
Quantization of the Black Hole Horizons

Finn Larsen

October 22, 2012

1



1 A Quantization Condition?

• Many black holes satisfy the quantization condition:

1

(8πG4)2
A+A− = integer .

Here A+ is the usual area of the event horizon and A− is the area of the inner horizon.

• This is very surprising!

• For example, the inner horizon is known to be an unstable Cauchy horizon; so how can
its area be significant?

• The purpose of this talk: review and elaborate on aspects of the story.
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2 Example: 4D Kerr

• Primary evidence for the quantization condition: inspection of explicit examples.

• This talk: focus on asymptotically flat spacetime in D = 4.

• The simplest example: the Kerr black hole.

• The “entropies” of Kerr black holes computed from outer and inner areas:

S± =
A±

4G4

= 2π

(
G4M

2 ±
√
G2

4M
4 − J2

)
.

• The product
1

4π2
S+S− = J2 = integer
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3 Adding Charges

• In the context of N = 4 or N = 8 SUGRA the black holes can be generalized to carry
arbitrary charges.

• The outer and inner areas then give the product:

1

(2π)2
S+S− = J2 + J4 ,

where the quartic invariant (for the N = 4 theory, for definiteness):

J4 = ~Q2 ~P 2 − ( ~Q · ~P )2 .

• The right hand side of the product rule is an integer because J4 is integral for correctly
quantized charges.

• In fact: the right hand side is a positive integer since J2 > −J4 is the condition to
avoid CTCs.
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4 The Non-BPS Branch

• There is another branch of solutions with areas such that

1

(2π)2
S+S− = −J4 − J2 .

• Again, the right hand side is not only an integer, it is a positive integer since J4 < −J2

is the condition to avoid CTCs.

• The two black hole branches can be continuously deformed to each other, passing
through the locus J2 = −J4.

• These transition solutions correspond to singular limits where A− = 0 and the inner
horizon has become singular.

• Example: the Schwarchild soution.
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5 Extremal Limits

• In the extremal limit the two horizons approach each other: S− → S+.

• In this case
S+ = 2π

√
|J4 + J2| .

• So: the integer in the quantization is the one that appears ”under the square root” in
the regime where extreme entropy is accounted for by the Cardy formula.

• The surprise is that this integer remains part of the story arbitrarily far from extremal-
ity.
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6 Always an Integer?

• In the special case of a Kerr-Newman black hole:

1

(2π)2
S+S− =

1

4
Q4 + J2 .

• This is not generally an integer:

Q2 = αn2
e where α−1 ' 137 .

• Construction of Kerr-Newman as a solution in N ≥ 2 SUGRA involves an embedding
such as

QKN =
1

2
QN=2 =

1

2
PN=2 .

• The Dirac quantization condition on the N = 2 theory effectively takes

QN=2PN=2 = 2π × integer ⇒ 1

2
α =

e2

8π
= integer .
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7 Generalized Attractor Mechanism

• The Right Hand Side of the quantization condition

1

(2π)2
S+S− = integer ,

is independent of the black hole mass.

• It is also independent of scalar VEVs, i.e. on the position in moduli space.

• In particular, the relation can be continued from weak to strong coupling.

• This aspect can be thought of as a generalized attractor mechanism.
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8 A First Law for the Inner Horizon

• ”Thermodynamics” of the inner horizon must be considered in Lorentzian signature.

• For this Wald’s formalism works well (see later).

• The conservation of the Noether charge for the Killing generator of the inner horizon
gives a ”first law”

T−dS− = dM − Ω−dJ − Φ−dQ−Ψ−dP .

• In order to circumvent stability issues the differentials must be taken ”in the space of
solutions”; so there are no physical perturbations involved.

• The temperature T− < 0 in the convention here (normal outward).
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9 Consistency Relation

• Differentiation of the quantization rule with respect to mass gives:

T+S+ = −T−S− .

This is a stange relation that is highly nonobvious in concrete examples.

• Recall T− < 0.

• Derivation of this consistency relation is tantamount to derivation of the quantization
rule.
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10 Interpretation of the Consistency Relation

• Suppose the general entropy can be divided into ”chiral halves”, as in 2D CFT:

S+ = SL + SR ≡
1

2
(S+ + S−) +

1

2
(S+ − S−) .

• The T+S+ = −T−S− relation gives

SR
TR

=
SL
TL

.

• Interpretation: the central charge is the same in R and L sectors — so there is no
diffeomorphism anomaly.
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11 Another Consistency Relation?

• There is also the relation:
Ω−

T−
= −Ω+

T+
.

This relation is equally bizarre.

• In the context of a CFT with two halves this relation amounts to(
∂SL
∂J

)
M

= 0 .

• Interpretation: only R-movers in the 2D CFT have the ability to carry angular mo-
mentum.
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12 Interpretation: Quantization Cond.

Model for the CFT (motivated by perturbative strings):

• Each chiral half has a quantized oscillator level NL,R.

• Each has a zero mode contribution that depends on mass and moduli.

• Translational invariance imposes level matching:

NL −NR = J2 + J4 .

Extremal limits:

• BPS states: NR = 0 and J = 0 preserves SUSY .

• Kerr/CFT states: NR = 0 and J 6= 0 breaks SUSY spontaneously.

• Non-BPS states: NL = 0 .
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13 Multistring Theory?

• DVV proposed a chiral multistring theory with level matching condition:∑
k,l

k(l)N
(l)
k = J4 .

Here k is the momentum quantum number and l is the number of strings.

• A version of the theory is realized by the standard precision counting formulae (Igusa
cusp form).

• The structure needed for non-extremal black holes would have both right and left
movers.

• The general level matching condition can approximated for large charges as∑
k(l)N

(l)
L,k −

∑
k(l)N

(l)
R,k = J2 + J4 .
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14 A GR Challenge

• The central observation is simply:

A+A− = independent of mass⇔ T+S+ + T−S− = 0 .

• It should be possible to prove this in classical GR!

• The following is an attempt in this direction (which unfortunately is not complete).
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15 Noether-Wald Charge

• The variation of the Lagrangian n-form:

δL = Eδφ+ dΘ .

where φ denotes all fields, both metric (g) and matter fields (ψ); and E = 0 is the
equations of motion.

• The current (n− 1)-form corresponding to a diffeomorphism ξ is

J = Θ(φ,Lξφ)− ξ · L .

• Its divergence vanishes upon imposing the equations of motion so on-shell there is a
Noether charge (n− 2)-form Q for each diffeomorphism ξ:

J = dQ .
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16 Killing Horizons

• Wald’s entropy is essentially the Noether charge of a Killing vector, computed at the
Killing horizon. In this context

Q =
1

2
εabcd∇aχbdxc ∧ dxd

• The outer and inner horizons are Killing horizons of the Killing vectors

χ± = ∂t + Ω±∂φ .

• The covariant derivatives of these Killing simplify at their respective horizons:

∇aχb±
∣∣
±hor

= ±κ±εab ,

where the bimetric satisfies gab = εacgcdε
cb.

• The sign of the bimetric εab is such that it defines an outgoing normal at the outer
horizon.
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17 Killing Horizons

• For the Killing vectors, the total charges (after integration over the respective horizon
at the bifurcation point) :

Q[ξ±] = ±κ±A± = ±8πGT±S±

• Charge conservation gives the desired identity: T+S+ + T−S− = 0.

• Well, almost.

• The ”cross-terms” (the charges for χ± evaluated at the ∓ horisons) cancel in explicit
computations but it is not clear that there is a general argument.
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18 Summary

A discussion of an apparent quantization condition:

1

(8πG4)2
A+A− = integer .

Comments:

• The right hand side does not depend on black hole mass.

• So it appears that there is some kind of index that can be continued from extremality
to non-extremality.

• The right hand side also does not depend on scalars.

• So it appears that the index can be continued from weak to strong coupling (before of
after going to the extreme limit).
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THANKS TO THE ORGANIZERS!
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