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AdS/CFT correspondence

String theory (∋ gravity)  ⟺  gauge theory (CFT) 
“in bulk”  asymp. AdS × K “on boundary”

✴ Gravitational theory maps to non-gravitational one!
✴ Holographic:  gauge theory lives in fewer dimensions.
✴ Strong/weak coupling duality.

Key aspects:

Invaluable tool to:

Use gravity on AdS to learn about strongly coupled field theory
Use the gauge theory to define & study quantum gravity in AdS

Pre-requisite: Understand the AdS/CFT ‘dictionary’...



Motivation

To understand the AdS/CFT dictionary;
esp. how does spacetime (gravity) emerge? 

Most QG questions rest on bulk locality (& its breakdown)...
Given a specific bulk location, what quantities in the CFT 
should we examine in order to learn about the physics at that 
location?
How deep into the bulk can various CFT probes see?
esp.: can convenient CFT probes see into a black hole?
Given full knowledge of physics (     ) in a certain boundary 
region     , 

in what region of the bulk does it determine the bulk geometry?
in what region of the bulk is it sensitive to the bulk geometry?

⇢A
A



The bulk metric can be extracted using various CFT probes 
(which are described by geometrical quantities in the bulk):

✴ expectation values of local 
gauge-invariant operators

✴ correlation functions of local 
gauge-invariant operators

✴ Wilson loop exp. vals.

✴ entanglement entropy

Examples:

asymptotic fall-off of 
corresponding conjugate field

in WKB approx., proper length 
of corresponding geodesic

area of string worldsheet 

vol of extremal co-dim.2 surface

CFT probe bulk quantity

Probes of bulk geometry



Correlators see inside horizons

Consider correlators of high-dimension operators in CFT
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3-dim BH:
✴ 2 asymptotic regions ⟹ 2 CFTs
✴ correlators of high-dim operators:

L12✴ where         = regularised proper distance 
along spacelike geodesic between x1 and x2.

Correlators between operators in CFT1 and CFT2 give access to full spacetime.
[Louko, Marolf, Ross;  Kraus, Ooguri, Shenker]
However, in 3-dim, these are insensitive to the BH singularity.



Probing black hole singularity

[Fidkowski, VH, Kleban, Shenker]

Signatures of bulk black hole singularity are encoded in analytically 
continued correlators of high-dimension operators in CFT

(a) (b)

t=0

ct

h��i(t) ⇠ 1

(t� tc)2m

✴ spacelike geodesics repelled by singularity

t ! tc✴ divergence in CFT correlation fn. as 

✴ subtlety:  requires analytic continuation

5-dim BH:

Hence CFT correlators are sensitive to geometry deep in bulk, 
even when causally disconnected from the boundary.



Bulk-cone singularities

More direct CFT probes (not reliant on analytic continuation)
= bulk-cone singularities:

✴ Green’s functions on curved bulk spacetime are singular at null-
separated points

✴ Boundary correlation functions                    inherit these singularities
✴ Hence                              when     and     are null-separated

h�(x)�(y)i
h�(x)�(y)i ! 1 x

y

(either along boundary or through the bulk)

✴ The set of bulk-cone singularities in the CFT directly give the endpoints 
of bulk null geodesics.

✴ One can use this information to learn about the bulk geometry

[VH, Liu, Rangamani]



Bulk-cone singularities

Null geodesics in AdS:

Motivation Horizons Geometry Microstates Summary decoding geometry horizon formation

pure AdS

pure AdS = vacuum state in CFT
) expect only the usual bdy light cone singularities

(no additional bulk-cone singularities)

indeed bulk null geodesics connect antipodal points with
�t = ⇡ RAdS :

Veronika Hubeny Decoding bulk geometry from gauge theory correlators

cf. Null geodesics in AdS ‘star’ geometry:

const. t (r , t) planeconst. t (r , t) plane

t

r'

✴ Consider asymp.(global) AdS bulk, and study 
projection of null geodesics in (r , t) and (r ,   )

✴ geodesic endpoints clearly distinguish between 
different bulk geometries:

'



boundary

bulk

Holographic entanglement entropy

[VH, Rangamani, Takayanagi]

In time-dependent situations, prescription must be covariantised:

✴ Entanglement entropy of region     is

✴ minimal surface  ⇾  extremal surface
✴ equivalently, S is the surface with zero null expansions; 

cf. light sheet construction [Bousso] 

A

S

SA = �Tr ⇢A log ⇢A

A

✴ In the bulk this is captured by area of 
minimal co-dimension 2 bulk surface S 
anchored on        .@A

Proposal [Ryu & Takayanagi] for static configurations (at fixed t):



Holographic entanglement entropy

[VH, Rangamani, Takayanagi]

Entanglement entropy growth during thermalisation:
Bulk geometry = collapsing black hole (in 3-d):

-2 -1 1 2 3 4
v!
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L

v0 ! 0.1 v0 ! 0.5 v0 ! 1

v0 ! "2 v0 ! "1 v0 ! 0

behaviour of extremal surfaces
at times v0 during collapse

corresponding entanglement entropy:



Recent developments

What is the bulk region dual of a CFT restricted to a (globally 
hyperbolic subset of the AdS boundary?) 

   [Bousso, Leichenauer, & Rosenhaus, Light-sheets and AdS/CFT]:  Causal wedge 
Consider a density matrix        for a given spatial region      in 
the CFT.   How much of the bulk geometry does       encode? 

   [Czech, Karczmarek, Nogueira, Van Raamsdonk, The Gravity Dual of a Density Matrix]:
       is more naturally associated with domain of dependence, 
corresponding bulk dual must contain the causal wedge of 
but in general extends beyond the causal wedge

[VH, Rangamani, Causal Holographic Information]:  
Most natural (causally constructed) region associated w/     = causal wedge
Causal holographic information surface         characterizes bulk info in 

⇢A
⇢A

A

⇢A
D[A]
D[A]

A
A⌅A
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Probe geodesics

�' �t

For simplicity, focus on static, spher. sym., asymp.(global)AdS

Probe geodesics = bulk geodesics with both endpoints 
anchored on the (same) AdS bdy
Can only be spacelike or null (timelike geods don’t reach bdy) 
Consider how deep into the bulk these can probe (= rmin) 
and the regularized proper length (= Lreg ),   for a given 
angular (     ) and temporal (    ) separation of the endpoints:
What part of the bulk is accessible to probe geodesics?
Which are optimal geodesics for probing the bulk?

ds2 = �f(r) dt2 + h(r) dr2 + r2 d⌦2



Probe geodesics

geodesics w/ energy E and ang.mom. L have radial potential

for turning point rmin, the endpoints are separated by 

     where

with proper length 
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Probe geodesics in AdS

const. t (r , t) plane

�'

�t

Distinct E in distinct panes, denoted by color-coding
Distinct L are distinct curves in each pane



Results for probe geodesics

In causally trivial spacetime, all of the bulk is accessible to 
spacelike as well as null geodesics 
In presence of a black hole, probe geodesics cannot penetrate 
the horizon (cf. part II)
Spacelike geodesics probe deeper than null ones for fixed 
parameters E & L
The `optimal’ geodesics for probing bulk are the E=0 
spacelike ones, as these minimize rmin at fixed 
(However, they have larger Lreg)

�'



Extremal surfaces

Simplified context:   Focus on extremal surfaces S anchored 
on bdy n-dim region R in static planar asymp. (Poincare) AdSd+1

bulk geometry (specified by 2 fns of 1 variable):

shape (1 fn of d-1 variables) & extent X (1 real number) of bdy region R 
dimensionality n (=1,2,...,d-1) of the surface S

Fig. 4: Sketch of the general set-up used in Section 3. To a given n-dimensional region R on the

boundary we associate an extremal surface S in the bulk. A useful quantity characterizing the

surface S is its maximal reach z⇤ into the bulk, and we will characterize the boundary regions R
by their shape, area, or extent X(R).

3 Extremal surface probes

Let us now turn our attention from geodesics (which are 1-dimensional extremal ‘surfaces’) to

higher dimensional surfaces. We wish to compare how far into the bulk can these probe. For

simplicity, we will work with general asymptotically Poincare AdS
d+1 spacetimes with planar

symmetry and time-translation invariance, paying particular heed to black hole spacetimes.

Extremal surfaces in asymptotically global AdS
d+1 spacetimes with spherical symmetry and

time-translation invariance behave qualitatively similarly, but are algebraically more compli-

cated.

Before diving in, let us set up the notation and make a few remarks about the choice of

coordinates. In this section we will consider various regions R on the boundary. We will assume

that R is purely spatial and simply connected. While the AdS boundary is d-dimensional

(and therefore has d � 1 spatial directions) we’ll consider regions of varying dimensionality

n = 1, 2, . . . , d� 1. Furthermore, we can consider various geometrical attributes of this region,

such as its n-dimensional “area” A(R) or its “extent” X(R); we’ll define the latter as the

maximal geodetic distance between any two points within R, where all boundary quantities are

measured with respect to the boundary Minkowski metric ⌘

µ⌫

.

To a given boundary region R, we associate a bulk surface S(R), defined as the extremal

area bulk surface anchored on the boundary of R, i.e. @S = @R. For orientation, the set-up is

sketched in Fig. 4. This surface is obtained by extremizing its proper area in the bulk metric.
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Parameters we can dial:

Key feature of S:
z⇤Bulk depth reached 

(Note that      is geometrically well-defined.)z⇤

ds

2 =
1

z

2

⇥
�g(z) dt2 + k(z) dxi dx

i + dz

2
⇤



Results for extremal surfaces

Preview:

Higher-dimensional surfaces probe deeper
i.e.     increases with n for fixed extent X(R)
Surfaces anchored on R = ball reach deepest
compared to differently-shaped R with same extent or area
Surfaces in pure AdS reach deeper
for fixed R, compared asymp.AdS geometry 

z⇤



Results for extremal surfaces

Higher-dimensional surfaces probe deeper:
Consider R = n-dim’l strip on bdy of pure AdS

We should compare     for fixed extent X(R):
For R = n-ball,                ∀n (i.e. all S hemispherical) in pure AdS
For R = n-ball in deformed AdS, 

-z* z*
x

z*

z

2 4 6 8
n

0.5

1.0

1.5

2.0

2.5

z*êDx

Fig. 5: Left: cross-section of n-dimensional extremal surfaces in Poincare AdS

d+1, with varying dimen-

sionality n = 1, 2, . . . , 5: the outermost (red) curve corresponds to n = 1 while the innermost

(purple) curve to n = 5. Note that d (as long as it is large enough to accommodate the surface)

does not enter. Right: corresponding ratio of maximal bulk radial extent z⇤ to its boundary size

�x grows approximately linearly with n.

The set of solutions (3.10) is plotted in Fig. 5 for various n. It is easy to check that at large

n, the ‘distance’ z⇤ which an n-dimensional surface penetrates into the bulk for a fixed strip

width �x grows linearly with n, z⇤/�x ⇠ n/⇡. The fact that z⇤/�x increases with increasing

n can be understood intuitively by noting that the higher the dimensionality, the greater the

price to pay for area of the surface near the boundary, so the steeper the surface in this region

becomes, so as to get deeper into the bulk faster. As we can easily check, at the other limit,

n = 1, we reproduce the well-known result that a spacelike geodesic anchored at x = ±�x

2 (and

t, z, y

i

= 0) is described by the semi-circle

x

2 + z

2 = z

2
⇤ =

✓
�x

2

◆2

, (3.12)

so the deepest into the bulk that such a geodesic penetrates is given by z⇤ =
�x

2 .

In general, we see that as we increase the dimensionality n of the surface, for a fixed depth

z⇤ to which such a surface reaches, the strip width �x decreases. Conversely, keeping �x

fixed, higher dimensional surfaces reach deeper into the bulk. This observation then seems

to suggest the lesson that higher-dimensional surfaces appear to be better probes of the bulk

geometry. As the above explicit results hold for pure Poincare AdS, let us now generalize the

geometry slightly, and repeat the calculation to see if the same lesson applies in more general

backgrounds.
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z⇤

z⇤ = X/2

cross-sections of S n=1

n=2
n=5

r

z+

z

Fig. 8: Radial profile of n-dimensional extremal surfaces anchored on n-ball in a planar Schwarzschild-

AdS5 background (3.29), for various n and various z⇤. The black dashed line at the bottom

corresponds to the horizon. Same parameters and conventions as in Fig. 6 are used here.

which gives the area of the corresponding bulk extremal surface S,

A = ⌦
n�1

Z
R0

0

q
1 + h(z̃) ˙̃z(r)2

z̃(r)n
r

n�1
dr . (3.39)

The corresponding Euler-Lagrange equations in this case are more complicated,

h(z̃) ¨̃z + (1 + h(z̃) ˙̃z2)


n

z̃

+
(n� 1)

r

h(z̃) ˙̃z

�
+

h

0(z̃)

2
˙̃
z

2 = 0 (3.40)

but can be solved numerically.

For illustrative purposes, we again consider the planar Schwarzschild-AdS5 black hole metric

(3.29), and solve for the radial profile of S, using (3.31) to convert to Fe↵erman-Graham coordi-

nates. The resulting surfaces S are plotted in Fig. 8, which is the rotationally symmetric analog

of the translationally invariant case of Fig. 6. The red (outer-most) curves, being geodesics, are

of course identical in the two cases, but the higher-dimensional surfaces behave di↵erently. In

particular, in the present case, the profiles of the larger-n surfaces deviate much less signifi-

cantly from that of the geodesic than was the case for the strip. This is to be expected, since

at any fixed n, the ‘price to pay’ for the large area contributions near the boundary is smaller

when the perimeter of R is smaller.

From Fig. 8 we also see that, not surprisingly, the extremal surfaces anchored on an n-ball

on the boundary likewise cannot penetrate the horizon. In fact, in this case, for fixed extent of

R, while the higher-dimensional surfaces get closer to the horizon than the lower-dimensional

ones, the e↵ect is not as pronounced as for the strip case (though the spread between surfaces

of various n with fixed z⇤ increases as z⇤ ! z+).

34

at fixed     ,  X decreases with n
at fixed X,      increases with n

z⇤
z⇤



Results for extremal surfaces

Fig. 9: Various extremal surfaces, anchored on a boundary region R (bounded by the thick red curve).

In all cases, area of R is set to unity and to guide the eye, we show boundary square of with

sides �x = �y = 1/
p
2 (denoted by the gray quadrilateral). In all 9 cases, we take ✏/⇢0 = 1/4.

The cases are distinguished by values of ` and µ; in top, middle and bottom rows, ` = 2, 3, 4,

respectively; whereas in left, middle, and right columns, µ = 0,�10, 10, respectively.

these particular spacelike probes do not reach past the horizon. In this section we set out to

show that extremal surfaces cannot reach past an event horizon of a static bulk geometry in far

greater generality, for any dimension n  d� 1 of the surface and any shape boundary region

R, as well as for any spacetime with the requisite symmetries.

We will consider static asymptotically AdS spacetimes with planar symmetry described by22

(3.2) with arbitrary f and h,

ds

2 =
1

z

2

⇥
�f(z) dt2 + dx

i

dx

i + h(z) dz2
⇤
. (4.1)

Let us for definiteness assume that the geometry (4.1) has a non-degenerate event horizon

at z = z+. Then h gets arbitrarily large as we approach the horizon: f(z ! z+) ! 0, so

22 Since this section is self-contained and we will not need to compare with the Fe↵erman-Graham form, for

notational convenience we now drop the tilde on z̃ in (3.2), and write the general metric simply as (4.1).
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Consider R with fixed dimensionality n and `area’ A(R)
What shape of R maximizes    , i.e. when does S reach deepest?z⇤

bdy R

bulk S



Results for extremal surfaces

Surfaces anchored on R=ball reach deepest:
Linearize around the hemisphere                    in pure AdS:

To 2nd order, 

At fixed                       , the area 
    increases as R is perturbed from ball

Hence R=round ball ⇒ S has greatest reach for fixed A(R)

Confirmed numerically at non-linear level as well.

ds2 =

1

⇢2 cos

2 ✓

2

4�dt2 + d⇢2 + ⇢2
�
d✓2 + sin

2 ✓ d�2
�
+

d�1X

j=3

dỹ2j

3

5

⇢(✓,�) = ⇢0

⇢(✓,�) = ⇢0 + ✏ ⇢1(✓,�) + ✏2 ⇢2(✓,�) +O(✏3)

⇢1(✓,�) = tan

`
(✓/2) (1 + ` cos ✓) cos `� .

⇢2(✓,�) =
1

4 ⇢0
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2`
(✓/2) {(1 + ` cos ✓)2 +

⇥
µ (1 + 2 ` cos ✓) + `2 cos

2 ✓
⇤
cos 2`�}

⇢(✓ = 0,�) = ⇢0 A(R) = ⇡ ⇢20

✓
1 +

✏2

⇢20
+O(✏4)
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Probe geods can’t penetrate horizons
in static bulk

Consider a geod. crossing the horizon; what can happen?

(b) & (c) are allowed, but don’t correspond to probe geods
(d) is disallowed by energy conservation:

Ingoing coords:
conserved energy along geods:

(e) is disallowed by assumption of reaching horizon from bdy

ds2 = �f(r) dv2 + 2
p

f(r)h(r) dv dr + r2 d⌦2

E = f(r) v̇ �
p

f(r)h(r) ṙ

?

HaL HbL HcL HdL HeL

Fig. 1: Sketch of possible behaviour of spacelike geodesics (red curves) on a Penrose diagram of an AdS

black hole.

12
Suppose a spacelike geodesic has crossed the future horizon (a). There are several

qualitatively di↵erent a-priori possibilities: it can end at the singularity (b), it can continue to

the boundary of the other asymptotic region (c), it can return to the same boundary through the

future horizon (d), or it can return to the same boundary via the past horizon (e). We argue in

the text that only (b) and (c) are viable possibilities.

2. Ve↵(r) � 0 for some r > r+. Then there are two11 zeros of the e↵ective potential outside

the horizon, the larger of which corresponds to the turning point r⇤ > r+. Such a geodesic

never enters the black hole.

Let us consider each of these cases in turn.

Case 1 (0  r⇤ < r+): We will show that although such a geodesic enters the black hole, it

can never return to the same asymptotic region. Of course, this is obvious for timelike and null

geodesics because of causal constraints, but here we will see that it is true even for spacelike

geodesics which a-priori had no such constraints.

Naively, there are several qualitatively distinct possibilities, illustrated in Fig. 1, for what

can happen to a geodesic which enters a black hole,12 i.e. crosses the future event horizon as

indicated in Fig. 1(a). It can fall into the curvature singularity (b) or continue on to another

asymptotic region (c). Both of these cases are admissible, but neither corresponds to a probe

geodesic, since the other endpoint is not anchored on the same boundary.

To restrict attention to potential probe geodesics, we are led to consider cases such as (d)

or (e) where both endpoints are pinned at the same boundary; but as we now argue, these are

inconsistent with the requirements of a geodesic. In particular, since in our spacetime @

a

v

is a

Killing field, E is a conserved quantity along any geodesic. Let us consider this constant of

11 In the special case when V

e↵

(r) is nowhere positive, the zeros at V
e↵

= 0 degenerate.
12 For definiteness we consider a Schwarzschild-AdS-like causal structure with a spacelike curvature singularity,

but this is not essential to our arguments, which rely only on the region around the horizon.
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Probe geods can’t penetrate horizons
in static bulk

Fig. 3: Spacelike E = 0 geodesics in various backgrounds, for various values of L. We plot the (r,')

plane with the radial coordinate given by tan�1
r. The outer circle is the AdS boundary while

the inner disk represents a black hole of radius r+ = 1/2 in AdS units. Specific spacetimes used

are BTZ (left), Schwarzschild-AdS5 (middle), and extremal Reissner-Nordstrom-AdS5 (right).

The values of angular momenta L are chosen so as to vary �' in increments of

2⇡
10 . The

values of L which gives �' = 2⇡ (purple curve) are LBTZ = 1.09 r+, LSAdS = 1.002 r+, and

LRNAdS = 1.07 r+, respectively.

To quantify this observation, let us consider several examples of AdS black holes. In par-

ticular, we will use BTZ, Schwarzschild-AdS5 and extremal Reissner-Nordstrom-AdS5 as pro-

totypical examples. How close can the probe geodesic with �'  2⇡ get to the horizon, i.e. r⇤,

of course depends on the specific metric; in particular, from (2.5) we know that

�' = 2L

Z 1

L

r
h(r)

r

2 � L

2

dr

r

(2.28)

In the case of BTZ where we can obtain the integral in a closed form, �' = 2
r+

tanh�1 r+

L

,

which means that �' = 2 ⇡ when

r⇤

r+
=

L

r+
=

1

tanh ⇡r+
for BTZ . (2.29)

From this we see that for very small black holes, the geodesics cannot probe closer to the origin

than r⇤ = 1/⇡ if �'  2 ⇡, whereas for large black holes we can probe exponentially close

to the horizon even with this constraint. The actual geodesics are plotted in the left panel of

Fig. 3 for r+ = 1/2 and �' up to 2⇡ (which reproduces part of Fig.4 of [34], where BTZ black

hole of various sizes were considered). For the higher-dimensional AdS black holes, the explicit

expression for �' is much more complicated, so we only present the results numerically. In

the middle and right panels of Fig. 3 we plot geodesics on Schwarzschild-AdS5 and extremal

Reissner-Nordstrom-AdS5, respectively. Despite the di↵erence in the geometries, the shape of

the geodesics varies only mildly. We find a qualitatively similar behaviour as in the BTZ case

19

Eg: BTZ Schw-AdS5 RN-AdS5

spacelike geodesics can penetrate arb. close to horizon
however as                ,                 and 
limiting           , 

     for          
null geodesics can only reach a finite distance from horizon        

rmin ! r+ �' ! 1 Lreg ! 1

rmin � r+
r+

=

8
<

:

9.03⇥ 10

�2
for BTZ

1.85⇥ 10

�3
for SAdS5

6.54⇥ 10

�2
for RNAdS5

�' = 2⇡

r+ = 0.5



Extremal surfaces can’t penetrate 
horizons in static bulk

x

z+

z

Fig. 6: Cross-sections of n-dimensional extremal surfaces anchored on a strip in a planar Schwarzschild-

AdS5 background (3.29), for various n and various z⇤. The black dashed line at the bottom

corresponds to the horizon. The three sets of surfaces, from top to bottom, have

z̃⇤
z̃+

= 0.5, 0.9,

and 0.99, respectively. As in Fig. 5, for each z⇤, the outermost (red) curve corresponds to n = 1

while the innermost (blue) curve to n = 4.

d = 4. The metric was given in (3.3), namely:

ds

2 =
1

z̃

2

2

4�
✓
1� z̃

4

z̃

4
+

◆
dt

2 + dx

i

dx

i +
1

1� z̃

4

z̃

4
+

dz̃

2

3

5

=
1

z

2

2

64�

⇣
1� z

4

z

4
+

⌘2

⇣
1 + z

4

z

4
+

⌘
dt

2 +

✓
1 +

z

4

z

4
+

◆
dx

i

dx

i + dz

2

3

75 (3.29)

where z̃+ and z+ correspond to the horizon radius, and are related by z

2
+ = 2 z̃2+.

We can find z̃⇤ for an n-dimensional surface anchored on a strip of width �x by solving

�x = 2

Z
z̃⇤

0

p
h(z̄) z̄np
z̃

2n
⇤ � z̄

2n
dz̄ with h(z̄) =

z̄

4
+

z̄

4
+ � z̄

4
(3.30)

for z̃⇤. Although a closed-form expression can be readily obtained only for n = 1, we can easily

compute the behaviour numerically, and confirm that for any n, �x diverges as z̃⇤ ! z̃+. To

plot the full extremal surfaces, we solve (3.15) to get x(z̃), and then invert (3.4),

z

z+
=

z̃+

z̃

vuut
1�

s

1�
✓

z̃

z̃+

◆4

, (3.31)

to find z(x) in Fe↵erman-Graham coordinates. The resulting surfaces are plotted in Fig. 6.
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n=1n=2

n=4cross-sections of S

bdy

bulk horizon

Consider extent X(R) for n-strip in Schw-AdS5 at fixed z⇤

We see extremal surfaces are repelled by the horizon

z⇤



Extremal surfaces can’t penetrate 
horizons in static bulk

n=1n=2

n=4

cross-sections of S in FG coords 

bdy

bulk horizon

Cf. extent X(R) for n-strip in extremal  RN-AdS5 at fixed z⇤

Again, extremal surfaces are repelled by the horizon

z⇤

x
zé

x
z

Fig. 7: Cross-sections of n-dimensional extremal surfaces anchored on a strip in a planar extremal

Reisser-Nordstrom-AdS5 background (3.32), for various n and various z⇤. The black dashed line

at the bottom corresponds to the horizon. As in Fig. 5, for each z⇤, the outermost (red) curve

corresponds to n = 1 while the innermost (blue) curve to n = 4.

of each other. Nevertheless, these surfaces still get elongated along the x direction due to the

presence of the horizon.

3.3 Extremal n-surface in Poincare AdS

d+1 enclosing a ball

Above we have argued that for extremal surfaces anchored on ‘strips’, higher-dimensional sur-

faces are better probes of the bulk geometry, in the sense that for a fixed strip width, an

n-dimensional extremal surface reaches deeper into the bulk for higher n. However, this argu-

ment is a bit too glib. In particular, we have only considered the extent in the x direction and

ignored the fact that the higher dimensional surfaces utilize extra directions of infinite extent.

A slightly better comparison would therefore involve a boundary region of finite extent in all

directions. The most natural such region is a (d � 1)-ball (with some specified radius R0) in

Rd�1. Let us therefore compare extremal n-surfaces anchored on S

n�1 of radius R0 (i.e. with

extent X(R) = 2R0), for di↵erent values of n  d� 1.

Let us again start with pure Poincare AdS
d+1 as a warm-up. It is convenient to use coordi-

nates adapted to the spherical symmetry of the bounding region, so we re-write (3.6) as

ds

2 =
1

z

2

"
�dt

2 + dr

2 + r

2
d⌦2

n�1 +
d�1X

j=n+1

dỹ

2
j

+ dz

2

#
(3.34)

and choose �

1 = r and �

i with i = 2, . . . , n to be given by the angles of the (n � 1)-sphere.
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Extremal surfaces can’t penetrate 
horizons in static bulk

Completely general proof, for any n, R, & bulk geom:
Consider extremal surface S param. by 

     in bulk spacetime

At horizon,             and 

Lagrangian:

EOM:

Around the turning point,            :

In order for    to be maximum,             , which forces

Hence turning point     must be outside the horizon.

ds

2 =
1

z

2

⇥
�f(z) dt2 + dxi dx

i + h(z) dz2
⇤

z(x1
, . . . , x

n)

f ! 0 h ! ±1

L(z , z,1 , . . . , z,n ; x1
, . . . , x

n) =
p
G =

q
1 + h(z)

�
z

2
,1 + . . .+ z

2
,n

�

z

n

X

i

z,ii

0

@1 + h(z)
X

j

z2,j

1

A� h(z)
X

i,j

z,ij z,i z,j +
X

i

z2,i

✓
n

z
+

h0(z)

2h(z)

◆
+

n

z h(z)
= 0

X

i

z,ii +
n

z h(z)
= 0

z,ii(z⇤) < 0

z⇤

z

z = z⇤

h(z⇤) > 0



Gedanken-experiment to demonstrate that causality does not 
pose a fundamental obstacle to extracting information via CFT:

✴ uses the teleological nature of event 
horizon & non-local nature of AdS/CFT:

✴ Measure bulk event by spacelike CFT 
probe (precursor), e.g. geodesic g

✴ Afterwards, collapse a shell s, 
✴ such that the resulting event horizon H 

encompasses the measured event.

✴ Then g is a probe geodesic which 
penetrates the event horizon

[VH]

Extremal surfaces can penetrate 
horizons in time-evolving bulk

✴ seen explicitly for geods in  Vaidya-AdS
[VH, Maxfield]
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Bulk dual to a bdy region     ?  

What is the most natural bulk region 
associated to a given region     on the bdy?A

A

‘natural’: try to be minimalistic, use only bulk causality
Take     to be d-1 dimensional spatial region on bdy of asymp. 
AdSd+1 bulk spacetime.
The unique minimal construction gives a bulk causal wedge 
associated with    ,  and a corresponding d-1 dimensional bulk 
surface 
Using geometrical information, we can associate a number    
to    , corresponding to area of 

⌅A

⌅A

�A

A

A

A



Causal construction

Wednesday, 4 April 12

D+[A]

D�[A]

J+[A]

J�[A]

A

A

Fig. 1: Illustration of the causal sets D and J associated with a 1-dimensional spacelike region A. The

future (past) domain of dependence D±[A] is the set of points which are fully determined by future

(past) evolution of the ‘initial data’ on A. The future (past) domain of influence J±[A] is the set

of points which can be causally influenced by (or can influence) A.

region of interest, ⌥A. We define these notions precisely in §2; for now we simply motivate the

construction.

How can we construct a minimal d + 1 dimensional bulk region from a d � 1-dimensional

spatial region A on the boundary? Clearly, both bulk and boundary domains of influence of

A are infinite sets. Their union is likewise infinite, while their intersection is just the region A

itself, so none of these provides a good starting point. On the other hand, the bulk domain of

dependence of A is only the region A itself, which doesn’t extend into the bulk.2 This leaves

us with the boundary domain of dependence of A, which we’ll denote by ⌃A. This is a finite

d-dimensional region on the boundary, and we will use this boundary region to construct the

bulk region of interest ⌥A. While the bulk domain of dependence of ⌃A is still only ⌃A, and

the bulk domain of influence of ⌃A is still infinitely extended, the intersection of future and past

domains of influence of ⌃A is now a non-trivial bulk region which nevertheless does not extend

infinitely far into the bulk. This is our region ⌥A, called the causal wedge of ⌃A. For orientation

we refer the reader to Fig. 2 of the next section, where we explain the technical construction.

Having constructed a d+ 1 dimensional bulk region ⌥A associated with a d� 1 dimensional

boundary regionA, let us go one step further, and ask whether there is likewise a d�1 dimensional

bulk ‘surface’ naturally associated to A, as this may provide a more useful (albeit more limited)

quantity related to A. We can again answer in the a�rmative, by building on the construction

of ⌥A: keeping to only causally-defined quantities, we define the surface of interest ⌅A as the

(bulk) intersection of the boundaries of the past and future domains of influence of ⌃A. The

boundaries are null surfaces in the bulk which end on the boundary of ⌃A, so their intersection is

a spacelike co-dimension 2 bulk surface which is anchored on the AdS boundary at @A, and for

static geometries lies entirely within the same time slice3 as A. More generally, ⌅A corresponds to

2 As follows immediately from the definition we give in §2, the domain of dependence of a given region trivializes

to just the region whenever that region has co-dimension greater than 1.
3 For static bulk geometries, we use the natural time slices defined by the time translation symmetry, i.e.

– 3 –

Given     , we can determine observables in the entire 

domain of dependence           = region which must influence 
or be influenced by events in 
domain of influence          = region which can influence or 
be influenced by events in 

D±[A]

I±[A]

A

A

⇢A ⌃A

⌃A ⌘ D+[A] [D�[A]



Causal construction

Consider a bdy region

z

x

t

A

A



Causal construction

z

x

t

A

J+[A]

J�[A]

Consider a bdy region
Its bulk domains of influence 
extend arb. deep into the bulk 
and have trivial intersection
(and bulk domain of dependence of       is 
just the region      itself).

A

A
A



Causal construction

Consider a bdy region
Its bulk domains of influence 
extend arb. deep into the bulk 
and have trivial intersection
Consider a bdy domain of 
dependence of    , denoted
(observables in the entire region       can be 
determined solely from the initial conditions 
specified on     ) 

z

x

t

A

A

A

⌃A
⌃A

A

⌃A



Causal construction

Consider a bdy region
Its bulk domains of influence 
extend arb. deep into the bulk 
and have trivial intersection
Consider a bdy domain of 
dependence of    , denoted
Its bulk domains of influence 
extend arb. deep, but their 
intersection doesn’t

z

x

t

A

A

A ⌃A

J+[⌃A]

J�[⌃A]



Causal construction

Consider a bdy region
Its bulk domains of influence 
extend arb. deep into the bulk 
and have trivial intersection
Consider a bdy domain of 
dependence of    , denoted
Its bulk domains of influence 
extend arb. deep, but their 
intersection doesn’t
 This defines for us the bulk 
causal wedge of    , denoted

A

A ⌃A
z

x

t

A⌥A

⌥AA



Causal construction

Bulk causal wedge

Causal information 
surface

Causal holographic 
information 

⌥A ⌘ J�[⌃A] \ J+[⌃A]

⌥A

⌅A ⌘ @+(⌥A) \ @�(⌥A)

⌅A

�A

�A ⌘ Area(⌅A)

4GN

= { bulk causal curves which 
begin and end on       }⌃A

z

x

t

A⌥A
⌅A



Main question:

What is the CFT 
interpretation 
of        and       ?�A⌅A

Gather hints 
by considering 
geometrical 
properties and 
behavior of       ... ⌅A

z

x

t

A⌥A
⌅A



General properties of       : ⌅A

Causal information surface        
is a d-1 dimensional spacelike 
bulk surface which:

is anchored on 
lies within (on boundary of)  
reaches deepest into the bulk from 
among surfaces in 
is a minimal-area surface among 
surfaces on             anchored on 

⌅A

@A

@(⌥A)

⌥A

⌥A

However,        is in general not 
an extremal surface       in the 
bulk.

⌅A
EA

@A

z

x

t

A⌥A
⌅A



General properties of       : 

A

c
A

⌅A⌅Ac

EA

Fig. 3: Sketch to illustrate the fact the causal information surfaces ⌅A and ⌅Ac
for a region A and its

complement A

c
have to lie closer to the respective boundary regions than the common extremal

surface EA = EAc
.

However, for the causal construction there is an asymmetry generically between the causal

wedges of the regions A and A

c.17 The basic point is quite simple and the main idea is sketched in

Fig. 3, set in the more natural context of global AdS. Consider e.g. a static asymptotically global

AdS geometry with a gravitational potential well. By the Gao-Wald theorem [24], within a fixed

time set by the size of ⌃A, the null geodesics which define the causal wedge cannot reach as far

from the AdS boundary as they could in the pure AdS spacetime. But in pure global AdS, the

causal information surfaces for a circular region A and its complement would coincide.18 Hence

for any physical deformation of AdS, the causal information surfaces would shift, ⌅A towards the

boundary where A is located, and ⌅c
A towards the boundary where Ac is located, as indicated in

Fig. 3. Moreover, due to caustics in ⌃A for any other shaped region in d > 2, the corresponding

causal information surfaces would likewise retreat towards the boundary, even for pure AdS,

whenever A is not the round ball. Thus, in general, ⌅A and ⌅c
A di↵er, so there is no reason for

�A and �Ac to be the same.

To see an explicit example, for simplicity in the context of flat boundary, let us again consider

the strip discussed above; but in order to keep both A and its complement finitely extended in at

least one direction, let the x1 direction be compactified, say x1 ⇠ x1 +R. This means we should

consider the boundary theory on Rd�2,1
⇥ S1 and let | i be the corresponding vacuum state.

17 This argument was developed together with Mark van Raamsdonk.
18 The reason is apparent from Fig. 4(a), where the null boundaries of the causal wedge for A corresponding

to half the circle are shown. These are Rindler horizons, and due to the large symmetry Rindler horizons from

any other point would look the same. In particular, to construct causal wedge for any other circular region (i.e.

shorter interval in Fig. 4(a)), we can simply time-translate one of the null planes with respect to the other. But

in pure AdS, the same null plane acts both as the past boundary of A’s causal wedge and as the future boundary

of Ac’s causal wedge, since null geodesics through AdS all reconverge at the same antipodal null-translated point.

Since the two null planes (future and past boundaries of either region’s causal wedge) always intersect on a single

surface; this surface is simultaneously ⌅A and ⌅c
A.

– 16 –

⌅A

In general        does not penetrate as far into the bulk as the 
bulk extremal surface       associated withEA A

⌅A

Justification 1: explicit calculation  
e.g. A=infinite strip in d>2 dim: 

Justification 2: general argument:  
e.g. A=disk on bdy of global AdS 
and bdy state = pure:
causal wedge differs for     and      ; 
and reach furthest in pure AdS, 
wherein           , so in general    
recedes towards the bdy...

z⇤⌅ =
w

2
, z⇤E =

�
⇣

1
2(d�1)

⌘

p
⇡ �

⇣
d

2(d�1)

⌘ w

2

SA = SAc

⌅ = E ⌅

A Ac



General properties of       : ⌅A

In general        does not penetrate as far into the bulk as the 
bulk extremal surface       associated withEA A

⌅A

bdy

•

p

S↵

S�

bdy

⌅A

EA

⌅Ã

Ã

A

•

p

Fig. 5: Sketch accompanying the argument in main text for why the extremal surface EA cannot lie closer to

the boundary than the causal information surface ⌅A. Left: we argue that at p, ⇥↵ < ⇥� . Right:

impossible situation, since it contradicts the physical requirement that ⇥⌅Ã
� 0 and ⇥EA = 0

everywhere.

follows.

In a static geometry, both ⌅A and EA lie on the same time slice by symmetry, and moreover,

out of all surfaces on that time slice, EA is defined to be the one withminimal area, so by definition

SA  �A. For general time-dependent configurations, the argument is not as straightforward,

but we nevertheless expect that in physically reasonable situations this inequality will continue

to hold.

We now sketch an argument in support of this assertion.22 We first establish a relation

between the relative position of two surfaces anchored on the same boundary region @A and

the expansion ⇥ along null normals to these surfaces. Specifically, ⇥ is the expansion of the

null geodesic congruence emanating from the surface of interest and we are only interested in the

outgoing congruence (either future/past directed), i.e., the congruence that reaches the boundary

(or terminates in a caustic along the way).

We start by observing that given two surfaces, S↵ and S� which are tangent at some point

p as shown in left panel of Fig. 5, such that S↵ is more bent towards the ‘outward’ direction, the

expansion of S↵ at p must be smaller than that of S�,

⇥↵ < ⇥� , (3.51)

since the bending makes the null normals converge more. Using this observation, we proceed to

construct a proof by contradiction. Suppose we had a situation where ⌅A was located further

from the boundary than EA, as in the right panel of Fig. 5. Then there must exist a boundary

region Ã ⇢ A such that the causal information surface corresponding to this smaller region ⌅Ã

just touches EA, i.e. is tangent at some point p. Since ⌅Ã by definition lies on the boundary of

the causal wedge ⌥Ã (so that the null normals must reach the boundary – i.e. must extend to

infinite a�ne parameter without encountering caustics), the causal information surface ⌅Ã must

22 Related observations have been made independently by Aron Wall.
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⇥↵ < ⇥�

Justification 3:  general argument based on expansion of null generators:  
By construction,               while
Proof by contradiction:  suppose        lay closer to bdy than       .        
Then tangent to       , there is a surface        for some smaller region     .  
But for such configuration,                 , which is a contradiction. 

⇥⌅ � 0 ⇥E = 0

⌅A
Ã

⇥⌅Ã
< 0

EA
EA ⌅Ã



Cases when       and       coincide:⌅A EA

(a) (b) (c)

Fig. 4: Illustration of the causal wedges ⌥A in three dimensional asymptotically globally AdS3 spacetimes.

The three figures correspond to the three geometries described in Table 2. For convenience we

have chosen the region A to be a half of the boundary S1
, i.e., '0 = ⇡. At the intersection of the

@+(⌥A) and @�(⌥A) lies the causal information surface ⌅A which as we discuss in the text is the

same as the extremal surface EA in these examples. Note that for the static spacetimes (a) and

(b) which correspond to AdS3 and the static BTZ geometry, the surfaces at a fixed time slice t = 0

as shown, while for the stationary rotating BTZ geometry (c), this surface dips above and below

the t = 0 slice in the bulk. [Note that for ease of visualization, we have changed the viewpoint

between the three plots. Also, note that the ‘seams’ are just numerical glitches.]

Finally, to obtain the surface ⌅A we realize that all we need to do owing to the symmetries

of the geometry is to look at the spacelike surface at t = 0 on @M(⌥A). Essentially one inverts

the second expression to obtain j in terms of ': j = cot'0 tan', and substitutes back into r to

get ⌅A:

(a). ⌅A : t = 0 , r2(') =
cos2 '0

sin2 '0 cos2 '� cos2 '0 sin2 '
(3.28)

which indeed agrees with the minimal surface (3.19).

(b). For the static BTZ geometry one can proceed along similar lines. The null geodesics of

interest (emanating from ('0, 0)) are given by:

t(r) = '0 +
1

2r+
ln

p
(1� j2) r2 + j2 r2+ � r+p
(1� j2) r2 + j2 r2+ + r+

(3.29)

'(r) =
1

2r+
ln

p
(1� j2) r2 + j2 r2+ + j r+p
(1� j2) r2 + j2 r2+ � j r+

(3.30)

which determines @+(⌥A). Again using the symmetries we realize the the past and future

Rindler horizons must intersect at t = 0. Then setting t = 0 above and solving for j =

coth(r+'0) tanh(r+') then leads to the desired co-dimension two surface:

(b). ⌅A : t = 0 , r2(') = r2+
cosh2(r+ '0)

sinh2(r+ '0) cosh
2(r+ ')� cosh2(r+ '0) sinh

2(r+ ')
(3.31)

– 21 –

CFT vacuum: thermal density matrix: grand canonical 
density matrix:

pure AdS:

bdy:

static BTZ: rotating BTZ:bulk:

However, in all cases where one is able to compute 
entanglement entropy in QFT from first principles, 
independently of coupling, the surfaces         and         agree!
= When EE can be related to thermal entropy...                 cf. [Myers et.al.]

EA ⌅A



Cases when       and       coincide:⌅A EA

(a) (b) (c)

Fig. 4: Illustration of the causal wedges ⌥A in three dimensional asymptotically globally AdS3 spacetimes.

The three figures correspond to the three geometries described in Table 2. For convenience we

have chosen the region A to be a half of the boundary S1
, i.e., '0 = ⇡. At the intersection of the

@+(⌥A) and @�(⌥A) lies the causal information surface ⌅A which as we discuss in the text is the

same as the extremal surface EA in these examples. Note that for the static spacetimes (a) and

(b) which correspond to AdS3 and the static BTZ geometry, the surfaces at a fixed time slice t = 0

as shown, while for the stationary rotating BTZ geometry (c), this surface dips above and below

the t = 0 slice in the bulk. [Note that for ease of visualization, we have changed the viewpoint

between the three plots. Also, note that the ‘seams’ are just numerical glitches.]

Finally, to obtain the surface ⌅A we realize that all we need to do owing to the symmetries

of the geometry is to look at the spacelike surface at t = 0 on @M(⌥A). Essentially one inverts

the second expression to obtain j in terms of ': j = cot'0 tan', and substitutes back into r to

get ⌅A:

(a). ⌅A : t = 0 , r2(') =
cos2 '0

sin2 '0 cos2 '� cos2 '0 sin2 '
(3.28)

which indeed agrees with the minimal surface (3.19).

(b). For the static BTZ geometry one can proceed along similar lines. The null geodesics of

interest (emanating from ('0, 0)) are given by:

t(r) = '0 +
1

2r+
ln

p
(1� j2) r2 + j2 r2+ � r+p
(1� j2) r2 + j2 r2+ + r+

(3.29)

'(r) =
1

2r+
ln

p
(1� j2) r2 + j2 r2+ + j r+p
(1� j2) r2 + j2 r2+ � j r+

(3.30)

which determines @+(⌥A). Again using the symmetries we realize the the past and future

Rindler horizons must intersect at t = 0. Then setting t = 0 above and solving for j =

coth(r+'0) tanh(r+') then leads to the desired co-dimension two surface:

(b). ⌅A : t = 0 , r2(') = r2+
cosh2(r+ '0)

sinh2(r+ '0) cosh
2(r+ ')� cosh2(r+ '0) sinh

2(r+ ')
(3.31)
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CFT vacuum: thermal density matrix: grand canonical 
density matrix:

pure AdS:

bdy:

static BTZ: rotating BTZ:bulk:

non-static case the surfaces ⌅A = EA do not lie on a fixed time slice, even when A lies on one at

the boundary.

In all three geometries we thus see that the extremal surface relevant for entanglement

entropy coincides with the causally motivated surface. To a certain extent this is to be expected

for the black hole spacetimes given that the surfaces coincide for the pure AdS3 spacetime, owing

to the fact that the latter are locally AdS3. Given this information, we can also conclude from

previous computations that:

(a). SA = �A =
ce↵
3

log

✓
2'0

"

◆
(3.34)

(b). SA = �A =
ce↵
3

log


�

⇡ "
sinh

✓
2⇡ '0

�

◆�
(3.35)

(c). SA = �A =
ce↵
6

log


�+ ��

⇡2 "2
sinh

✓
2⇡ '0

�+

◆
sinh

✓
2⇡ '0

��

◆�
(3.36)

Before proceeding further with the discussion we should note that the agreement between

SA and �A does not extend to other states or density matrices of 1 + 1 dimensional CFTs. The

general argument from a holographic perspective was motivated above and has previously been

given more explicitly in [? ], which we simply quote here without further proof. Given that static

rotationally symmetric states of a 1+1 CFT on a cylinder are dual to static asymptotically AdS3

geometries of the form:

ds2 = �f(r) dt2 + h(r) dr2 + r2 d'2 (3.37)

If we are interested in the entanglement entropy, then we simply compute the area of a minimal

surface at a constant t slice, in particular noting that such a minimal surface is insensitive to the

redshift function f(r). On the other hand, the causal construction requires us to construct light-

cones in the bulk spacetime which care about the metric functions (up to an overall conformal

factor, which we can gauge-fix to be r2). It then follows that the surface ⌅A for a given region A

cares about the redshift factor. More specifically, the minimal radius reached by EA is given by

the conserved angular momentum J along the ' direction, while the minimum radius reached

by the causal surface ⌅A depends on both f(r) and h(r). In particular, in order for EA and ⌅A

to coincide, the spacetime (??) would minimally need to satisfy

Z 1

r0

r0
p
h(r)

r
p

r2 � r02
dr =

Z 1

r0

p
h(r)p
f(r)

dr (3.38)

where the LHS is an expression for the angle '0 reached by a constant-t spacelike geodesic which

passes through r0 at t = 0,' = 0, whereas the RHS corresponds to the time at which a radial null

geodesic at ' = 0 which starts from r = r0 at t = 0 reaches the boundary r = 1 – this would

be q^ for D+
B [A] with A = ' 2 {�'0,'0}, so that t(q^) = '0. Note that (??) is automatically

satisfied for f(r) = 1
h(r) = r2+↵ for any ↵ – as demonstrated above for AdS3 and BTZ; however,

it is certainly not true in full generality. For example one can easily check that (??) is not

satisfied for e.g. f(r) = 1
h(r) = r2 + 1 �

↵
r2
, just to pick a random example. This was already

explained in Appendix A.2 of [? ].
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General properties of       : �A

The Causal Holographic Information 
in special* cases, coincides with Entanglement entropy

but in general diverges more strongly than entanglement entropy
       e.g. for d=4,     = strip of width    , w/ IR regulator     & UV regulator    ,

hence provides a bound on entanglement entropy
unlike entanglement entropy, always varies smoothly with size of 

�A

�A ⌘ Area(⌅A)

4GN
SA ⌘ �Tr (⇢A log ⇢A) =

Area(EA)

4GN

SA

=

SA = ce↵ L
2

✓
1

"2
� 0.32

w2

◆
, �A = ce↵ L

2

✓
1

"2
� 2

w2
+

4

w2
log

⇣w
"

⌘◆

A w L "

A
SA  �A



General properties of       : 

The Causal Holographic Information 
unlike entanglement entropy, does NOT satisfy strong subadditivity

explicit counter-example:  2 strips in d=4: 

�A

�A

SA1 + SA2 � SA1[A2 + SA1\A2

SA1 + SA2 � SA1\A2
+ SA2\A1

Geometric proof in static bulk and support in time-dep bulk [Headrick et.al.]
But counter-examples for       :�A

A1 A2

x0
a1 a2

F (a1 + x0) + F (a2 + x0)� F (a1 + a2 + x0)� F (x0) > 0 , F (x) =

1

x

2
log

⇣
x

"̃

⌘

x0 = a1 = a2

SS requires

but this can be violated  - e.g. by 



Toy model for dynamics:

Vaidya-AdS spacetime, describing a null shell in AdS:
ds2 = �f(r, v) dv2 + 2 dv dr + r2 d⌦2

where f(r, v) = r2 + 1� #(v)m(r)

m(r) =

(
r2+ + 1 , in AdS3

r2+
r2 (r2+ + 1) , in AdS5

with

and pure AdS
Schw-AdS (or BTZ)#(v) =

⇢
0 , for v < 0

1 , for v � 0

we can think of this as             limit of smooth shell with thickness    :�� ! 0

#(v) =
1

2

⇣
tanh

v

�
+ 1

⌘



Causal wedge profile in Vaidya:
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across shellAdS BTZ

For fixed size of    , causal wedge profile changes in time:A
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For fixed size of     , deepest reach of        monotonically 
increases from AdS value to BTZ value:

A ⌅A

Quasi-teleological nature of      : �A

Similarly for       : Note that it starts increasing before �A tA = tshell

tshell



Cf. deepest reach of       vs.       :
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Unlike       ,  extremal surface      depends only on spatial info; 
starts increasing only at                  :tA = tshell

⌅A EA
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Summary for extremal surfaces

✴ Spacelike geodesics reach deeper than null 
geodesics (at fixed spatial separation of endpoints).

✴ Higher-dimensional extremal surfaces reach 
deeper (at fixed extent of bounding region).

✴ Extremal surfaces anchored on sphere reach 
deepest (at fixed extent or volume of bounding region).

✴ Extremal surfaces of any dimension, anchored 
on any region, in any static planar black hole 
spacetime, cannot penetrate the horizon.

✴ Extremal surfaces can penetrate horizon of 
dynamically evolving black hole.

r

z+

z



Summary for CHI

The causal wedge
is the most natural (minimal nontrivial) bulk spacetime region related to
corresponds to bulk region most easily reconstructed from
cannot penetrate event horizon of a black hole

The causal holographic information
coincides with entanglement entropy       in certain special cases              
(when DoFs in     are maximally entangled with those outside)
in general provides an upper bound on entanglement entropy
monotonically increases during thermalization
behaves quasi-teleologically, but only on light-crossing timescales
remains smooth as a function of time and the size of 

⌥A
A

A

A

⇢A

SA

�A



Conjectured meaning of       : �A

We conjecture that       characterizes the amount of 
information contained in     which can be used to reconstruct 
the bulk geometry (entirely in       but possibly further)...

cons. set of local bulk `observers’ starting & ending on bdy inside 
these have access to full     , but the info contained can be reduced:

bulk evolution:  suffices to consider just Cauchy slice for 
holography:  suffices to consider just screen:   natural region associated to      =  

hence natural to identify        with amount of info contained in    
This has entropy-like behavior,  however, it does not 
correspond to a Von Neumann entropy:

e.g. it violates strong subadditivity.
However, it provides a bound on Entanglement entropy;

and coincides in special, maximally-entangled, cases.
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Future directions

What is the direct boundary interpretation/construction of 
the causal holographic surface        and ‘information‘       ?
What bulk region can we fully reconstruct?  
(& What is the most efficient reconstruction method?)
e.g. suppose we know            for all sub-regions            ; 
does this provide sufficient info to recover bulk metric in      ?
What is the bulk dual of the reduced density matrix      ?
Given a bulk location, how do we extract the geometry there 
from the CFT?
 (& How deep / late into BHs can various probes see?)
How does the CFT encode bulk locality and causality?

⇢A

�A⌅A

{�Q} Q 2 A
⌥A

Most important questions still remain:


