<2, Valuedf> vech;
Array<2, Valuedf> vecB;

ééégram kernel= BEGIN { . /\ t. “/ ‘\\\
// program definition »Array computing
In<Value4df> a; “‘data stream
Out<Valuedf> Db; : ”
o Do computing

} END; *Intel acquired

}}.program call RapldMlnd

vecB = kernel (vech); - RapidMind technology

Vo will be integrated in Ct

- RapidMind offered /
backends for: Cell,

Cuda, GLSL, x86
17




Cilk

if ((1i1-10) == 1) {
vecB[1i0]= 2*vecA[i1i0];
return;

}

else {

int im= (10+1il1) / 2;
double wveclL, vecR;

sync;
return;
}
}

Cilk int main () {

spawn kernel(...);
sync;

veclL= spawn kernel (vecA, vecB, 10, im);
vecR= spawn kernel (vecA, vecB, im, il);

automatic parallelization through recursive procedures

cilk double kernel (float *vecA, float *vecB, int 10, int 1i1) {

Citeigy
T
LI

/ Automatic

\_

parallelization and load
balancing (!) through
recursion
Divide-and-conquer

style programming

Needs an adaptation

of many algorithms /

18



Now do this exercise for a more

A 2D Stencil Computation
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Contact details: Iris Christadler (christadler@lrz.de), LRZ, Germany

Thank you for your attention!
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