Hairy black holes and solitons in global AdS_5

Ricardo Monteiro

Niels Bohr International Academy - Niels Bohr Institute

1112.4447: with O.J.C. Dias, P. Figueras, S. Minwalla, P. Mitra, J.E. Santos

The Holographic Way, Nordita, 16 October 2012

Ricardo Monteiro - Hairy black holes and solitons on ${\rm AdS}_5$

Motivation

- Holography: gravitational phase diagrams in AdS describe state structure of dual CFT.
- Poincaré patch of $AdS_d \leftrightarrow \mathsf{CFT}$ on M^{d-1} . Global $AdS_d \leftrightarrow \mathsf{CFT}$ on $S^{d-2} \times R$.
- Interesting toy model: AdS Einstein-Maxwell theory with minimally coupled scalar field. Scalar coupling *e* is free parameter.
- Phase structure of planar solutions: holographic superconductors. (Gubser 08, Hartnoll, Herzog, Horowitz '08, Horowitz, Roberts '09)
- Phase structure in global AdS?

Goal

• To obtain complete phase diagram in global AdS_5 of solutions^{*,**} to

$$\begin{split} S &= \int d^5 x \sqrt{-g} \left[\frac{1}{2} \left(R + 12 \right) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - |D\phi|^2 \right] \\ D_\mu &= \nabla_\mu - i e A_\mu \end{split}$$

* static, spherically symmetric ** discard infinite # of them Parameter space: scalar coupling e, mass M, charge Q.

- Builds on study for "small" solutions: hairy black holes and solitons, apart from Reissner-Nordström-AdS black holes. (Basu, Bhattacharya, Bhattacharyya, Loganayagam, Minwalla, Umesh '10)
- Methods: numerics and perturbation theory.
- Expected: matches "small" solutions, matches planar phase diagram. Not expected: very intricate!

イロト イポト イヨト イヨト

Outline

• RN-AdS black holes and their instabilities

< ∃ >

@ ▶

E

- Hairy black holes
- Solitons
- Phase diagram
- Conclusion

RN-AdS black holes and their instabilities

Reissner-Nordström-AdS solution

Solution

$$ds^{2} = -V(r) dt^{2} + \frac{dr^{2}}{V(r)} + r^{2} d\Omega_{3}^{2},$$

$$V(r) = \left(1 - \frac{R^{2}}{r^{2}}\right) \left(1 + r^{2} + R^{2} - \frac{2}{3} \frac{\mu^{2} R^{2}}{r^{2}}\right),$$

$$A_{t}(r) = \mu \left(1 - \frac{R^{2}}{r^{2}}\right), \qquad \phi = 0.$$

Parameters: R is radius of event horizon, μ is chemical potential.

Asymptotic charges

$$M = \frac{3\pi}{8} R^2 \left(1 + R^2 + \frac{2}{3} \mu^2 \right), \qquad Q = \frac{\pi}{2} \mu R^2.$$

- Regular extremal limit, with near-horizon geometry $AdS_2 \times S^3$.
- Stability? No-hair theorem fails in AdS.

RN-AdS instabilities I: near-horizon instability

- Low temperature instability, better seen at extremality. Extremality: near-horizon geometry is $AdS_2 \times S^3$. Instability if AdS_2 BF bound is violated: $m^2 \ell_{2D}^2 < -1/4$.
- Our minimally-coupled scalar ϕ acquires effective mass $e^2 A^2$. BF bound is violated if

$$e^2 > \frac{2(1+3R^2)^2}{3R^2(1+2R^2)} = 3 + \frac{1}{2R^2} + \mathcal{O}(1/R^4).$$

(monotonic, decreasing with R) Large extremal black holes unstable first. Small black holes safe.

- Endpoint is hairy black hole, which has higher entropy.
- The only instability of "large" black holes: extremal black holes with $R\geq 1$ are stable otherwise. (Dias, Figueras, RM, Reall, Santos '10)

(4月) (4日) (4日)

RN-AdS instabilities II: superradiant instability

- Superradiant scattering: wave $e^{-i\omega t}$ incident upon charged black hole is amplified if $\omega < e\mu$. AdS box leads to instability.
- Threshold for small black holes:
 - lowest normal mode in AdS_5 is $\omega = 4$.
 - assume extremal black hole is most unstable: $\mu^2 = \frac{3}{2}$.
 - then $\omega < e\mu \quad \Rightarrow \quad e^2 > \frac{32}{3}$.
- Onset gives bifurcation to hairy black hole. Traditional superradiance: onset $\hat{\phi} \sim e^{-ie\mu t}$, $\hat{A}(r = \infty) = 0$. Gauge transformation: ϕ static, $A = \hat{A} + \mu dt$, $A(r = \infty) = \mu dt$.

回下 くほと くほど

• Instability of small black holes is not near-horizon type.

RN-AdS instabilities III: parameter space

• Three regions:

$$< 3$$
 $3 < e^2 < \frac{32}{3}$ $e^2 > \frac{32}{3}$

• $e^2 < 3$: RN-AdS bhs stable.

 e^2

- $3 < e^2 < \frac{32}{3}$: large RN-AdS bhs unstable close to extremality.
- $e^2 > \frac{32}{3}$: RN-AdS bhs of any size unstable close to extremality.

Ricardo Monteiro - Hairy black holes and solitons on AdS₅

Onset of instability: solve $D^2 \phi = 0$

(lowest mode only)

$$\Delta M \equiv M - M^{\text{extremal}}(Q)$$

Hairy black holes

・ロト ・回ト ・ヨト

- < ≣ →

E

Ricardo Monteiro - Hairy black holes and solitons on ${\rm AdS}_5$

Hairy black holes: methods

• Need to solve EOMs: coupled 2nd-order ODEs for $f(r), \ A_t(r), \ \phi(r).$

 $ds^2 = -f(r)dt^2 + g(r)dr^2 + r^2 d\Omega_3^2, \quad g(r) \text{ determined by others}.$

- Boundary conditions: regularity at horizon, asymptotically AdS. At AdS boundary, $A_t(r) \rightarrow \mu$, $r^4 \phi(r) \rightarrow \epsilon$.
- Complementary methods
 - Perturbatively for $R \ll 1$, $|e^2 32/3| \ll 1$.
 - Numerically: Newton's method on Chebyshev grid, coord $y = 1 R^2/r^2$, $y \in [0, 1]$. Use as seed the onset mode (last slide).

Hairy black holes: non-interacting model

- Matched asymptotic expansion: three regions
 - near region: close to horizon.
 - intermediate region: small black hole in flat space.
 - far region: perturbation of global AdS.
- Agrees with simple non-interacting model! (cf. Basu et al '10) Thermodynamically, hairy black hole = RN-AdS + soliton.

$$S(M,Q) = S_{\text{RN-AdS}}(M - M_{\text{sol}}, Q - Q_{\text{sol}})$$

Extremize S and use 1st law: get $\mu_{\text{RN-AdS}} = \mu_{sol}$.

• Perturbation theory was crucial guide for numerics!

Hairy black holes: numerical results I

- For $e^2 < 3$, no hairy black holes (RN-AdS stable).
- For $3 < e^2 < \frac{32}{3}$, find hairy black holes, but minimum size.

Fix scalar vev ϵ , decrease radius R: reach singular solution as $T \rightarrow 0$, cf. no regular extremal hairy black hole. (Fernandez-Gracia, Fiol '09)

$$(\epsilon = 0.5, e = 3.2)$$

Hairy black holes: numerical results II

• For $e^2 > \frac{32}{3}$, find hairy black holes of any size.

Blue - numerical data. Red - perturbative analysis. Agreement for small charge.

$$(\epsilon = 0.1, e = 3.33)$$

Fix charge Q, decrease R:

- $Q \leq Q_c(e^2)$: reach soliton at R = 0, infinite temperature limit.
- $Q > Q_c(e^2)$: reach singular solution, zero temperature limit.

(see plot later)

Solitons

ヘロン 人間 とくぼとくぼと

∃ ∽ ९ ୯

Ricardo Monteiro - Hairy black holes and solitons on ${\rm AdS}_5$

Solitons: methods

- System to solve is the same. Interior boundary conditions change: regularity at origin.
- Complementary methods
 - Perturbatively for $\epsilon \ll 1$: done in Basu et al '10.

$$\phi(r) = \sum_{n=0}^{\infty} \epsilon^{2n+1} \phi_{2n+1}(r), \quad \text{with} \quad \phi_1(r) = \frac{1}{(r^2+1)^2}.$$

 ϕ_1 is lowest normal mode of AdS (we ignore excited states). Similar expansions for $A_t(r)$ and metric functions.

• Numerically: Newton's method on Chebyshev grid, coord $y = r^2/(1+r^2)$, $y \in [0,1]$. Use as seed the perturbative result.

Solitons: numerical results I

For $e^2 < \frac{32}{3}$, find 1-parameter branch of solutions connected to AdS vacuum. Exists up to maximum charge. Self-similar behaviour at end point, plane (ϵ, Q) .

Ricardo Monteiro - Hairy black holes and solitons on AdS₅

Solitons: numerical results II

For $e^2 > \frac{32}{3}$, find 1-parameter branch of solutions connected both to AdS vacuum and to planar limit.

Black - numerical data. Red - perturbative analysis.

There are also bubbles in parameter space, connected neither to AdS vacuum nor to planar limit. (Gentle, Rangamani, Withers '11)

Solitons: numerical results III

We saw that, for $e^2>\frac{32}{3}$, solitons of arbitrarily large charge exist. Planar limit: new coords $\ r=L\,\rho\,,\ t=\tau/L$. Take limit $L\to\infty$.

Define:

$$f_P(\rho) = \lim_{L \to \infty} \frac{f(\rho L)}{L^2}, \ g_P(\rho) = \lim_{L \to \infty} L^2 g(\rho L),$$

$$A_P(\rho) = \lim_{L \to \infty} \frac{A(\rho L)}{L}, \ \phi_P(\rho) = \lim_{L \to \infty} \phi(\rho L).$$
Planar solution:

$$ds_P^2 = -f_P(\rho)d\tau^2 + g_P(\rho)d\rho^2 + \rho^2 d\vec{x}_3^2,$$

$$A_P = A_{P\tau}(\rho)d\tau, \quad \phi_P = \phi_P(\rho).$$
Black: solitons.
Green: "extremal" hairy bhs.
Same planar limit!

Phase diagram

・ロト ・回ト ・ヨト

- < ≣ →

E

Ricardo Monteiro - Hairy black holes and solitons on ${\rm AdS}_5$

Phase diagram: $e^2 < 3$

 $\Delta M \equiv M - M_{\rm RN-AdS}^{\rm extremal}(Q)$

 $\Delta M > 0$ - RN-AdS black holes. Black - solitons, numerical. Red - solitons, perturbative.

No hairy black holes. Solitons have self-similar behaviour. (2nd soliton branch not represented)

<ロト <回ト < 三ト < 三ト

Phase diagram: $3 < e^2 < 32/3$

Hairy black holes not small, have singular extremal limit. Solitons have self-similar behaviour.

Phase diagram: $e^2 > 32/3$

 $\Delta M > 0$ - RN-AdS black holes. Black - solitons, numerical. Blue - hairy black holes, numerical. Red - merger, numerical. Grid - vev ϵ versus R

Hairy bhs and solitons of any charge. Connected at small Q, then hairy bhs have singular extremal limit: non-analytic lower bound at $Q_c(e^2)$.

Conclusion

- Considered Einstein-Maxwell theory with minimally coupled scalar in global AdS.
- Constructed hairy black holes and solitons.
- Intricate phase diagram!
 - Coincidence at $e^2 = 32/3$: small hairy black holes allowed <u>and</u> meeting of soliton branches.
 - Lowest mass limit of hairy black holes: soliton for $Q < Q_c(e^2)$ when $e^2 > 32/3$; singular solution otherwise.

向下 イヨト イヨト

• In type IIB SUGRA truncation, relevant for vacuum structure of $\mathcal{N}=4$ SYM at finite SO(6) charge density.