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AdS/CFT correspondence

String theory (3 gravity) — gauge theory (CFT)
“in bulk” asymp. AdS x K “on boundary”

Key aspects:

* Gravitational theory maps to non-gravitational one!

* Holographic: gauge theory lives in fewer dimensions.

* Strong/weak coupling duality.

Invaluable tool to:

~ Use gravity on AdS to learn about strongly coupled field theory
~ Use the gauge theory to define & study quantum gravity in AdS

Pre-requisite: Understand the AdS/CFT ‘dictionary'...



Motivation

o understand the AdS/CFT dictionary;
esp. how does spacetime (gravity) emerge!

Most QG questions rest on bulk locality (& its breakdown)...

Given a specific bulk location, what quantities in the CFT
should we examine In order to learn about the physics at that
ocation?

—-low deep Into the bulk can various CFT probes see!
esp.: can convenient CFT probes see into a black hole!

Given full knowledge of physics (p.4) In a certain boundary
region A |
* In what region of the bulk does it determine the bulk geometry?

° In what region of the bulk is It sensitive to the bulk geometry!



Probes of bulk geometry

The bulk metric can be extracted using various CFI probes
(which are described by geometrical quantities in the bulk):

Examples:

i [ oielbe

* expectation values of local
gauge-invariant operators

* correlation functions of local
gauge-invariant operators

* Wilson loop exp. vals.

* entanglement entropy

bulk quantity

asymptotic fall-off of
corresponding conjugate field

in WKB approx., proper length
of corresponding geodesic

area of string worldsheet

vol of extremal co-dim.2 surface



Correlators see Inside horizons

Consider correlators of high-dimension operators in CFT

el
r=0 x 2 asymptotic regions = 2 CFTs
ONANANNNANNNNNNNNN
- Nl e x correlators of high-dim operators:
i G (® (1) B(xg)) ~ ™™ 12

4 —\_// x where Li12 = regularised proper distance

along spacelike geodesic between x; and x».

Correlators between operators in CFT| and CFT7 give access to full spacetime.
[Louko, Marolf, Ross; Kraus, Ooguri, Shenker]

However, In 3-dim, these are insensitive to the BH singularity.



Probing black hole singularity

Signatures of bulk black hole singularity are encoded In analytically
continued correlators of high-dimension operators in CFT

[Fidkowski, VH, Kleban, Shenker]

S>-dim BH:
* spacelike geodesics repelled by singularity
1
O <(I) (I)>(t) =5 2
4///‘6\\\\. (t il tc) e

x divergence In CFT correlation fn.as ¢ — ¢,

t * subtlety: requires analytic continuation

Hence CFT correlators are sensitive to geometry deep In bulk,
even when causally disconnected from the boundary.



Bulk-cone singularities

More direct CFT probes (not reliant on analytic continuation)

= bulk-cone singularities:
[VH, Liu, Rangamani]

* Green’s functions on curved bulk spacetime are singular at null-
separated points

x Boundary correlation functions (®(xz)®(y)) inherit these singularities

x Hence (®(x)P(y)) — oo when x and y are null-separated
(erther along boundary or through the bulk)

* [The set of bulk-cone singularities In the CFT directly give the endpoints
of bulk null geodesics.

* One can use this information to learn about the bulk geometry



Bulk-cone singularities

x Consider asymp.(global) AdS bulk, and study

projection of null geodesics in (r,t) and (r, ¢) t
* geodesic endpoints clearly distinguish between
different bulk geometries: 2
r
Null geodesics in AdS: cf. Null geodesics in AdS ‘star’ geometry:

const. t (r,t) plane const. t (r,t) plane




Holographic entanglement entropy

Proposal [Ryu &Takayanagi] fOr static configurations (at fixed t):

* Entanglement entropy of region A Is

boundary
Sa=—Trpy logpa m /
* In the bulk this Is captured by area of
minimal co-dimension 2 bulk surface S Lk \v/S
anchored on 0.A.

In time-dependent situations, prescription must be covariantised:

* minimal surface = extremal surface

* equivalently, S 1s the surface with zero null expansions;
ct. light sheet construction [Bousso]

[VH, Rangamani, Takayanagi]



Holographic entanglement entropy

Entanglement entropy growth during thermalisation:
Bulk seometry = collapsing black hole (in 3-d):

behaviour of extremal surfaces ,
, , corresponding entanglement entropy:
at times vo during collapse

vo = -2 v0 = -1 v0 = 0 i
0.3F
0.2
0.1}
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v0 = 0.1 v0 = 0.5 vo = 1 I
-0.1¢
_0_ —
\ :
{ -0.3¢

[VH, Rangamani, Takayanagi |




Recent developments

° What is the bulk region dual of a CFT restricted to a (globally
hyperbolic subset of the AdS boundary?)

[Bousso, Leichenauer; & Rosenhaus, Light-sheets and AdS/CFT]. Causal vvedge

> Consider a density matrix p4 for a given spatial region A In
the CFI. How much of the bulk geometry does p4 encode!

[Czech, Karczmarek, Nogueira,Van Raamsdonk, The Gravity Dual of a Density Matrix].
° P4 I1s more naturally associated with domain of dependence, D[,A]
 corresponding bulk dual must contain the causal wedge of D[A]

° but In general extends beyond the causal wedge

° [VH, Rangamani, Causal Holographic Information].
» Most natural (causally constructed) region associated w/ A = causal wedge

» Causal holographic information surface = 4 characterizes bulk info in A
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Probe geodesics '

For simplicity, focus on static, spher. sym., asymp.(global)AdS
ds® = — f(r) dt* + h(r) dr® + r* d9)°

Probe geodesics = bulk geodesics with both endpoints
anchored on the (same) AdS bady

Can only be spacelike or null (timelike geods don't reach bdy)

Consider how deep into the bulk these can probe (= fmin)
and the regularized proper length (= Leg ), for a given
angular (Ag) and temporal (At) separation of the endpoints:

What part of the bulk Is accessible to probe geodesics?

Which are optimal geodesics for probing the bulk?



Probe geodesics

» geodesics w/ energy E and ang.mom. L have radial potential

P2+ Ver(r) =0 , Ver(r) = h(lr) {_Fv f]fj) I g}

° for turning point rmin, the endpoints are separated by

D) Sty
At = 2 g(r)dr and Ap = / =l
oK e

where il 1 1
g<r>\/ e s

R
° with proper length  Lg :2/ g(r)dr

min
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Probe geodesics In AdS

Distinc

L E In distinct panes, denoted by color-coding
L L are distinct curves in each pane
const. t (r,t) plane
Ap
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L Results for probe geodesics J

In causally trivial spacetime, all of the bulk is accessible to
spacelike as well as null geodesics

In presence of a black hole, probe geodesics cannot penetrate
the horizon (cf. part II)

Spacelike geodesics probe deeper than null ones for fixed
parameters £ & L

The optimal geodesics for probing bulk are the £=0
spacelike ones, as these minimize rmin at fixed Ae

(However, they have larger Lreo)



-xtremal surfaces

Simplified context: Focus on extremal surfaces S anchored
on bdy n-dim region R In static planar asymp. (Poincare) AdSqd+|

Parameters we can dial:

boundary

e bulk geometry (specified by 2 fns of | variable). : | )

]! . |
e — = | g(z) dt* + k(z) dw; dz* + dz”| bull w

S

Zx

<

Nape (I fn of d-1 variables) & extent X (/ real number) Of bdy region R

@

imensionality n (=1,2...d-1) of the surface S

Key feature of 5:

* Bulk depth reached 2z«

(Note that z« Is geometrically well-defined.)



{ Results for extremal surfaces J

Preview:

* Higher-dimensional surfaces probe deeper

.e. Zx Increases with n for fixed extent X(R)

°* Surfaces anchored on R = ball reach deepest

compared to differently-shaped R with same extent or area

e Surfaces In pure AdS reach deeper

for fixed R, compared asymp.AdS geometry



Results for extremal surfaces

igher-dimensional surfaces probe deeper:

Consider R = n-dim'l strip on bdy of pure AdS

Z./AX

2.5
20
1.5
1.0}

cross-sections of S

05"

VWe should compare z. for fixed extent X(R):

BeRR=n-Dall, z. = X/2 Vn (i.e.all S hemispherical) Ia pure AdS

For R = n-ball in deformed AdS, KJ
» at fixed Z4«, X decreases with n
o at fixed X, Zx Increases with n

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,




Results for extremal surfaces

» Consider R with fixed dimensionality n and "area A(R)

° What shape of R maximizes 2., 1.e. when does 5 reach deepest!




Results for extremal surfaces

Surfaces anchored on R=ball reach deepest:

Linearize around the hemisphere p(0,¢) = po In pure AdS:

d—1
1
i = —dt? + dp® + p? (d6® +sin® 0dg?) + ) dgj?}

G ) 2
cos< 0

To 2nd order;
p(0,9) = po+ €p1(0,9) + € pa(6, ¢) + O(€’)

p1(0, ¢) = tan®(8/2) (1 + £ cos ) cosle .

p2(0, ) = ﬁ tan®(0/2) {(1 + £cos ) + [ (1 + 2L cosf) + £ cos® 0] cos 2L}

At fixed p(6 =0,9) = po,the area A(R) = 7 p; <1 P O(e‘*))
increases as R Is perturbed from ball
Hence R=round ball = $ has greatest reach for fixed A(R)

Confirmed numerically at non-linear level as well.
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Probe geods can't penetrate horizons
In static bulk

Consider a geod. crossing the horizon; what can happen!?

(a) (b) (c) (d) (e)
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° (b) & (¢) are allowed, but don't correspond to probe geods

 (d) Is disallowed by energy conservation:
 Ingoing coords:  ds®* = —f(r) dv® + 2/ f(r) h(r) dv dr + r? dQ?
 conserved energy along geods:  E = f(r) v — +/f(r) h(r) 7

° (e) Is disallowed by assumption of reaching horizon from bdy



Probe geods can't penetrate horizons
In static bulk

Schw-AdSs

°* spacelike geodesics can penetrate arb. close to horizon

®* NOWEVEr aS Tmin = T+, Ap — 00 and Lieg —> 0O

A 3 9.03 x 102 for BTZ
y ||m|t|ng aambal Lt T e 10 for SAdSs
for r. =0.5 ey 6.54 x 102 for RNAdSs

* null geodesics can only reach a finite distance from horizon



g o

-xtremal surfaces can't penetrate
horizons In static bulk '

» Consider extent X(R) for n-strip In Schw-AdSs at fixed 2z«

bdy 4

\\

/

cross-sections of S

— e e o e e e e T et e s e et b ey e T e = — —— =
bulk horizon

* We see extremal surfaces are repelled by the horizon



—xtremal surfaces can't penetrate
horizons In static bulk

o Cf extent X(R) for n-strip in extremal RN-AdSs at fixed z,

/

cross-sections of S in FG coords

* Again, extremal surfaces are repelled by the horizon



—xtremal surfaces can't penetrate
horizons In static bulk

Completely general proof, for any n, R, & bulk geom:

» Consider extremal surface S param. by z(z',...,z")

: —f(2) dt® + dz; dz* + h(z) dz”]

22

In bulk spacetime  ds?

e At horizon, f =0 and h— +o0

\/1+h —|—22)

Lol Bl Ve R O S i

~ EOM sz (1—|—h(z)2z’2j)h( Zz A —|—Z (

,J

e
e Around the turning point, 2 = 2z, D _zi+ Zhn( =0

1

* |n order for z to be maximum, z.(z) <0, which forces h(zy) > 0

° Hence turning point z, must be outside the horizon.



Extremal surfaces can penetrate
horizons In time-evolving bulk

Gedanken-experiment to demonstrate that causality does not

pose a fundamental obstacle to extracting information via CF1:
[VH]

x uses the teleological nature of event
~— 1~ horizon & non-local nature of AdS/CFI:

x Measure bulk event by spacelike CFT
probe (precursor), e.g. geodesic g

x  Afterwards, collapse a shell s,

x such that the resulting event horizon H
encompasses the measured event.

R penetrates the event horizon

T x seen explicitly for geods in Vaidya-AdS
— — [VH, Maxfield]
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Bulk dual to a bdy region A ¢

What Is the most natural bulk regio

N

associated to a given region A on the bdy?

natural’: try to be minimalistic, use only bulk causa

Take A to be d-| dimensional spatial region on bc
AdSq+ bulk spacetime.

ity
y of asymp.

The unigue minimal construction gives a bulk causal wedge
associated with A, and a corresponding d-/ dimensional bulk

surface = 4

Using geometrical information, we can associate a number XA

to A, corresponding to area of = 4



Causal construction

* domain of dependence D=[A] = region which must influence
or be Influenced by events in A

* domain of influence I*[A] = region which can influence or
be influenced by events in A

N
A4

o4 =DT[A]UD[A]

° (Given pa, we can determine observables in the entire O 4



[ @ 2 consislicEien }

o Consider a bdy region A

%
A




10N

[ @ o censiklle

» Consider a bdy region A

* |ts bulk domains of influence
extend arb. deep into the bulk
and have trivial intersection

(and bulk domain of dependence of A s
just the region A itself).

uuE.

NanunE

X



Causal construction

» Consider a bdy region A :

* |ts bulk domains of influence
extend arb. deep into the bulk
and have trivial intersection

o Consider a bdy domain of 2
dependence of A, denoted G4

(observables in the entire region ¢4 can be
determined solely from the initial conditions
specified on A )




[ Causal construction J

Consider a bdy region A

'ts bulk domains of influence
extend arb. deep Into the bulk
and have trivial intersection

Consider a bdy domain of
dependence of A, denoted ¢ 4

'ts bulk domains of influence
extend arb. deep, but their
iNntersection doesn'’t



{ Causal construction

Consider a bdy region A

'ts bulk domains of influence
extend arb. deep into the bulk
and have trivial intersection

Consider a bdy domain of p
dependence of A, denoted {4

'ts bulk domains of influence
extend arb. deep, but their
iNntersection doesn'’t

This defines for us the bulk
causal wedge of A, denoted 44




{ Causal construction

* Bulk causal wedge ¢.4

O4=J [0 NJTT[OA]

= { bulk causal curves which
begin and end on ¢ 4 }

e Causal iInformation
surface = 4 2

EA =01 (44)NO_($) —A

» (Causal holographic
information Xx.4

_ Area(E4)
XA = e




{ Main question:

e sitne Cr [
interpretation

@I= . and XA !

Gather hints —

by considering
seometrical
properties and
behavior of = 4 ...




{ General properties of E4

e Causal Information surface = 4
s a d-1 dmensional spacelike
bulk surface which:

e is anchored on 0A4
* lies within (on boundary of) 44 %

* reaches deepest into the bulk from = A
among surfaces in 4.4

° s a minimal-area surface among
surfaces on O(4 4) anchored on 9.4

° However, =4 IS In general not

an extremal surface €4 In the
bulk.




General properties of E4

* |n general =4 does not penetrate as far into the bulk as the
bulk extremal surface € 4 associated with A

* Justification |:explicit calculation
e.g. A=infinite strip in d>2 dim:

[ () w

2
VT (55t )

w
2

*_
y ZG_

[1] %

%

* Justification 2: general argument: a ' A

e.g. A=disk on bdy of global AdS
and bdy state = pure: S4 = Sye

* causal wedge differs for A and A€ ;
and reach furthest in pure AdS,
glisieini= = ¢ so in general E
recedes towards the bdy..




General properties of E4

* |n general =4 does not penetrate as far into the bulk as the
bulk extremal surface € 4 associated with A

° Justification 3: general argument based on expansion of null generators:
By construction, Oz > 0 while ©g& =0

* Proof by contradiction: suppose €4 Iay closer to bdy than = 4 .
Then tangent to € 4 , there is a surface 2 ; for some smaller region AL,
But for such configuration, ©= ; < 0, which is a contradiction.




{ Cases when =4 and €& 4 coincide: }

° However, In all cases where one Is able to compute
entanglement entropy in QFT from first principles,
independently of coupling, the surfaces & 4 and = 4 agree!

° =When EE can be related to thermal entropy... cf. [Myers etal]

bdy: CFT vacuum: thermal density matrix: grand canonical
density matrix:

bulk: pure AdS: static BTZ: rotating BTZ:




E Cases when =4 and €& 4 coincide: J

bdy: CFT vacuum: thermal density matrix: grand canonical
density matrix:

bulk: pure AdS: static BT Z: rotating BTZ:




General properties of XA :

* [he Causal Holographic Information XA

° In special® cases, coincides with Entanglement entropy S 4

i3 Area(EA)

_ Area(€ 4
XA= G = Sa=-Tr(palogpa)= (€4)

4G N

° but In general diverges more strongly than entanglement entropy
e.g. for d=4, A = strip of widthw , w/ IR regulator L & UV regulator € ,

1 0.32 I 2 4
S.A:Cefsz <__—) ) XA:CeffL2 (____F_log(g))

e2  w?  w? 5

* hence provides a bound on entanglement entropy S4 < XA

° unlike entanglement entropy, always varies smoothly with size of A



General properties of XA :

» [he Causal Holographic Information X.A
* unlike entanglement entropy, does NOT satisfy strong subadditivity

S A B e S, T S A
S0 1 e 2 R S S

Geometric proof In static bulk and support in time-dep bulk [Headrick et.al.]
But counter-examples for XA:

* explicit counter-example: 2 strips in d=4:

A1 As
— (] —« ggo>e— 02 —>
SS requires
F(ay + x9) + F(as + x¢) — F(ay + as + x9) — F(xg) > 0, 120z = % log (;)

but this can be violated - eg. by g = a1 = as



Toy model for dynamics:

Vaidya-AdS spacetime, describing a null shell in AdS:
ds® = —f(r,v) dv® + 2dv dr + r* dQ?

where  f(r,v) =7° +1 — 9(v) m(r)

iy ) =5 Gpee R
mi\r) = r2 ’
W \ T_—g (74_2|_ + 1) : 11N AdS5
0 for v < 0 pure Ad>
4 o= ’
an (v) { e for v > 0 Schw-AdS (or BTZ)

we can think of thisas 0 — 0 limit of smooth shell with thickness o :

A — % (tanh% =4 1)



Causal wedge profile In Vaidya:

For fixed size of A, causal wedge profile changes in time:

AdS across shell Bl




Quasli-teleological nature of XA :

For fixed size of A , deepest reach of = 4 monotonically
iIncreases from AdS value to BT/ value:

/ gt \4
4

5

i

size of A

3f

Similarly for XA : Note that it starts increasing before ¢ 4 = tshell



Cf. deepest reach of =4 vs. €4

Unlike = 4 , extremal surface € 4 depends only on spatial info;
S RERRcreasing only at t 4 = Tshell

rmin
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Summary for extremal surfaces

Spacelike geodesics reach deeper than null
geodesICs (at fixed spatial separation of endpoints).

Higher-dimensional extremal surfaces reach

deeper (at fixed extent of bounding region). \/

Extremal surfaces anchored on sphere reach
deepest (at fixed extent or volume of bounding region).

Extremal surfaces of any dimension, anchored
on any region, in any static planar black hole R
spacetime, cannot penetrate the horizon. I

Extremal surfaces can penetrate horizon of i
dynamically evolving black hole. e




* The causal wedge ¢4

{ - Summary for CHI & J

° is the most natural (minimal nontrivial) bulk spacetime region related to A

* corresponds to bulk region most easily reconstructed from p.Aa

° cannot penetrate event horizon of a black hole

° [he causal holographic information X.A

coincides with entanglement entropy S 4 in certain special cases
(when DoFs in A are maximally entangled with those outside)

In general provides an up

ber bound on entanglement entropy

monotonically increases during thermalization

behaves quasi-teleologica

ly, but only on light-crossing timescales

remains smooth as a function of time and the size of A



{ Conjectured meaning of XA : J

* We conjecture that XA characterizes the amount of
information contained in A which can be used to reconstruct

the bulk geometry (entirely in €4 but possibly further)..
° cons. set of local bulk “observers' starting & ending on bdy inside ¢ .4

* these have access to full ¢4, but the info contained can be reduced:

* bulk evolution: suffices to consider just Cauchy slice for 4.4

* holography: suffices to consider just screen: natural region associatedto A = =4

* hence natural to identify X.A with amount of info contained in A

* [his has entropy-like behavior, however, it does not
correspond to a Von Neumann entropy:

° e.g It violates strong subadditivity.
° However; It provides a bound on Entanglement entropy;

° and coincides In special, maximally-entangled, cases.



Future directions

Most important

questions still remain:

What is the direct boundary interpretation/construction of

the causal holographic sur

ace = 4 and information’ XA ¢

What bulk region can we fully reconstruct!

(& What Is the most efficient reconstruction methody?)

e.g. suppose we know 1{X

o} for all sub-regions Q € A;

does this provide sufficient info to recover bulk metric in 447

What is the bulk dual of the reduced density matrix pA !

Given a bulk location, how do we extract the geometry there

from the CFT/!

(& How deep / late into BHs can various probes see?)

How does the CFT encod

e bulk locality and causality?



