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Characteristics of a code
• Communication pattern

• Load balance

• Number of individual computations

• Memory usage

• Data I/O pattern

• Size and layout of data sets
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Know your enemy
What is expensive and slow?

• Data transfer
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Know your enemy
What is expensive and slow?

• Data transfer

• File I/O

• Bad memory utilization

• Serial code sections (Amdahl’s law)
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Where to optimize
• Premature optimization is the root of all evil
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Where to optimize
• Premature optimization is the root of all evil

• 90 % of the time will usually be spent on 10 % of the code

• Won’t reach theoretical peak performance
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Presenting Performance data
To be able to understand a graph the following is required:

• What input data was used? (dense/sparse, size, precision. . . )
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Presenting Performance data
To be able to understand a graph the following is required:

• What input data was used? (dense/sparse, size, precision. . . )

• What computer was used? (memory, cpu, interconnect. . . )

• How many nodes were used?

• How many runs were averaged? (error margins)

• What is the base line? (what is the comparison made against)
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Typical graphs
• TS

1
shortest time for the best serial program.
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Typical graphs
• TS

1
shortest time for the best serial program.

• T1 shortest time with the multicomputer program on one node

• Tp: execution time for p-node computation

• Speed-up

Absolute Sp =
TS
1

Tp

Relative Srel
p =

T1

Tp

Absolute speed-up is improvement achieved by parallelisation

• Efficiency

Absolute ηp =
Sp

p

Relative ηrelp =
Srel
p

p

Relative efficiency is a measure of scalability
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Execution time
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Speed-up

Absolute Sp =
TS
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Tp
, relative Srel

p =
T1
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Efficiency

ηrelp =
Srel
p

p
=

T1

Tp

p
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Where to start
Performance improvement doesn’t always require changing your code.

• Compiler optimization flags
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Where to start
Performance improvement doesn’t always require changing your code.

• Compiler optimization flags

• Libraries (LAPACK/BLAS, FFTW. . . )

• Parallel libraries (ScaLAPACK, FFTW. . . )

• Use the precision you actually need (float vs. double)

• Get to know the computer architecture

• Communicate according to network topology

• Place data according to network topology
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A. External timers

B. Internal time

C. Performance counters
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E. Call Tracing
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A. External timers
• Measuring wall clock time on executable

• /usr/bin/time

• Real: Time from beginning till end

• User: CPU time spent in user code

• Sys: CPU time spent in system code

+ Easy to use

- Execution time ≥ CPU time

- Different definition on different systems

- Depend on the load of the system, OS interference, etc

! Multithreaded execution (on one node)

T = tlasti − t
first
0

t
first
0

— first thread starts execution tlasti — last thread finishes.
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B. Internal Timers
• Source code adapted to start, stop and save timers

• C calls:

gettimeofday(), time() — time since January 1, 1970

clock(), approximation of processor time

MPI_Wtime(), for MPI codes

• Fortran calls:

system_clock(), wall clock time

MPI_WTIME(), for MPI codes

+ A first easy to use and available method to measure time

- Affects the program execution time

- Limited resolution (ms)
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C. Performance Counters
• Hardware counters — registers counting events in the processor

• Registered on every CPU

• Cycles (perfect time resolution)

• Instruction count (completed, floating point, integer, load/store)

• Branches (Taken/not taken, etc)

• Cache (Cache level hits/misses)

+ Measured event counts are exact

+ Usually doesn’t affect performance too much

! Amount of data possible to store limited by registers

- Requires CPU and OS support

- Usually doesn’t say where the problem is
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What do we want to know?
• Where does the code spend its time?

• Want to know what the program actually does when run with a

particular input data
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Execution example

init()

while i>0

calc()

i - -

done()
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while i>0
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i - -

done()

m1: call init()
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Too much data
• A 2GHz processor running for 10 s

• One instruction typically 32 bit, i.e. 4 byte.

• Total data generated — 2 ∗ 10 ∗ 4 = 80GB!

• The data input will affect how your program runs

• Code length will always be ≪ number of instructions executed!

• Need a way of reducing data and still get the information!
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D. Profilers
• Two types: Statistical and Event based profilers

• Statistical Profiling:

Interrupts at random intervals and records which program instruction

the CPU is executing.

• Event based Profiling:

Interrupts triggered by hardware counter events are recorded.

- Measuring profiles affects performance

- Still a lot of data saved
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E. Call Tracing
• Call Tracing — Library specific profiling (for example MPI)

• Wrappers for library specific function calls (for example MPI_SEND)

• Records when a function was called and with what parameters

• Get the whole picture — post processing

+ Gives you library specific information — which nodes exchanged

messages, what was the message size. . .

- Affects performance (depending on how often library calls are made)

PDC HPC Summer School 2010 Elisabet Molin [20/22]



Performance Tools on Ferlin
Name: Type: License:

gprof statistical profiler free

papiex performance counter free/licensed

mpip MPI profiling free

paraver MPI tracing and profiling free

tau MPI tracing and profiling free

jumpshot visualization of MPI traces free
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What is Good Parallel Perfor-
mance?

• Single CPU performance is high.

• The code is scalable out to more than a few nodes.

• The network is not the bottleneck.

• Data sent around is at a minimum

• Use Performance Tools to get there!
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