
Performance Engineering
Parallel Performance

Elisabet Molin, Xavi Aguilar

elimo@pdc.kth.se

PDC

KTH, Sweden

PDC HPC Summer School 2010 Elisabet Molin [1/22]



Why Parallel Performance?
• Reduce calculation time

PDC HPC Summer School 2010 Elisabet Molin [2/22]



Why Parallel Performance?
• Reduce calculation time

• Expand to solve new problems

PDC HPC Summer School 2010 Elisabet Molin [2/22]



Why Parallel Performance?
• Reduce calculation time

• Expand to solve new problems

• Choosing appropriate computers

PDC HPC Summer School 2010 Elisabet Molin [2/22]



Characteristics of a code
• Communication pattern

PDC HPC Summer School 2010 Elisabet Molin [3/22]



Characteristics of a code
• Communication pattern

• Load balance

PDC HPC Summer School 2010 Elisabet Molin [3/22]



Characteristics of a code
• Communication pattern

• Load balance

• Number of individual computations

PDC HPC Summer School 2010 Elisabet Molin [3/22]



Characteristics of a code
• Communication pattern

• Load balance

• Number of individual computations

• Memory usage

PDC HPC Summer School 2010 Elisabet Molin [3/22]



Characteristics of a code
• Communication pattern

• Load balance

• Number of individual computations

• Memory usage

• Data I/O pattern

PDC HPC Summer School 2010 Elisabet Molin [3/22]



Characteristics of a code
• Communication pattern

• Load balance

• Number of individual computations

• Memory usage

• Data I/O pattern

• Size and layout of data sets

PDC HPC Summer School 2010 Elisabet Molin [3/22]



Know your enemy
What is expensive and slow?

• Data transfer

PDC HPC Summer School 2010 Elisabet Molin [4/22]



Know your enemy
What is expensive and slow?

• Data transfer

• File I/O

PDC HPC Summer School 2010 Elisabet Molin [4/22]



Know your enemy
What is expensive and slow?

• Data transfer

• File I/O

• Bad memory utilization

PDC HPC Summer School 2010 Elisabet Molin [4/22]



Know your enemy
What is expensive and slow?

• Data transfer

• File I/O

• Bad memory utilization

• Serial code sections (Amdahl’s law)

PDC HPC Summer School 2010 Elisabet Molin [4/22]



Where to optimize
• Premature optimization is the root of all evil

PDC HPC Summer School 2010 Elisabet Molin [5/22]



Where to optimize
• Premature optimization is the root of all evil

• 90 % of the time will usually be spent on 10 % of the code

PDC HPC Summer School 2010 Elisabet Molin [5/22]



Where to optimize
• Premature optimization is the root of all evil

• 90 % of the time will usually be spent on 10 % of the code

• Won’t reach theoretical peak performance

PDC HPC Summer School 2010 Elisabet Molin [5/22]



Presenting Performance data
To be able to understand a graph the following is required:

• What input data was used? (dense/sparse, size, precision. . . )

PDC HPC Summer School 2010 Elisabet Molin [6/22]



Presenting Performance data
To be able to understand a graph the following is required:

• What input data was used? (dense/sparse, size, precision. . . )

• What computer was used? (memory, cpu, interconnect. . . )

PDC HPC Summer School 2010 Elisabet Molin [6/22]



Presenting Performance data
To be able to understand a graph the following is required:

• What input data was used? (dense/sparse, size, precision. . . )

• What computer was used? (memory, cpu, interconnect. . . )

• How many nodes were used?

PDC HPC Summer School 2010 Elisabet Molin [6/22]



Presenting Performance data
To be able to understand a graph the following is required:

• What input data was used? (dense/sparse, size, precision. . . )

• What computer was used? (memory, cpu, interconnect. . . )

• How many nodes were used?

• How many runs were averaged? (error margins)

PDC HPC Summer School 2010 Elisabet Molin [6/22]



Presenting Performance data
To be able to understand a graph the following is required:

• What input data was used? (dense/sparse, size, precision. . . )

• What computer was used? (memory, cpu, interconnect. . . )

• How many nodes were used?

• How many runs were averaged? (error margins)

• What is the base line? (what is the comparison made against)

PDC HPC Summer School 2010 Elisabet Molin [6/22]



Typical graphs
• TS

1
shortest time for the best serial program.

PDC HPC Summer School 2010 Elisabet Molin [7/22]



Typical graphs
• TS

1
shortest time for the best serial program.

• T1 shortest time with the multicomputer program on one node

PDC HPC Summer School 2010 Elisabet Molin [7/22]



Typical graphs
• TS

1
shortest time for the best serial program.

• T1 shortest time with the multicomputer program on one node

• Tp: execution time for p-node computation

PDC HPC Summer School 2010 Elisabet Molin [7/22]



Typical graphs
• TS

1
shortest time for the best serial program.

• T1 shortest time with the multicomputer program on one node

• Tp: execution time for p-node computation

• Speed-up

PDC HPC Summer School 2010 Elisabet Molin [7/22]



Typical graphs
• TS

1
shortest time for the best serial program.

• T1 shortest time with the multicomputer program on one node

• Tp: execution time for p-node computation

• Speed-up

Absolute Sp =
TS
1

Tp

PDC HPC Summer School 2010 Elisabet Molin [7/22]



Typical graphs
• TS

1
shortest time for the best serial program.

• T1 shortest time with the multicomputer program on one node

• Tp: execution time for p-node computation

• Speed-up

Absolute Sp =
TS
1

Tp

Relative Srel
p =

T1

Tp

PDC HPC Summer School 2010 Elisabet Molin [7/22]



Typical graphs
• TS

1
shortest time for the best serial program.

• T1 shortest time with the multicomputer program on one node

• Tp: execution time for p-node computation

• Speed-up

Absolute Sp =
TS
1

Tp

Relative Srel
p =

T1

Tp

Absolute speed-up is improvement achieved by parallelisation

PDC HPC Summer School 2010 Elisabet Molin [7/22]



Typical graphs
• TS

1
shortest time for the best serial program.

• T1 shortest time with the multicomputer program on one node

• Tp: execution time for p-node computation

• Speed-up

Absolute Sp =
TS
1

Tp

Relative Srel
p =

T1

Tp

Absolute speed-up is improvement achieved by parallelisation

• Efficiency

PDC HPC Summer School 2010 Elisabet Molin [7/22]



Typical graphs
• TS

1
shortest time for the best serial program.

• T1 shortest time with the multicomputer program on one node

• Tp: execution time for p-node computation

• Speed-up

Absolute Sp =
TS
1

Tp

Relative Srel
p =

T1

Tp

Absolute speed-up is improvement achieved by parallelisation

• Efficiency

Absolute ηp =
Sp

p

PDC HPC Summer School 2010 Elisabet Molin [7/22]



Typical graphs
• TS

1
shortest time for the best serial program.

• T1 shortest time with the multicomputer program on one node

• Tp: execution time for p-node computation

• Speed-up

Absolute Sp =
TS
1

Tp

Relative Srel
p =

T1

Tp

Absolute speed-up is improvement achieved by parallelisation

• Efficiency

Absolute ηp =
Sp

p

Relative ηrelp =
Srel
p

p

PDC HPC Summer School 2010 Elisabet Molin [7/22]



Typical graphs
• TS

1
shortest time for the best serial program.

• T1 shortest time with the multicomputer program on one node

• Tp: execution time for p-node computation

• Speed-up

Absolute Sp =
TS
1

Tp

Relative Srel
p =

T1

Tp

Absolute speed-up is improvement achieved by parallelisation

• Efficiency

Absolute ηp =
Sp

p

Relative ηrelp =
Srel
p

p

Relative efficiency is a measure of scalability

PDC HPC Summer School 2010 Elisabet Molin [7/22]



Execution time

PDC HPC Summer School 2010 Elisabet Molin [8/22]



Speed-up

Absolute Sp =
TS
1

Tp
, relative Srel

p =
T1

Tp

PDC HPC Summer School 2010 Elisabet Molin [9/22]



Efficiency

ηrelp =
Srel
p

p
=

T1

Tp

p

PDC HPC Summer School 2010 Elisabet Molin [10/22]



Where to start
Performance improvement doesn’t always require changing your code.

• Compiler optimization flags

PDC HPC Summer School 2010 Elisabet Molin [11/22]



Where to start
Performance improvement doesn’t always require changing your code.

• Compiler optimization flags

• Libraries (LAPACK/BLAS, FFTW. . . )

PDC HPC Summer School 2010 Elisabet Molin [11/22]



Where to start
Performance improvement doesn’t always require changing your code.

• Compiler optimization flags

• Libraries (LAPACK/BLAS, FFTW. . . )

• Parallel libraries (ScaLAPACK, FFTW. . . )

PDC HPC Summer School 2010 Elisabet Molin [11/22]



Where to start
Performance improvement doesn’t always require changing your code.

• Compiler optimization flags

• Libraries (LAPACK/BLAS, FFTW. . . )

• Parallel libraries (ScaLAPACK, FFTW. . . )

• Use the precision you actually need (float vs. double)

PDC HPC Summer School 2010 Elisabet Molin [11/22]



Where to start
Performance improvement doesn’t always require changing your code.

• Compiler optimization flags

• Libraries (LAPACK/BLAS, FFTW. . . )

• Parallel libraries (ScaLAPACK, FFTW. . . )

• Use the precision you actually need (float vs. double)

• Get to know the computer architecture

PDC HPC Summer School 2010 Elisabet Molin [11/22]



Where to start
Performance improvement doesn’t always require changing your code.

• Compiler optimization flags

• Libraries (LAPACK/BLAS, FFTW. . . )

• Parallel libraries (ScaLAPACK, FFTW. . . )

• Use the precision you actually need (float vs. double)

• Get to know the computer architecture

• Communicate according to network topology

PDC HPC Summer School 2010 Elisabet Molin [11/22]



Where to start
Performance improvement doesn’t always require changing your code.

• Compiler optimization flags

• Libraries (LAPACK/BLAS, FFTW. . . )

• Parallel libraries (ScaLAPACK, FFTW. . . )

• Use the precision you actually need (float vs. double)

• Get to know the computer architecture

• Communicate according to network topology

• Place data according to network topology

PDC HPC Summer School 2010 Elisabet Molin [11/22]



Measuring Performance
A. External timers

PDC HPC Summer School 2010 Elisabet Molin [12/22]



Measuring Performance
A. External timers

B. Internal time

PDC HPC Summer School 2010 Elisabet Molin [12/22]



Measuring Performance
A. External timers

B. Internal time

C. Performance counters

PDC HPC Summer School 2010 Elisabet Molin [12/22]



Measuring Performance
A. External timers

B. Internal time

C. Performance counters

D. Profilers

PDC HPC Summer School 2010 Elisabet Molin [12/22]



Measuring Performance
A. External timers

B. Internal time

C. Performance counters

D. Profilers

E. Call Tracing

PDC HPC Summer School 2010 Elisabet Molin [12/22]



A. External timers
• Measuring wall clock time on executable

PDC HPC Summer School 2010 Elisabet Molin [13/22]



A. External timers
• Measuring wall clock time on executable

• /usr/bin/time

PDC HPC Summer School 2010 Elisabet Molin [13/22]



A. External timers
• Measuring wall clock time on executable

• /usr/bin/time

• Real: Time from beginning till end

PDC HPC Summer School 2010 Elisabet Molin [13/22]



A. External timers
• Measuring wall clock time on executable

• /usr/bin/time

• Real: Time from beginning till end

• User: CPU time spent in user code

PDC HPC Summer School 2010 Elisabet Molin [13/22]



A. External timers
• Measuring wall clock time on executable

• /usr/bin/time

• Real: Time from beginning till end

• User: CPU time spent in user code

• Sys: CPU time spent in system code

PDC HPC Summer School 2010 Elisabet Molin [13/22]



A. External timers
• Measuring wall clock time on executable

• /usr/bin/time

• Real: Time from beginning till end

• User: CPU time spent in user code

• Sys: CPU time spent in system code

+ Easy to use

PDC HPC Summer School 2010 Elisabet Molin [13/22]



A. External timers
• Measuring wall clock time on executable

• /usr/bin/time

• Real: Time from beginning till end

• User: CPU time spent in user code

• Sys: CPU time spent in system code

+ Easy to use

- Execution time ≥ CPU time

PDC HPC Summer School 2010 Elisabet Molin [13/22]



A. External timers
• Measuring wall clock time on executable

• /usr/bin/time

• Real: Time from beginning till end

• User: CPU time spent in user code

• Sys: CPU time spent in system code

+ Easy to use

- Execution time ≥ CPU time

- Different definition on different systems

PDC HPC Summer School 2010 Elisabet Molin [13/22]



A. External timers
• Measuring wall clock time on executable

• /usr/bin/time

• Real: Time from beginning till end

• User: CPU time spent in user code

• Sys: CPU time spent in system code

+ Easy to use

- Execution time ≥ CPU time

- Different definition on different systems

- Depend on the load of the system, OS interference, etc

PDC HPC Summer School 2010 Elisabet Molin [13/22]



A. External timers
• Measuring wall clock time on executable

• /usr/bin/time

• Real: Time from beginning till end

• User: CPU time spent in user code

• Sys: CPU time spent in system code

+ Easy to use

- Execution time ≥ CPU time

- Different definition on different systems

- Depend on the load of the system, OS interference, etc

! Multithreaded execution (on one node)

T = tlasti − t
first
0

t
first
0

— first thread starts execution tlasti — last thread finishes.

PDC HPC Summer School 2010 Elisabet Molin [13/22]



B. Internal Timers
• Source code adapted to start, stop and save timers

PDC HPC Summer School 2010 Elisabet Molin [14/22]



B. Internal Timers
• Source code adapted to start, stop and save timers

• C calls:

PDC HPC Summer School 2010 Elisabet Molin [14/22]



B. Internal Timers
• Source code adapted to start, stop and save timers

• C calls:

gettimeofday(), time() — time since January 1, 1970

PDC HPC Summer School 2010 Elisabet Molin [14/22]



B. Internal Timers
• Source code adapted to start, stop and save timers

• C calls:

gettimeofday(), time() — time since January 1, 1970

clock(), approximation of processor time

PDC HPC Summer School 2010 Elisabet Molin [14/22]



B. Internal Timers
• Source code adapted to start, stop and save timers

• C calls:

gettimeofday(), time() — time since January 1, 1970

clock(), approximation of processor time

MPI_Wtime(), for MPI codes

PDC HPC Summer School 2010 Elisabet Molin [14/22]



B. Internal Timers
• Source code adapted to start, stop and save timers

• C calls:

gettimeofday(), time() — time since January 1, 1970

clock(), approximation of processor time

MPI_Wtime(), for MPI codes

• Fortran calls:

PDC HPC Summer School 2010 Elisabet Molin [14/22]



B. Internal Timers
• Source code adapted to start, stop and save timers

• C calls:

gettimeofday(), time() — time since January 1, 1970

clock(), approximation of processor time

MPI_Wtime(), for MPI codes

• Fortran calls:

system_clock(), wall clock time

PDC HPC Summer School 2010 Elisabet Molin [14/22]



B. Internal Timers
• Source code adapted to start, stop and save timers

• C calls:

gettimeofday(), time() — time since January 1, 1970

clock(), approximation of processor time

MPI_Wtime(), for MPI codes

• Fortran calls:

system_clock(), wall clock time

MPI_WTIME(), for MPI codes

PDC HPC Summer School 2010 Elisabet Molin [14/22]



B. Internal Timers
• Source code adapted to start, stop and save timers

• C calls:

gettimeofday(), time() — time since January 1, 1970

clock(), approximation of processor time

MPI_Wtime(), for MPI codes

• Fortran calls:

system_clock(), wall clock time

MPI_WTIME(), for MPI codes

+ A first easy to use and available method to measure time

PDC HPC Summer School 2010 Elisabet Molin [14/22]



B. Internal Timers
• Source code adapted to start, stop and save timers

• C calls:

gettimeofday(), time() — time since January 1, 1970

clock(), approximation of processor time

MPI_Wtime(), for MPI codes

• Fortran calls:

system_clock(), wall clock time

MPI_WTIME(), for MPI codes

+ A first easy to use and available method to measure time

- Affects the program execution time

PDC HPC Summer School 2010 Elisabet Molin [14/22]



B. Internal Timers
• Source code adapted to start, stop and save timers

• C calls:

gettimeofday(), time() — time since January 1, 1970

clock(), approximation of processor time

MPI_Wtime(), for MPI codes

• Fortran calls:

system_clock(), wall clock time

MPI_WTIME(), for MPI codes

+ A first easy to use and available method to measure time

- Affects the program execution time

- Limited resolution (ms)

PDC HPC Summer School 2010 Elisabet Molin [14/22]



C. Performance Counters
• Hardware counters — registers counting events in the processor

PDC HPC Summer School 2010 Elisabet Molin [15/22]



C. Performance Counters
• Hardware counters — registers counting events in the processor

• Registered on every CPU

PDC HPC Summer School 2010 Elisabet Molin [15/22]



C. Performance Counters
• Hardware counters — registers counting events in the processor

• Registered on every CPU

• Cycles (perfect time resolution)

PDC HPC Summer School 2010 Elisabet Molin [15/22]



C. Performance Counters
• Hardware counters — registers counting events in the processor

• Registered on every CPU

• Cycles (perfect time resolution)

• Instruction count (completed, floating point, integer, load/store)

PDC HPC Summer School 2010 Elisabet Molin [15/22]



C. Performance Counters
• Hardware counters — registers counting events in the processor

• Registered on every CPU

• Cycles (perfect time resolution)

• Instruction count (completed, floating point, integer, load/store)

• Branches (Taken/not taken, etc)

PDC HPC Summer School 2010 Elisabet Molin [15/22]



C. Performance Counters
• Hardware counters — registers counting events in the processor

• Registered on every CPU

• Cycles (perfect time resolution)

• Instruction count (completed, floating point, integer, load/store)

• Branches (Taken/not taken, etc)

• Cache (Cache level hits/misses)

PDC HPC Summer School 2010 Elisabet Molin [15/22]



C. Performance Counters
• Hardware counters — registers counting events in the processor

• Registered on every CPU

• Cycles (perfect time resolution)

• Instruction count (completed, floating point, integer, load/store)

• Branches (Taken/not taken, etc)

• Cache (Cache level hits/misses)

+ Measured event counts are exact

PDC HPC Summer School 2010 Elisabet Molin [15/22]



C. Performance Counters
• Hardware counters — registers counting events in the processor

• Registered on every CPU

• Cycles (perfect time resolution)

• Instruction count (completed, floating point, integer, load/store)

• Branches (Taken/not taken, etc)

• Cache (Cache level hits/misses)

+ Measured event counts are exact

+ Usually doesn’t affect performance too much

PDC HPC Summer School 2010 Elisabet Molin [15/22]



C. Performance Counters
• Hardware counters — registers counting events in the processor

• Registered on every CPU

• Cycles (perfect time resolution)

• Instruction count (completed, floating point, integer, load/store)

• Branches (Taken/not taken, etc)

• Cache (Cache level hits/misses)

+ Measured event counts are exact

+ Usually doesn’t affect performance too much

! Amount of data possible to store limited by registers

PDC HPC Summer School 2010 Elisabet Molin [15/22]



C. Performance Counters
• Hardware counters — registers counting events in the processor

• Registered on every CPU

• Cycles (perfect time resolution)

• Instruction count (completed, floating point, integer, load/store)

• Branches (Taken/not taken, etc)

• Cache (Cache level hits/misses)

+ Measured event counts are exact

+ Usually doesn’t affect performance too much

! Amount of data possible to store limited by registers

- Requires CPU and OS support

PDC HPC Summer School 2010 Elisabet Molin [15/22]



C. Performance Counters
• Hardware counters — registers counting events in the processor

• Registered on every CPU

• Cycles (perfect time resolution)

• Instruction count (completed, floating point, integer, load/store)

• Branches (Taken/not taken, etc)

• Cache (Cache level hits/misses)

+ Measured event counts are exact

+ Usually doesn’t affect performance too much

! Amount of data possible to store limited by registers

- Requires CPU and OS support

- Usually doesn’t say where the problem is

PDC HPC Summer School 2010 Elisabet Molin [15/22]



What do we want to know?
• Where does the code spend its time?

PDC HPC Summer School 2010 Elisabet Molin [16/22]



What do we want to know?
• Where does the code spend its time?

• Want to know what the program actually does when run with a

particular input data

PDC HPC Summer School 2010 Elisabet Molin [16/22]



Execution example

init()

while i>0

calc()

i - -

done()

PDC HPC Summer School 2010 Elisabet Molin [17/22]



Execution example

init()

while i>0

calc()

i - -

done()

m1: call init()

m2: while i > 0

m3: call calc()

m4: i - -

m5: call done()

PDC HPC Summer School 2010 Elisabet Molin [17/22]



Execution example

init()

while i>0

calc()

i - -

done()

m1: call init()

m2: while i > 0

m3: call calc()

m4: i - -

m5: call done()

i1: a=0

i2: b=10

i3: i=4

PDC HPC Summer School 2010 Elisabet Molin [17/22]



Execution example

init()

while i>0

calc()

i - -

done()

m1: call init()

m2: while i > 0

m3: call calc()

m4: i - -

m5: call done()

i1: a=0

i2: b=10

i3: i=4

c1: a=a+b

PDC HPC Summer School 2010 Elisabet Molin [17/22]



Execution example

init()

while i>0

calc()

i - -

done()

m1: call init()

m2: while i > 0

m3: call calc()

m4: i - -

m5: call done()

i1: a=0

i2: b=10

i3: i=4

c1: a=a+b

d1: print a

PDC HPC Summer School 2010 Elisabet Molin [17/22]



Execution example

init()

while i>0

calc()

i - -

done()

m1: call init()

m2: while i > 0

m3: call calc()

m4: i - -

m5: call done()

i1: a=0

i2: b=10

i3: i=4

c1: a=a+b

d1: print a

m1

PDC HPC Summer School 2010 Elisabet Molin [17/22]



Execution example

init()

while i>0

calc()

i - -

done()

m1: call init()

m2: while i > 0

m3: call calc()

m4: i - -

m5: call done()

i1: a=0

i2: b=10

i3: i=4

c1: a=a+b

d1: print a

m1

i1

PDC HPC Summer School 2010 Elisabet Molin [17/22]



Execution example

init()

while i>0

calc()

i - -

done()

m1: call init()

m2: while i > 0

m3: call calc()

m4: i - -

m5: call done()

i1: a=0

i2: b=10

i3: i=4

c1: a=a+b

d1: print a

m1

i1

i2

PDC HPC Summer School 2010 Elisabet Molin [17/22]



Execution example

init()

while i>0

calc()

i - -

done()

m1: call init()

m2: while i > 0

m3: call calc()

m4: i - -

m5: call done()

i1: a=0

i2: b=10

i3: i=4

c1: a=a+b

d1: print a

m1

i1

i2

i3

PDC HPC Summer School 2010 Elisabet Molin [17/22]



Execution example

init()

while i>0

calc()

i - -

done()

m1: call init()

m2: while i > 0

m3: call calc()

m4: i - -

m5: call done()

i1: a=0

i2: b=10

i3: i=4

c1: a=a+b

d1: print a

m1

i1

i2

i3

m2

PDC HPC Summer School 2010 Elisabet Molin [17/22]



Execution example

init()

while i>0

calc()

i - -

done()

m1: call init()

m2: while i > 0

m3: call calc()

m4: i - -

m5: call done()

i1: a=0

i2: b=10

i3: i=4

c1: a=a+b

d1: print a

m1

i1

i2

i3

m2

m3

PDC HPC Summer School 2010 Elisabet Molin [17/22]



Execution example

init()

while i>0

calc()

i - -

done()

m1: call init()

m2: while i > 0

m3: call calc()

m4: i - -

m5: call done()

i1: a=0

i2: b=10

i3: i=4

c1: a=a+b

d1: print a

m1

i1

i2

i3

m2

m3

c1

PDC HPC Summer School 2010 Elisabet Molin [17/22]



Execution example

init()

while i>0

calc()

i - -

done()

m1: call init()

m2: while i > 0

m3: call calc()

m4: i - -

m5: call done()

i1: a=0

i2: b=10

i3: i=4

c1: a=a+b

d1: print a

m1

i1

i2

i3

m2

m3

c1

m4

PDC HPC Summer School 2010 Elisabet Molin [17/22]



Execution example

init()

while i>0

calc()

i - -

done()

m1: call init()

m2: while i > 0

m3: call calc()

m4: i - -

m5: call done()

i1: a=0

i2: b=10

i3: i=4

c1: a=a+b

d1: print a

m1

i1

i2

i3

m2

m3

c1

m4

m2

PDC HPC Summer School 2010 Elisabet Molin [17/22]



Execution example

init()

while i>0

calc()

i - -

done()

m1: call init()

m2: while i > 0

m3: call calc()

m4: i - -

m5: call done()

i1: a=0

i2: b=10

i3: i=4

c1: a=a+b

d1: print a

m1

i1

i2

i3

m2

m3

c1

m4

m2

m3

PDC HPC Summer School 2010 Elisabet Molin [17/22]



Execution example

init()

while i>0

calc()

i - -

done()

m1: call init()

m2: while i > 0

m3: call calc()

m4: i - -

m5: call done()

i1: a=0

i2: b=10

i3: i=4

c1: a=a+b

d1: print a

m1

i1

i2

i3

m2

m3

c1

m4

m2

m3

c1

PDC HPC Summer School 2010 Elisabet Molin [17/22]



Execution example

init()

while i>0

calc()

i - -

done()

m1: call init()

m2: while i > 0

m3: call calc()

m4: i - -

m5: call done()

i1: a=0

i2: b=10

i3: i=4

c1: a=a+b

d1: print a

m1

i1

i2

i3

m2

m3

c1

m4

m2

m3

c1

m4

PDC HPC Summer School 2010 Elisabet Molin [17/22]



Execution example

init()

while i>0

calc()

i - -

done()

m1: call init()

m2: while i > 0

m3: call calc()

m4: i - -

m5: call done()

i1: a=0

i2: b=10

i3: i=4

c1: a=a+b

d1: print a

m1 m2

i1

i2

i3

m2

m3

c1

m4

m2

m3

c1

m4

PDC HPC Summer School 2010 Elisabet Molin [17/22]



Execution example

init()

while i>0

calc()

i - -

done()

m1: call init()

m2: while i > 0

m3: call calc()

m4: i - -

m5: call done()

i1: a=0

i2: b=10

i3: i=4

c1: a=a+b

d1: print a

m1 m2

i1 m3

i2

i3

m2

m3

c1

m4

m2

m3

c1

m4

PDC HPC Summer School 2010 Elisabet Molin [17/22]



Execution example

init()

while i>0

calc()

i - -

done()

m1: call init()

m2: while i > 0

m3: call calc()

m4: i - -

m5: call done()

i1: a=0

i2: b=10

i3: i=4

c1: a=a+b

d1: print a

m1 m2

i1 m3

i2 c1

i3

m2

m3

c1

m4

m2

m3

c1

m4

PDC HPC Summer School 2010 Elisabet Molin [17/22]



Execution example

init()

while i>0

calc()

i - -

done()

m1: call init()

m2: while i > 0

m3: call calc()

m4: i - -

m5: call done()

i1: a=0

i2: b=10

i3: i=4

c1: a=a+b

d1: print a

m1 m2

i1 m3

i2 c1

i3 m4

m2

m3

c1

m4

m2

m3

c1

m4

PDC HPC Summer School 2010 Elisabet Molin [17/22]



Execution example

init()

while i>0

calc()

i - -

done()

m1: call init()

m2: while i > 0

m3: call calc()

m4: i - -

m5: call done()

i1: a=0

i2: b=10

i3: i=4

c1: a=a+b

d1: print a

m1 m2

i1 m3

i2 c1

i3 m4

m2 m2

m3

c1

m4

m2

m3

c1

m4

PDC HPC Summer School 2010 Elisabet Molin [17/22]



Execution example

init()

while i>0

calc()

i - -

done()

m1: call init()

m2: while i > 0

m3: call calc()

m4: i - -

m5: call done()

i1: a=0

i2: b=10

i3: i=4

c1: a=a+b

d1: print a

m1 m2

i1 m3

i2 c1

i3 m4

m2 m2

m3 m3

c1

m4

m2

m3

c1

m4

PDC HPC Summer School 2010 Elisabet Molin [17/22]



Execution example

init()

while i>0

calc()

i - -

done()

m1: call init()

m2: while i > 0

m3: call calc()

m4: i - -

m5: call done()

i1: a=0

i2: b=10

i3: i=4

c1: a=a+b

d1: print a

m1 m2

i1 m3

i2 c1

i3 m4

m2 m2

m3 m3

c1 c1

m4

m2

m3

c1

m4

PDC HPC Summer School 2010 Elisabet Molin [17/22]



Execution example

init()

while i>0

calc()

i - -

done()

m1: call init()

m2: while i > 0

m3: call calc()

m4: i - -

m5: call done()

i1: a=0

i2: b=10

i3: i=4

c1: a=a+b

d1: print a

m1 m2

i1 m3

i2 c1

i3 m4

m2 m2

m3 m3

c1 c1

m4 m4

m2

m3

c1

m4

PDC HPC Summer School 2010 Elisabet Molin [17/22]



Execution example

init()

while i>0

calc()

i - -

done()

m1: call init()

m2: while i > 0

m3: call calc()

m4: i - -

m5: call done()

i1: a=0

i2: b=10

i3: i=4

c1: a=a+b

d1: print a

m1 m2

i1 m3

i2 c1

i3 m4

m2 m2

m3 m3

c1 c1

m4 m4

m2 m2

m3

c1

m4

PDC HPC Summer School 2010 Elisabet Molin [17/22]



Execution example

init()

while i>0

calc()

i - -

done()

m1: call init()

m2: while i > 0

m3: call calc()

m4: i - -

m5: call done()

i1: a=0

i2: b=10

i3: i=4

c1: a=a+b

d1: print a

m1 m2

i1 m3

i2 c1

i3 m4

m2 m2

m3 m3

c1 c1

m4 m4

m2 m2

m3 m5

c1

m4

PDC HPC Summer School 2010 Elisabet Molin [17/22]



Execution example

init()

while i>0

calc()

i - -

done()

m1: call init()

m2: while i > 0

m3: call calc()

m4: i - -

m5: call done()

i1: a=0

i2: b=10

i3: i=4

c1: a=a+b

d1: print a

m1 m2

i1 m3

i2 c1

i3 m4

m2 m2

m3 m3

c1 c1

m4 m4

m2 m2

m3 m5

c1 d1

m4

PDC HPC Summer School 2010 Elisabet Molin [17/22]



Too much data
• A 2GHz processor running for 10 s

PDC HPC Summer School 2010 Elisabet Molin [18/22]



Too much data
• A 2GHz processor running for 10 s

• One instruction typically 32 bit, i.e. 4 byte.

PDC HPC Summer School 2010 Elisabet Molin [18/22]



Too much data
• A 2GHz processor running for 10 s

• One instruction typically 32 bit, i.e. 4 byte.

• Total data generated — 2 ∗ 10 ∗ 4 = 80GB!

PDC HPC Summer School 2010 Elisabet Molin [18/22]



Too much data
• A 2GHz processor running for 10 s

• One instruction typically 32 bit, i.e. 4 byte.

• Total data generated — 2 ∗ 10 ∗ 4 = 80GB!

• The data input will affect how your program runs

PDC HPC Summer School 2010 Elisabet Molin [18/22]



Too much data
• A 2GHz processor running for 10 s

• One instruction typically 32 bit, i.e. 4 byte.

• Total data generated — 2 ∗ 10 ∗ 4 = 80GB!

• The data input will affect how your program runs

• Code length will always be ≪ number of instructions executed!

PDC HPC Summer School 2010 Elisabet Molin [18/22]



Too much data
• A 2GHz processor running for 10 s

• One instruction typically 32 bit, i.e. 4 byte.

• Total data generated — 2 ∗ 10 ∗ 4 = 80GB!

• The data input will affect how your program runs

• Code length will always be ≪ number of instructions executed!

• Need a way of reducing data and still get the information!

PDC HPC Summer School 2010 Elisabet Molin [18/22]



D. Profilers
• Two types: Statistical and Event based profilers

PDC HPC Summer School 2010 Elisabet Molin [19/22]



D. Profilers
• Two types: Statistical and Event based profilers

• Statistical Profiling:

PDC HPC Summer School 2010 Elisabet Molin [19/22]



D. Profilers
• Two types: Statistical and Event based profilers

• Statistical Profiling:

Interrupts at random intervals and records which program instruction

the CPU is executing.

PDC HPC Summer School 2010 Elisabet Molin [19/22]



D. Profilers
• Two types: Statistical and Event based profilers

• Statistical Profiling:

Interrupts at random intervals and records which program instruction

the CPU is executing.

• Event based Profiling:

PDC HPC Summer School 2010 Elisabet Molin [19/22]



D. Profilers
• Two types: Statistical and Event based profilers

• Statistical Profiling:

Interrupts at random intervals and records which program instruction

the CPU is executing.

• Event based Profiling:

Interrupts triggered by hardware counter events are recorded.

PDC HPC Summer School 2010 Elisabet Molin [19/22]



D. Profilers
• Two types: Statistical and Event based profilers

• Statistical Profiling:

Interrupts at random intervals and records which program instruction

the CPU is executing.

• Event based Profiling:

Interrupts triggered by hardware counter events are recorded.

- Measuring profiles affects performance

PDC HPC Summer School 2010 Elisabet Molin [19/22]



D. Profilers
• Two types: Statistical and Event based profilers

• Statistical Profiling:

Interrupts at random intervals and records which program instruction

the CPU is executing.

• Event based Profiling:

Interrupts triggered by hardware counter events are recorded.

- Measuring profiles affects performance

- Still a lot of data saved

PDC HPC Summer School 2010 Elisabet Molin [19/22]



E. Call Tracing
• Call Tracing — Library specific profiling (for example MPI)

PDC HPC Summer School 2010 Elisabet Molin [20/22]



E. Call Tracing
• Call Tracing — Library specific profiling (for example MPI)

• Wrappers for library specific function calls (for example MPI_SEND)

PDC HPC Summer School 2010 Elisabet Molin [20/22]



E. Call Tracing
• Call Tracing — Library specific profiling (for example MPI)

• Wrappers for library specific function calls (for example MPI_SEND)

• Records when a function was called and with what parameters

PDC HPC Summer School 2010 Elisabet Molin [20/22]



E. Call Tracing
• Call Tracing — Library specific profiling (for example MPI)

• Wrappers for library specific function calls (for example MPI_SEND)

• Records when a function was called and with what parameters

• Get the whole picture — post processing

PDC HPC Summer School 2010 Elisabet Molin [20/22]



E. Call Tracing
• Call Tracing — Library specific profiling (for example MPI)

• Wrappers for library specific function calls (for example MPI_SEND)

• Records when a function was called and with what parameters

• Get the whole picture — post processing

+ Gives you library specific information — which nodes exchanged

messages, what was the message size. . .

PDC HPC Summer School 2010 Elisabet Molin [20/22]



E. Call Tracing
• Call Tracing — Library specific profiling (for example MPI)

• Wrappers for library specific function calls (for example MPI_SEND)

• Records when a function was called and with what parameters

• Get the whole picture — post processing

+ Gives you library specific information — which nodes exchanged

messages, what was the message size. . .

- Affects performance (depending on how often library calls are made)

PDC HPC Summer School 2010 Elisabet Molin [20/22]



Performance Tools on Ferlin
Name: Type: License:

gprof statistical profiler free

papiex performance counter free/licensed

mpip MPI profiling free

paraver MPI tracing and profiling free

tau MPI tracing and profiling free

jumpshot visualization of MPI traces free

PDC HPC Summer School 2010 Elisabet Molin [21/22]



Performance Tools on Ferlin
Name: Type: License:

gprof statistical profiler free

papiex performance counter free/licensed

mpip MPI profiling free

paraver MPI tracing and profiling free

tau MPI tracing and profiling free

jumpshot visualization of MPI traces free

PDC HPC Summer School 2010 Elisabet Molin [21/22]



What is Good Parallel Perfor-
mance?

• Single CPU performance is high.

PDC HPC Summer School 2010 Elisabet Molin [22/22]



What is Good Parallel Perfor-
mance?

• Single CPU performance is high.

• The code is scalable out to more than a few nodes.

PDC HPC Summer School 2010 Elisabet Molin [22/22]



What is Good Parallel Perfor-
mance?

• Single CPU performance is high.

• The code is scalable out to more than a few nodes.

• The network is not the bottleneck.

PDC HPC Summer School 2010 Elisabet Molin [22/22]



What is Good Parallel Perfor-
mance?

• Single CPU performance is high.

• The code is scalable out to more than a few nodes.

• The network is not the bottleneck.

• Data sent around is at a minimum

PDC HPC Summer School 2010 Elisabet Molin [22/22]



What is Good Parallel Perfor-
mance?

• Single CPU performance is high.

• The code is scalable out to more than a few nodes.

• The network is not the bottleneck.

• Data sent around is at a minimum

• Use Performance Tools to get there!

PDC HPC Summer School 2010 Elisabet Molin [22/22]


	Why Parallel Performance?
	Characteristics of a code
	Know your enemy
	Where to optimize
	large {Presenting Performance data}
	Typical graphs
	Execution time
	Speed-up
	Efficiency
	Where to start
	Measuring Performance
	A. External timers
	B. Internal Timers
	C. Performance Counters
	What do we want to know?
	Execution example
	Too much data
	D. Profilers
	E. Call Tracing
	Performance Tools on Ferlin
	What is Good Parallel Performance?

