Lifshitz holography for undoped Weyl semimetals

Umut Gürsoy, Vivian Jacobs, Erik Plauschinn, Henk Stoof, S.V.

Based on arXiv: 1209.2593 and 1112.5074.

October 16, 2012

イロト イポト イヨト イヨト

Band structure Phase diagram AdS/CMT

Semimetals

- Characterization by band structure.
- Semimetal: gapless semiconductor.
- Doping: μ .

(1日) (日) (日)

Band structure Phase diagram AdS/CMT

Weyl semimetal

- Chiral fermions (3+1 dim) with dispersion: $\sim \vec{\sigma} \cdot \vec{k}$.
- Theoretical treatment: ideal or weakly interacting case.
- Interesting topological transport phenomena.

・ 同下 ・ ヨト ・ ヨト

Introduction

Single-particle Green's function for Lifshitz fermions Results Conclusion Band structure Phase diagram AdS/CMT

Typical phase diagram

- Quantum critical point, scale invariance.
- Dynamical scaling exponent z: $k \to \ell k$ and $\omega \to \ell^z \omega$
- Strongly interacting: holographic description.

Band structure Phase diagram AdS/CMT

- AdS/CMT as a tool: phenomenological approach.
- Requires experimentally accessible observables.
- Calculate single-particle Green's function.
- Investigate single-particle spectra (z = 2).
- Quantum phase transition.

イロト イポト イヨト イヨト

Band structure Phase diagram AdS/CMT

Some References

- Lifshitz holography and black holes: Kachru, Liu, Muligan; Taylor (2008); ... Hartnoll, Polchinski, Silverstein and Tong (2010);... Nordita (Keranen and Thorlacius (2012), Zingg,...)
- AdS/Lifshitz fermions:

MIT, Leiden (2009); Alishahiha et al. (2012), ...

- Semi-holography, Arpes sum-rules: Faulkner, Polchinski (2011); Gursoy, Plauschinn, Stoof, S.V. (2012)
- Weyl semimetals:

Burkov and Balents (2011);

Wan, Turner, Vishwanath and Savrasov (2011)

Gravitational background

Elementary fermion on boundary:

$$S_{\delta} = -\int d^4x \sqrt{-h} \left(\Psi_+^{\dagger} \not\!\!{D}_z \Psi_+ + \Psi_+^{\dagger} \Psi_- \right)$$

Solve Dirac equation in gravitational background: $\Psi_{-} = \Sigma \Psi_{+}.$

 Σ couples to operators with $\Delta_{\mathcal{O}}(M)$. Interactions of Ψ_+ with CFT.

$$G_{R}(\vec{k},\omega) = -\frac{1}{e^{\omega} - \frac{1}{\lambda_{e}}\vec{\sigma}\cdot\vec{k}|k_{e}|^{z-1} - \sum_{i}(\vec{k},\omega)}$$

Single-particle spectra

Fermi surfaces Momentum distribution Quasiparticle decay rate Ground state occupation Phase diagram

イロト イポト イヨト イヨト

Single-particle spectra

$$G_{R}(\vec{k},\omega) = -\frac{1}{\omega - \frac{1}{\lambda}\vec{\sigma}\cdot\vec{k}|k|^{z-1} - \Sigma(\vec{k},\omega)}$$

• Spectral-weight function:

$$\rho(\vec{k},\omega) = \frac{1}{\pi} \operatorname{Im} \mathcal{G}_{\mathcal{R}}(\vec{k},\omega) = -\frac{\operatorname{Im} \Sigma}{(\operatorname{Re} \mathcal{G}_{\mathcal{R}}^{-1})^2 + \operatorname{Im} \Sigma^2}$$

- Quasiparticles: $\operatorname{Im}\Sigma$ related to lifetime.
- Experimentally accessible (e.g. with ARPES).

Single-particle spectra

Fermi surfaces Momentum distribution Quasiparticle decay rate Ground state occupation Phase diagram

$\lambda > 0$

$$G_R(\vec{k},\omega) = -rac{1}{\omega - rac{1}{\lambda} \vec{\sigma} \cdot \vec{k} |k| - \Sigma(\vec{k},\omega)}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Single-particle spectra

Fermi surfaces Momentum distribution Quasiparticle decay rate Ground state occupation Phase diagram

$\lambda < \mathbf{0}$

$$G_R(\vec{k},\omega) = -rac{1}{\omega - rac{1}{\lambda} \vec{\sigma} \cdot \vec{k} |k| - \Sigma(\vec{k},\omega)}$$

・ロン ・回と ・ヨン ・

Э

 $\Sigma \sim k^{2M}$ Kinetic $\sim k^2$

Fermi surfaces: $k_F = |\lambda|^{\frac{1}{2-2M}}$

Fermi surface

• Decay rate $\Gamma(\omega) \sim \operatorname{Im} \Sigma(k_F, \omega)$ vanishes (as ω^2).

Single-particle spectra Fermi surfaces Momentum distribution Quasiparticle decay rate Ground state occupation Phase diagram

Single-particle Green's function for Lifshitz fermions	entum distribution
Results Quasi	particle decay rate
Conclusion Groun	d state occupation
Phase	diagram

- $\operatorname{Im} \Sigma(k_F, \omega)$ vanishes exponentially for $\omega \to 0$.
- Analytic WKB calculation confirms this.
- General feature of holographic Fermi liquids.

Single-particle spectra Fermi surfaces Momentum distribution Quasiparticle decay rate **Ground state occupation** Phase diagram

Ground state occupation

Single-particle spectra Fermi surfaces Momentum distribution Quasiparticle decay rate Ground state occupation Phase diagram

Phase diagram

Umut Gürsoy, Vivian Jacobs, Erik Plauschinn, Henk Stoof, S.V Lifshitz holography for undoped Weyl semimetals

31 ≥

문 문 문

Summary Outlook

Summary

- Prescription for single-particle Green's function from holography.
- Phenomenological model for class of Weyl semimetals at strong coupling.
- Fermi-liquid and non-Fermi-liquid phases.

イロト イポト イヨト イヨト

- How to create gaps, shifts in band structure, non-chiral systems,...
- Investigate topological transport properties.
- Non-zero doping: add chemical potential.
- Feedback from experiments.