Long life to quantum correlations!

TCQP University of Turku Finland

Sabrina Maniscalco

********** ********* 11111 *********** *****************************

change in paradigm

"Quantum mechanics is very much more than just a theory, it is a completely new way of looking at the world, involving a change in paradigm perhaps more radical than any other in the history of human thought"

A. J. Leggett Nobel Prize in Physics 2003

cosmology

laser

nucleus

human vision

supercon ductors

US GROSS NATIONAL PRODUCT

Tegmark and Wheeler 200

Einstein's Quantum of light

THE BIRTH OF QUANTUM THEORY

"It was an act of desperation."

PROBABILISTIC NATURE

"God does not play dice with the Universe."

Albert Einstein

SINGLE ATOMS

We never experiment with just one atom, in thought experiments we sometimes assume that we do, this invariably entails ridiculous consequences

Erwin Schrödinger

QUANTUM JUMPS

If we are still going to put up with these damn quantum jumps, I am sorry that I ever had anything to do with quantum theory"

Erwin Schrödinger

W Neuhauser, M Hohenstatt, PE Toschek, H Dehmelt 980

Single ion fluorescence

SINGLE ION FLUORESCENCE

Th. Sauter, W. Neuhauser, R. Blatt, and P. E. Toschek

Erwin Schrödinger

Entang ement

lines of thought"

"The characteristic trait of quantum mechanics, the one that enforces its entire departure from classical

Bank robbery

Bank robbery

The gun has not fired

The gun has fired

The teller is alive

The teller is dead

Quantum Bank robbery

Quantum Bank robbery

not decayed > alive

Quantum Bank robbery

ENTANGLEMENT

not decayed > alive >

QUANTUM COMPUTERS

Enter

ENVIRONMENT

PROTECTING THE QUANTUM

MEASUREMENTS AFFECT QUANTUM SYSTEMS

S. Maniscalco, F. Francica, R. L. Zaffino, N. Lo Gullo, and F. Plastina, Phys. Rev. Lett. 100, 090503 (2008)

Quantum Zeno effect

allows to protect quantum properties

S. Maniscalco, J. Piilo, K.-A. Suominen

Entangled atoms in a cavity

$|e\rangle_A|g\rangle_B+|g\rangle_A|e\rangle_B$

Quantum Zeno effect on the entanglement

Quantum Zeno Effect is difficult to observe in the experiments

Non-Markovian environment

J. Piilo, S. Maniscalco, and K.-A. Suominen, Phys. Rev. Lett 100, 180402 (2008)

ARE REALLY QUANTUM PROPERTIES DESTROYED BY ENVIRONMENT

OPEN QUANTUM SYSTEMS AND ENTANGLEMENT www.openq.fi

Group Leader: Sabrina Maniscalco

Graduate students: Massimo Borrelli Pinja Haikka Laura Mazzola Janika Paavola Ruggero Vasile

PhD/PostDoc visitors:

Wei Cui (April-September) Francesco Francica (March-April)

A new way of looking at quantum correlations QUANTUM DISCORD

CLASSICAL INFORMATION THEORY

Mutual information is a measure of correlations

I(A:B) = H(A) + H(B) - H(A,B)

 $H(X) = -\sum p(x)\log p(x)$ $x \in X$

Shannon entropy

QUANTUM INFORMATION THEORY

Quantum Quantum Mutual information is a measure of Vcorrelations

$\mathcal{I}(\rho_{AB}) = S(\rho_A) + S(\rho_B) - S(\rho_{AB})$ $S(\rho) = -Tr \left\{ \rho \log \rho \right\}$

von Neumann entropy

CLASSICAL INFORMATION THEORY

I(A:B) = H(A) + H(B) - H(A,B)

MEASUREMENTS AFFECT QUANTUM SYSTEMS

QUANTUM INFORMATION THEORY

Classical correlations $\mathcal{C}(\rho_{AB}) = \left[S(\rho_A) - S(\rho_{AB} | \{\Pi_k\})\right]$

conditional entropy

QUANTUM INFORMATION THEORY

Classical correlations $\mathcal{C}(\rho_{AB}) = \max_{\{\Pi_k\}} [S(\rho_A) - S(\rho_{AB} | \{\Pi_k\})]$ conditional entropy

Classically correlated states

 $\rho_{cl} = \sum p_{kl} |k\rangle \langle k| \otimes |l\rangle \langle l| \qquad p_{kl} \neq p_k p_l$ kl

 $\mathcal{I}(\rho_{AB}) = \mathcal{C}(\rho_{AB})$

QUANTUM DISCORD Quantum Correlations

$\mathcal{D}(\rho_{AB}) = \mathcal{I}(\rho_{AB}) - \mathcal{C}(\rho_{AB})$

L. Henderson and V. Vedral, J. Phys. A: Math. Gen. 34, 6899 (2001) H. Olivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)

FOR PURE STATES

$\rho_{AB} = 1/2(|0\rangle \overline{\langle 0|_A \otimes |0\rangle} \overline{\langle 0|_B + |1\rangle} \overline{\langle 1|_A \otimes |+\rangle} \overline{\langle +|_B}$ $|+\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$

ENTANGLEMENT = 0 $\mathcal{D}(\rho_{AB}) \neq 0$

6 Λ Ø 4

A. Datta, A. Shaji, and C. Caves, Phys. Rev. Lett. 100, 050502 (2008)

0 Λ 2

HOW SENSITIVE IS QUANTUM DISCORD TO THE ENVIRONMENT

phase flip noise

phase flip noise

NITAL STATES

 $\rho_{AB} = \frac{(1+c_3)}{2} |\Psi^{\pm}\rangle \langle \Psi^{\pm}| + \frac{(1-c_3)}{2} |\Phi^{\pm}\rangle \langle \Phi^{\pm}|$

 $|c_3| < 1$

 $|\Psi^{\pm}\rangle(t) = (|00\rangle \pm |11\rangle)/\sqrt{2}$ $|\Phi^{\pm}\rangle(t) = (|01\rangle \pm |10\rangle)/\sqrt{2}$

Bell states

DYNAMCS

L. Mazzola, J. Piilo, and S. Maniscalco, arXiv: 1001.5441 (2010), in press in Phys. Rev Lett.

mutual information

0.8

time γt

DYNAM CS

L. Mazzola, J. Piilo, and S. Maniscalco, arXiv: 1001.5441 (2010), in press in Phys. Rev Lett.

classical correlations

0.8

time γt

DYNAM CS

L. Mazzola, J. Piilo, and S. Maniscalco, arXiv: 1001.5441 (2010), in press in Phys. Rev Lett.

DYNAMCS

L. Mazzola, J. Piilo, and S. Maniscalco, arXiv: 1001.5441 (2010), in press in Phys. Rev Lett.

DYNAM CS

L. Mazzola, J. Piilo, and S. Maniscalco, arXiv: 1001.5441 (2010), in press in Phys. Rev Lett.

The quantum to classical transition is **blocked** until a fixed time instant

 $\overline{t} = -\ln(|c_3|)/(2\gamma)$

what happens?

NUTUAL NEORMATION

CLASSICAL CORRELATIONS

 $\mathcal{C}[\rho_{AB}(t)] = \sum_{i=1}^{2} \frac{1 + (-1)^{j} \chi(t)}{2} \log_{2}[1 + (-1)^{j} \chi(t)]$

 $\chi(t) = \max\{e^{-2\gamma t}, |c_3|\}$

NUTUAL NEORMATION

CLASSICAL CORRELATIONS $\mathcal{C}[\rho_{AB}(t)] = \sum_{j=1}^{2} \frac{1 + (-1)^{j} \chi(t)}{2} \log_{2}[1 + (-1)^{j} \chi(t)]$

 $\chi(t) = \max\{e^{-2\gamma t}, |c_3|\}$

MUTUAL NEORMATION

$$\mathcal{I}[\rho_{AB}(t)] = \sum_{j=1}^{2} \frac{1 + (-1)^{j} c_{3}}{2} \log_{2} t_{j}$$
$$+ \sum_{j=1}^{2} \frac{1 + (-1)^{j} e^{-2\gamma t}}{2}$$

CLASSICAL CORRELATIONS

$$\mathcal{C}[\rho_{AB}(t)] = \sum_{j=1}^{2} \frac{1 + (-1)^{j} \chi(t)}{2} \log_{2}[1 - \frac{1}{2}] \log_{2}[1 - \frac{1}$$

 $_{2}[1+(-1)^{j}c_{3}]$

 $\log_2[1 + (-1)^j e^{-2\gamma t}]$

Classical Correlations

 $(-1)^j \chi(t)$]

 $\chi(t) = \max\{e^{-2\gamma t}, |c_3|\}$

Discord

MUTUAL NEORMATION

$$\mathcal{I}[\rho_{AB}(t)] = \begin{bmatrix} \sum_{j=1}^{2} \frac{1 + (-1)^{j} c_{3}}{2} \log_{2}[1 + (-1)^{j} c_{3}] \end{bmatrix} \begin{bmatrix} \text{Classical} \\ \text{Correlations} \\ + \begin{bmatrix} \sum_{j=1}^{2} \frac{1 + (-1)^{j} e^{-2\gamma t}}{2} \log_{2}[1 + (-1)^{j} e^{-2\gamma t}] \end{bmatrix} \begin{bmatrix} \text{Discorrelations} \\ + \begin{bmatrix} \sum_{j=1}^{2} \frac{1 + (-1)^{j} e^{-2\gamma t}}{2} \log_{2}[1 + (-1)^{j} e^{-2\gamma t}] \end{bmatrix} \end{bmatrix}$$

CLASSICAL CORRELATIONS

$$\mathcal{C}[\rho_{AB}(t)] = \sum_{j=1}^{2} \frac{1 + (-1)^{j} \chi(t)}{2} \log_{2}[1 - \frac{1}{2}] \log_{2}[1 - \frac{1}$$

 $(-1)^j \chi(t)$

 $\chi(t) = \max\{e^{-2\gamma t}, |c_3|\}$

closest separable state

closest classical state

closest separable state

closest classical state

closest separable state

closest classical state
our state at time t: ho(t)

its closest classical state

$$\begin{split} \rho_{\rm cl}(t < \bar{t}) &= \frac{1 + e^{-2\gamma t}}{4} \left(|\Psi^+\rangle \langle \Psi^+| + |\Phi^+\rangle \langle \Phi^+| \right) \\ &+ \frac{1 - e^{-2\gamma t}}{4} \left(|\Phi^-\rangle \langle \Phi^-| + |\Psi^-\rangle \langle \Psi^-| \right) \end{split}$$

our state at time t: ho(t)

its closest classical state

$$\begin{split} \rho_{\rm cl}(t < \bar{t}) &= \frac{1 + e^{-2\gamma t}}{4} \left(|\Psi^+\rangle \langle \Psi^+| + |\Phi^+\rangle \langle \Phi^+| \right) \\ &+ \frac{1 - e^{-2\gamma t}}{4} \left(|\Phi^-\rangle \langle \Phi^-| + |\Psi^-\rangle \langle \Psi^-| \right) \end{split}$$

t = t

its closest classical state

$$\begin{split} \rho_{\rm cl}(t < \bar{t}) &= \frac{1 + e^{-2\gamma t}}{4} \left(|\Psi^+\rangle \langle \Psi^+| + |\Phi^+\rangle \langle \Phi^+| \right) \\ &+ \frac{1 - e^{-2\gamma t}}{4} \left(|\Phi^-\rangle \langle \Phi^-| + |\Psi^-\rangle \langle \Psi^-| \right) \end{split}$$

$$\begin{split} \rho_{\rm cl}(t > \bar{t}) &= \frac{1 + c_3}{4} \left(|\Psi^+\rangle \langle \Psi^+| + |\Psi^-\rangle \langle \Psi^-| \right) \\ &+ \frac{1 - c_3}{4} \left(|\Phi^-\rangle \langle \Phi^-| + |\Phi^+\rangle \langle \Phi^+| \right) \end{split}$$

our state at time t: ho(t)

its closest classical state

its closest classical state

$$\begin{split} \rho_{\rm cl}(t < \bar{t}) &= \frac{1 + e^{-2\gamma t}}{4} \left(|\Psi^+\rangle \langle \Psi^+| + |\Phi^+\rangle \langle \Phi^+| \right) \\ &+ \frac{1 - e^{-2\gamma t}}{4} \left(|\Phi^-\rangle \langle \Phi^-| + |\Psi^-\rangle \langle \Psi^-| \right) \end{split}$$

 $t = \bar{t}$

our state at time t: ho(t)

time 🛁

its closest classical state

$$\begin{split} \rho_{\rm cl}(t > \bar{t}) &= \frac{1+c_3}{4} \left(|\Psi^+\rangle \langle \Psi^+| + |\Psi^-\rangle \langle \Psi^-| \right) \\ &+ \frac{1-c_3}{4} \left(|\Phi^-\rangle \langle \Phi^-| + |\Phi^+\rangle \langle \Phi^+| \right) \end{split}$$

PHYSICAL EXPLANATION

ENTANGLEMENT

DISCORD

ENTANGLEMENT

EXPERIMENTS:

Jin-Shi Xu et al., Nature Communications 1, 7 (2010)

The first evidence of a quantum property that is dynamically not affected by the environment for a long interval of time

http://www.youtube.com/watch?v=jrk3GbJU0k0&feature=related

"I think Nature's imagination is so much greater than man's, she's never gonna let us relax"

Richard Feynman

Classical Correlations

8

Ø

measurement on B:

measurement outcome k

probability

$p_k = Tr_{AB}(\rho_{AB}\Pi_k)$

state of A after the measurement $\rho_k = T r_B (\Pi_k \rho_{AB} \Pi_k) / p_k$

Classical Correlations

Ø

conditional entropy

 $S(\rho_{AB}|\{\Pi_k\}) = \sum_{I} p_k S(\rho_k)$

measurement on B:

measurement outcome k

probability

$p_k = Tr_{AB}(\rho_{AB}\Pi_k)$

state of A after the measurement $\rho_k = T r_B (\Pi_k \rho_{AB} \Pi_k) / p_k$

Classical Correlations

Ø

conditional entropy

$$S(\rho_{AB}|\{\Pi_k\}) = \sum_k p_k S(\rho_k)$$

Classical Correlations $\mathcal{C}(\rho_{AB}) = \max_{\{\Pi_k\}} [S(\rho_A) - S(\rho_{AB} | \{\Pi_k\})]$

measurement on B:

measurement outcome k

probability

$p_k = Tr_{AB}(\rho_{AB}\Pi_k)$

state of A after the measurement $\rho_k = T r_B (\Pi_k \rho_{AB} \Pi_k) / p_k$

Ø

0

Ø

8

80

20

 $\sum p_i \rho_A^i \otimes \rho_B^i$ i

separable state

Ø

 $\sum p_i \rho_A^i \otimes \rho_B^i$

separable state

- |k
 angle set of orthogonal states of A
- |l
 angle set of orthogonal states of B

 $\sum p_i \rho_A^i \otimes \rho_B^i$

separable state

subset of the separable states $p_{kl} \neq p_k p_l$ $\sum_{kl} p_{kl} |k\rangle \langle k| \otimes |l\rangle \langle l|$ classically correlated states

- $|k\rangle$ set of orthogonal states of A
- |l
 angle set of orthogonal states of B

 $\sum p_i \rho_A^i \otimes \rho_B^i$

separable state

subset of the separable states $p_{kl} \neq p_k p_l$ $p_{kl}|k\rangle\langle k|\otimes|l\rangle\langle l|$ klclassically correlated states

- $|k\rangle$ set of orthogonal states of A
- $|l\rangle$ set of orthogonal states of B

$\blacksquare \mathcal{I} = \mathcal{C}$

Ø

 $\sum p_i \rho_A^i \otimes \rho_B^i$

separable state

subset of the separable states classically correlated states

example of separable state with non-classical (quantum) correlations $\rho_{AB} = \frac{1}{2} (|0\rangle \langle 0|_A \otimes |0\rangle \langle 0|_B$ $\mathcal{I} \neq \mathcal{C} \qquad \mathcal{D} \neq 0$

2 S 2 S

- $|k\rangle$ set of orthogonal states of A
- $|l\rangle$ set of orthogonal states of B

$$B_{A} + |1\rangle\langle 1|_{A} \otimes |+\rangle\langle +|_{B}\rangle$$
$$|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

Dynamics of quantum correlations

in presence of the environment

SYSTEM: 2 qubits ENVIRONMENT:

non-dissipative independent environments

J. Maziero, L. C. Celeri, R. M. Serra, and V. Vedral, Phys. Rev. A 80, 044102 (2009).

Ø **Dynamics of quantum correlations**

in presence of the environment

SYSTEM: 2 qubits **ENVIRONMENT:** bit, bit-phase and phase flips j=1 j=2 j=3 $\mathcal{L}[\rho_{A(B)}] = \gamma [\sigma_i^{A(B)} \rho_{A(B)} \sigma_j^{A(B)} - \rho_{A(B)}]/2$

J. Maziero, L. C. Celeri, R. M. Serra, and V. Vedral, Phys. Rev. A 80, 044102 (2009).

non-dissipative independent environments

Dynamics of quantum correlations

in presence of the environment

SYSTEM: 2 qubits **ENVIRONMENT:** bit, bit-phase and phase flips j=1 j=2 j=3 $\mathcal{L}[\rho_{A(B)}] = \gamma [\sigma_i^{A(B)} \rho_{A(B)} \sigma_i^{A(B)}]$

initial states: class of states with maximally mixed marginals

$$\rho_{AB} = \frac{1}{4} \left(\mathbf{1}_{AB} + \sum_{i=1}^{3} c_i \sigma_i^A \sigma_i^B \right)$$

J. Maziero, L. C. Celeri, R. M. Serra, and V. Vedral, Phys. Rev. A 80, 044102 (2009).

non-dissipative independent environments

$$^{(B)} - \rho_{A(B)}]/2$$

Werner states
$$|c_1| = |c_2| = |c_3| = c$$

Bell states
 $|c_1| = |c_2| = |c_3| = 1$

K. Modi, T. Patarek, W. Son, V. Vedral, and M. Williamson, arXiv:0911.5417, in press in PRL

Entanglement E

distance to the closest separable state

$$E = \min_{\sigma \in \mathcal{S}} S(\rho || \sigma)$$

Discord D

distance to the closest classical state

$$D = \min_{\chi \in \mathcal{C}} S(\rho || \chi)$$

Dissonance Q

distance of the closest separable state to its closest classical state

$$Q = \min_{\chi \in \mathcal{C}} S(\sigma || \chi)$$

2 02 0 N N **Open Questions**

L. Mazzola, J. Piilo, and S. Maniscalco, arXiv: 1001.5441 (2010).

Open Questions

L. Mazzola, J. Piilo, and S. Maniscalco, arXiv: 1001.5441 (2010).

Is it possible to exploit the class of initial states displaying communication tasks without any disturbance from the noisy

Open Questions

Is it possible to exploit the class of initial states displaying such a property to perform quantum computation or communication tasks without any disturbance from the noisy environment for long enough intervals of time?

Which is the most general class of states (and dynamical maps) exhibiting a sudden transition from classical to quantum decoherence?

L. Mazzola, J. Piilo, and S. Maniscalco, arXiv: 1001.5441 (2010).

Open Questions

such a property to perform quantum computation or environment for long enough intervals of time?

Which is the most general class of states (and dynamical maps) exhibiting a sudden transition from classical to quantum decoherence?

quantum correlations at the initial times and that allow only quantum correlations to be lost after the transition time

L. Mazzola, J. Piilo, and S. Maniscalco, arXiv: 1001.5441 (2010).

- Is it possible to exploit the class of initial states displaying communication tasks without any disturbance from the noisy

Which are the physical mechanisms that forbid the loss of

