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Differential operators in non-cartesian
coordinates

« Gradient of a scalar:
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Divergence in non-cartesian coordinate

Vectors need to parallel transported to take
derivatives. Hence derivatives are to be replaced
by covariant derivatives:
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Connection coefficients

e |In “hatted” basis : metric tensor is unit
tensor.

 The “usual” symmetry of connection
coefficients Is not true.

* In spherical polar coordinate system:
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Other differental operators in non-
cartesian coordinate

° curlA=c... A.
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e Second co-variant derivatives:
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Example: Laplacian
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* Spherical polar co-ordinate system:
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Implementation in pencil-code

 Change in subroutine der _mai n In file
deriv.f90 to include the right scaling

factors:
I f (1spherical coords) df =df *r1_mm

* Introduce parameters :

cdata.f90 | spherical _coords, rl1 mm ..

 Calculate them

register.f90 i nitialize nodul es



Implementation (contd.)

« Add “connection-terms” in file sub. f 90
subroutine div_m(aij, b, a)
| f (Il spherical coords) then
b=b+2.*rl1l nmm*a(:,1)+rl mMm*cotth(m *a(:, 2)
endi f
« Similarly forgij etc ..
 Changed in only a few places:
src > grep | spherical *.f90 | wc -|
81



Other modifications

« Boundary conditons:

D rA)=0;r A =r A ;j=123
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Instead of the a condition, we need sl o
condition with unit slope.
« Estimation of CFL time-step: equ. f90

| f (| spherical coords) then &

dxyz 2 = dx_1(11:12)**2+ &
(rl m*dy _1(m)**2+(r1l m*sinlth(m*dz_1(n)
)**2



Averages

* Right volume element to be included:
subroutine sum m(a,res)
| f (I spherical coords) then

do isunrl 1,12

res = res +
X(1sum *x(isum*sinth(m*a(i sum

enddo
el se

res=suni a)

endi f



Performance

« Same MHD code is roughly 1.5 times
slower in spherical coordinate system
compared to cartesian coordinate system:

no. of proc cartesi an spheri cal

4 1. 95 2.97 (6473)

8 0. 945 1.41 (64"3)
16 0. 679 0. 867 (64"3)
16 0. 503 0. 733 (256"3)
32 0. 303 0.421

« | expect cylindrical coordinate system will
be somewhere in the middle.



Turbulent MHD dynamo

* Perfect conductor boundary versus open
vertical (radial) field boundary.

e Results are very similar to what obtained
in Cartesian coordinate system earlier.

 No convection, but helical forcing.
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Plot of magnetic and kinetic energy as a
function of time.
Left : open (radial) field bc
Right: Perfect conductor bc




Plot of magnetic vector potential in
meridional plane




Plot of magnetic field in meridional plane




Limitations

* Helical forcing in spherical polar
coordinate system is difficult to
implement (involves allocation of one
system size array and calculation of
spherical bessel functions and spherical
harmonics ) but the cartesian helical
forcing seems to work perfectly well.

« We cannot work at the axis, numerical
singularity, too small time step needed.



