Nordita seminar
Stability in a Turbulent (Fermi) Sea: The Ever More Remarkable High Temperature Superconductors
by
→
Europe/Stockholm
FA 31
FA 31
Description
For over two decades high temperature superconductivity has captured the
attention of scientists the world round.
However, rather than finding a simple explanation for the properties of these materials, as was done for their low temperature cousins half a century ago, intensive research has instead led to an increasingly complex picture of materials characterized by an intricate phase diagram, full of competing or coexisting states, yet still dominated by a superconducting state which persists, at least in some materials, almost half way to room temperature.
In this talk I will describe nanoscale investigations of the electronic structure of high temperature superconductors using scanning tunneling microscopy (STM). We have recently found that a still not understood high temperature phase in these materials, the pseudogap, is characterized by strong charge inhomogeneity.
Surprisingly, although this disorder persists into the superconducting state, it does not seem to perturb coexisting homogeneous superconductivity. The resolution of this apparent contradiction gives new insight into the onset of superconductivity and its relationship with the pseudogap phase.
However, rather than finding a simple explanation for the properties of these materials, as was done for their low temperature cousins half a century ago, intensive research has instead led to an increasingly complex picture of materials characterized by an intricate phase diagram, full of competing or coexisting states, yet still dominated by a superconducting state which persists, at least in some materials, almost half way to room temperature.
In this talk I will describe nanoscale investigations of the electronic structure of high temperature superconductors using scanning tunneling microscopy (STM). We have recently found that a still not understood high temperature phase in these materials, the pseudogap, is characterized by strong charge inhomogeneity.
Surprisingly, although this disorder persists into the superconducting state, it does not seem to perturb coexisting homogeneous superconductivity. The resolution of this apparent contradiction gives new insight into the onset of superconductivity and its relationship with the pseudogap phase.