New Languages for High Performance Computing

Iris Christadler, Leibniz Supercomputing Centre, Germany
August 2010, PDC/KTH Summer School

1.

l Outline

The free lunch is over
Multicore CPUs are ubiquitous

Hardware accelerators
New languages enter the HPC world

The quest for a parallel language
Examples of emerging languages

l The free lunch is over

“But if you want your application to benefit from the
continued exponential throughput advances in hew
processors, it will need to be a well-written concurrent
application. And that’s easier said than done, because
not all problems are inherently parallelizable and
because concurrent programming is hard.”

The Free Lunch Is Over

A Fundamental Turn Toward Concurrency in Software

By Herb Sutter
[http://www.gotw.ca/publications/concurrency-ddj.htm]

top500.0rg

Number of Processors / Performance
November 2007

Number of Processors / Performance
November 2009

2049-4096

Others
8k-16k 16k-32k
32k-64k
7
ak-sk 7

\ 513-1024
S 128k-

-4k-8k

128k- |~ Others
-64k-128k
5 e
A “-32k-64k
8k-16k ~ \
p <] crest)

\
i — —Others
Opteron Dual Core — —Xeon EM64T
Pentium 4 Xeon
POWERS
PowerPC 970

Xeon X55xx (Nehalem-EP) %
POWERS+ \

v
PowerPC 440

PowerPC 450
Itanium 2

Opteron Quad Core A

__—Xeon E54xx (Harpertown

Opteron Six Core —
PowerPC 450 ~/
{eon E55xx (Nehalem-EP) -

Xeon L54xx (Harpertown) -
Ihages: www.top500.org

. —Others

\‘\\Xeon X54xx (Harpertown
\ “'\ \'\-\ ~Xeon 51xx (Woodcrest)
“| \ I“\.‘ "—Opteron Dual Core
| | “PowerPC 440

| ~Xeon 53xx (Clovertown)
“POWER6

PowerXCell 8i

New Languages for High Performance Computing, Iris Christadler, LRZ
August 2010

LRZ’s job mix

Performance per core versus number of cores

l

Mittelwert mflops
900]
800
700 -]
Y 600
o
o
5 _
Jahre
2 500
= O 2006
o
[N
S a0 B 2007
O 2008
300 - O 2009
200 -]
) —‘ H
0-
64 128 256 512 1024 2048 4096 100000
0 65 129 257 513 1025 2049 4097
Number of cores
from to

. My favorite “Dongarra” slides

[http://www.netlib.org/utk/people/JackDongarra/SLIDES/dongarra-i1sc2004.pdf]
[http://www.netlib.org/utk/people/JackDongarra/SLIDES/sc09-exascale-
panel.pdf]

£

~

Real Crisis With HPC Ts With The
Soltwarc

Programming is stuck
3 Arguably hasn't changed since the 70's
Ir's time for a change
3 Complexity Is rising dramatically
> highly parallel and distributed systems
3~ From 10 To 100 To 1000 To 10000 To 100000 of processorsil
> mulridisciplinary applications
A supercomputer application and software are usually
much more long-lived than a hardware
¥ Hardware life typically five years at most.
> Fortran and € are the main programming models
Sofrware is a major cost component of modern
ftechnologies.
> The tradition in HPC system procurement is to assume that
the software is free.

[
L]

el

Some Current Unmet Needs

+ Performance ~ Portability
+ Fault folerance
+ Beilter programming models
> Global shared address space
> Wisible locality
> McrYbe_ coming soon {since incremental, yet offering
rea be_ne_flfsg:
> Global Address Space (6GAS) languages: UPC, Co-Array
Fortran, Titanium)
= CAkinor” extensions fo existing languages
> More convenient than MPI
> Have performance fransparency via explicit remote memory
references
+ The critical c¥ple of protoryping. assessment. and
commercialization must be a long-—fterm. sustaining
investment, notr a one rtime, crash program.

=0

[ESP: The Need

o The largest scale systems are becoming
more complex, with designs supported by
consortium

The software community has responded slowly
o Significant architectural changes evolving
Software must dramatically change
o Our ad hoc community coordinates poorly, both with
other software components and with the vendors

Computational science could achieve more with
improved development and coordination

A Call to Action

Hardware has changed dramatically while software ecosystem
has remained stagnant

Previous approaches have not looked at co-design of multiple
levels in the system software stack (OS, runtime, compiler,
libraries, application frameworks)

Need to exploit new hardware trends (e.g., manycore,
heterogeneity) that cannot be handled by existing software
stack, memory per socket trends

Emerging software technologies exist, but have not been fully
integrated with system software, e.g., UPC, Cilk, CUDA, HPCS

Community codes unprepared for sea change in architectures

No global evaluation of key missing components

wwwexascale.org

New languages enter the HPC world

Hardware Accelerators

ClearSpeed

CSX700 CATS 700
(12 CSX700)
96 GF dp
1.152 TF dp
2.53GHz
Nehalem-EP
20 GF sp
10 GF dp

8 N-EP
cores

162 GF sp
81 GF dp

PowerXCell8i
(8 SPUs)
205 GF sp
102 GF dp
QS22 blade
(16 SPUs)
410 GF sp
205 GF dp
C1060 GPU
~1 TF sp
78 GF dp

/ S1070
“Tesla”

~4 TF sp
312 GF dp

Hardware 2010

http://download.intel.com/pressroom/

Intel MIC arChitecture archive/reference/ISC_2010_Skaugen keynote.pdf
“Knights Ferry”

32 cores @ 1.2 GHz “Knights corner”
4 threads/core 1st MIC product
8 MB shared coherent cache
1-2 GB GDDRS5 22nm process
>50 cores

2.53GHz Cégzjo
Nehalem-EP
S2070
20 GF sp i = 1(')05 '_II'_I; ZTO “Fermi”
10 GF dp . -
e sp
8 N-EP 2 TF dp
cores
162 GF sp
81 GF dp T

l Pros and Cons for HWA

Pros:

HWA can help to tackle research problems
(in many cases they are simply less expensive than traditional solutions)

HWA help to shrink the physical footprint of systems

HWA can help to reduce the power consumption
both of the machine and the cooling system

cons:

You need to make use of them,
otherwise they simply waste energy

HWA will probably increase the error-rate
HWA are no solution for scalability problems
HWA are difficult to program (?)

10

Examples of emerging languages

The quest for a
parallel language

11

Overview

CUDA

OpenCL
UPC PGl Comp.
CAF Fortress Rapidmind

Chapel
PGAS o

DARPA
HPCS

Super-

scalar
miscC ||k

New Languages for High Performance Computing, Iris Christadler, LRZ
August 2010

CELL

GPUs

KNF

Clear-
speed

12

Partitioned Global Address Space language

PGAS
l

The concept and it’s different implementations
UPC vs. CAF: some fundamental differences
Performance improvements?

Ease-of-use?

Planned hardware
(interconnect) support

UPC

Unified Parallel C — a PGAS example

include <upc.h>
define CHUNK (int) (N/THREADS)

shared [CHUNK] double vecA[N];
shared [CHUNK] double wvecB[N];

int main () {

if (MYTHREAD == 0) {
printf (“Main thread\n");

}

upc barrier;

upc_forall (j=0; J<N; Jj++; &al[j]) |
vecB[]] = 2*vecA[]];

}

upc barrier;

: (o=

g,_itﬂ; wvﬂ

&

CUDA

The Compute Unified Device Architecture for Nvidia GPUs

host code:

// allocate memory on gpu //Tf . ‘\\\
cudaMalloc (ptr, size); GPGPU programmlng
cudaMemcpy (dst, src, size, dir:host2dev); de-facto standard

77 L el - Small lightweight
kernel<<<gridSize, blockSize>>> (funcParams) ; kernels

/) copy results back - Parallelization through
cudaMemcpy (...,...,..., dir:dev2host); hyper-threading

cudaFree; . - .

\ Hiding cache misses /
device code: and latency through
__global wvoid kernel (float* vecA, float* vecB, int ﬁ?ﬂ§ét“ﬂk?t width) {

. . , !
unsigned int x = blockIdx.x*blockDim.x + threadIdx.x; Q{IZ E}iﬂ
unsigned int y = blockIdx.y*blockDim.y + threadIdx.y; E} 51///
if (x < width && y < height) {

vecB[y*width+x] = 2*vecA[y*width+x];

CAPS hmpp

GPGPU programming using simple directives

#fpragma hmpp kernel codelet, target=CUDA,
args|[vecA, height, width].io= in, args[vecB].io=inout
void kernel (float *vecA, float *vecB, int height, int width)

for (x= 0; x<width; x++) //, ‘\\
o {y= U7 weheilehics i) - What is CAPS hmpp?
vecB[y*widht+x]= 2*vecA[y*width+x]; o '
) - Similar to the PGl acc.
compiler approach
int main() { - Similarities with
OpenMP

#fpragma hmpp kernel allocate \ 4//

#fpragma hmpp kernel advancedload, args[vecA,vecB, y..]- .
Limitations

fpragma hmpp kernel callsite &
fpragma hmpp kernel args[...].advancedload=true
kernel (vecA, vecB, height, width);

fpragma hmpp kernel release

16

RapidMind

as a placeholder for Intel Ct (not yet publicly released)

#include <rapidmind/platform.hpp>
using namespace RapidMind;

int main () {

// declaration
Array<2, Valuedf> vech;
Array<2, Valuedf> vecB;

ééégram kernel= BEGIN { . /\ t. “/ ‘\\\
// program definition »Array computing
In<Value4df> a; “‘data stream
Out<Valuedf> Db; : ”
o Do computing

} END; *Intel acquired

}}.program call RapldMlnd

vecB = kernel (vech); - RapidMind technology

Vo will be integrated in Ct

- RapidMind offered /
backends for: Cell,

Cuda, GLSL, x86
17

Cilk

if ((1i1-10) == 1) {
vecB[1i0]= 2*vecA[i1i0];
return;

}

else {

int im= (10+1il1) / 2;
double wveclL, vecR;

sync;
return;
}
}

Cilk int main () {

spawn kernel(...);
sync;

veclL= spawn kernel (vecA, vecB, 10, im);
vecR= spawn kernel (vecA, vecB, im, il);

automatic parallelization through recursive procedures

cilk double kernel (float *vecA, float *vecB, int 10, int 1i1) {

Citeigy
T
LI

/ Automatic

_

parallelization and load
balancing (!) through
recursion
Divide-and-conquer

style programming

Needs an adaptation

of many algorithms /

18

Now do this exercise for a more

A 2D Stencil Computation

New Languages for High Performance Computing, Iris Christadler, LRZ
August 2010 19

Contact details: Iris Christadler (christadler@lrz.de), LRZ, Germany

Thank you for your attention!

20

mailto:christadler@lrz.de

	Slide 1
	Outline
	The free lunch is over
	top500.org
	LRZ’s job mix
Performance per core versus number of cores
	My favorite “Dongarra” slides
	Hardware Accelerators
	Hardware in 2008/9
	Hardware 2010
	Pros and Cons for HWA
	The quest for a
parallel language
	Overview
	PGAS
Partitioned Global Address Space language
	UPC
Unified Parallel C – a PGAS example
	CUDA
The Compute Unified Device Architecture for Nvidia GPUs
	CAPS hmpp
GPGPU programming using simple directives
	Slide 17
	Cilk
automatic parallelization through recursive procedures
	A 2D Stencil Computation
	Thank you for your attention!

