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Differential operators in non-cartesian 
coordinates

● Gradient of a scalar:
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Divergence in non-cartesian coordinate
● Vectors need to parallel transported to take 

derivatives. Hence derivatives are to be replaced 
by covariant derivatives:

● In Cartesian:                                                               
   

● Include scaling factors :                                             
   

● Co-variant derivative of a vector                                
                                                                                   
    

● Contract indices: 
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Connection coefficients

● In “hatted” basis :  metric tensor is unit 
tensor. 

● The “usual” symmetry of connection 
coefficients is not true. 

● In spherical polar coordinate system:
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Other differental operators  in non-
cartesian coordinate

●                                                                    
                                                              

● Second co-variant derivatives:

      

                      WRONG ! 

                         RIGHT 
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Example: Laplacian

●                                                                    
                                                                   
        

● Spherical polar co-ordinate system:
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Implementation in pencil-code

● Change in subroutine der_mainder_main in file 
deriv.f90 to include the right scaling 
factors: 
if (lspherical_coords)     df=df*r1_mn

● Introduce parameters : 
cdata.f90 lspherical_coords, r1_mn ..

● Calculate them

register.f90 initialize_modules                      
                                       

    



  

Implementation (contd.)

● Add “connection-terms” in file sub.f90
subroutine div_mn(aij,b,a)

 if (lspherical_coords) then

 b=b+2.*r1_mn*a(:,1)+r1_mn*cotth(m)*a(:,2)

      endif

● Similarly for gij_etc ..
● Changed in only a few places:
src > grep lspherical *.f90 | wc -l

      81



  

Other modifications

● Boundary conditons: 

Instead of the a condition, we need slo

condition with unit slope. 
● Estimation of CFL time-step: equ.f90
if(lspherical_coords) then & 

dxyz_2 = dx_1(l1:l2)**2+ & 
(r1_mn*dy_1(m))**2+(r1_mn*sin1th(m)*dz_1(n)
)**2

d
dr

r Ar =0;r i−jAi−j=r ijAij; j=1,2,3



  

Averages

● Right volume element to be included:
subroutine sum_mn(a,res)

if(lspherical_coords) then

  do isum=l1,l2

    res = res +

      x(isum) *x(isum)*sinth(m)*a(isum)

  enddo

else

  res=sum(a)

endif



  

Performance

● Same MHD code is roughly 1.5 times 
slower in spherical coordinate system 
compared to cartesian coordinate system:

no. of proc     cartesian       spherical

4                1.95            2.97 (64^3)

8                0.945           1.41 (64^3)

16               0.679           0.867 (64^3)

16               0.503           0.733 (256^3)

32               0.303           0.421

● I expect cylindrical coordinate system will 
be somewhere in the middle. 



  

Turbulent MHD dynamo

● Perfect conductor boundary versus open 
vertical (radial) field boundary. 

● Results are very similar to what obtained 
in Cartesian coordinate system earlier.  

● No convection, but helical forcing. 



  

Plot of magnetic and kinetic energy as a 
function of time. 

Left : open (radial) field bc 
Right: Perfect conductor bc 



  

Plot of magnetic vector potential in 
meridional plane

  



  

Plot of magnetic field in meridional plane

  



  

Limitations

● Helical forcing in spherical polar 
coordinate system is difficult to 
implement (involves allocation of one 
system size array and calculation of 
spherical bessel functions and spherical 
harmonics ) but the cartesian helical 
forcing seems to work perfectly well. 

● We cannot work at the axis, numerical 
singularity, too small time step needed. 


