Quantization of the Black Hole Horizons

Finn Larsen

October 22, 2012

1 A Quantization Condition?

- Many black holes satisfy the quantization condition:

$$
\frac{1}{\left(8 \pi G_{4}\right)^{2}} A_{+} A_{-}=\text {integer . }
$$

Here A_{+}is the usual area of the event horizon and A_{-}is the area of the inner horizon.

- This is very surprising!
- For example, the inner horizon is known to be an unstable Cauchy horizon; so how can its area be significant?
- The purpose of this talk: review and elaborate on aspects of the story.

2 Example: 4D Kerr

- Primary evidence for the quantization condition: inspection of explicit examples.
- This talk: focus on asymptotically flat spacetime in $D=4$.
- The simplest example: the Kerr black hole.
- The "entropies" of Kerr black holes computed from outer and inner areas:

$$
S_{ \pm}=\frac{A_{ \pm}}{4 G_{4}}=2 \pi\left(G_{4} M^{2} \pm \sqrt{G_{4}^{2} M^{4}-J^{2}}\right)
$$

- The product

$$
\frac{1}{4 \pi^{2}} S_{+} S_{-}=J^{2}=\text { integer }
$$

3 Adding Charges

- In the context of $N=4$ or $N=8$ SUGRA the black holes can be generalized to carry arbitrary charges.
- The outer and inner areas then give the product:

$$
\frac{1}{(2 \pi)^{2}} S_{+} S_{-}=J^{2}+J_{4},
$$

where the quartic invariant (for the $N=4$ theory, for definiteness):

$$
J_{4}=\vec{Q}^{2} \vec{P}^{2}-(\vec{Q} \cdot \vec{P})^{2}
$$

- The right hand side of the product rule is an integer because J_{4} is integral for correctly quantized charges.
- In fact: the right hand side is a positive integer since $J^{2}>-J_{4}$ is the condition to avoid CTCs.

4 The Non-BPS Branch

- There is another branch of solutions with areas such that

$$
\frac{1}{(2 \pi)^{2}} S_{+} S_{-}=-J_{4}-J^{2} .
$$

- Again, the right hand side is not only an integer, it is a positive integer since $J_{4}<-J^{2}$ is the condition to avoid CTCs.
- The two black hole branches can be continuously deformed to each other, passing through the locus $J^{2}=-J_{4}$.
- These transition solutions correspond to singular limits where $A_{-}=0$ and the inner horizon has become singular.
- Example: the Schwarchild soution.

5 Extremal Limits

- In the extremal limit the two horizons approach each other: $S_{-} \rightarrow S_{+}$.
- In this case

$$
S_{+}=2 \pi \sqrt{\left|J_{4}+J^{2}\right|} .
$$

- So: the integer in the quantization is the one that appears "under the square root" in the regime where extreme entropy is accounted for by the Cardy formula.
- The surprise is that this integer remains part of the story arbitrarily far from extremality.

6 Always an Integer?

- In the special case of a Kerr-Newman black hole:

$$
\frac{1}{(2 \pi)^{2}} S_{+} S_{-}=\frac{1}{4} Q^{4}+J^{2} .
$$

- This is not generally an integer:

$$
Q^{2}=\alpha n_{e}^{2} \quad \text { where } \quad \alpha^{-1} \simeq 137
$$

- Construction of Kerr-Newman as a solution in $N \geq 2$ SUGRA involves an embedding such as

$$
Q_{\mathrm{KN}}=\frac{1}{2} Q_{\mathrm{N}=2}=\frac{1}{2} P_{\mathrm{N}=2} .
$$

- The Dirac quantization condition on the $N=2$ theory effectively takes

$$
Q_{N=2} P_{N=2}=2 \pi \times \text { integer } \Rightarrow \frac{1}{2} \alpha=\frac{e^{2}}{8 \pi}=\text { integer } .
$$

7 Generalized Attractor Mechanism

- The Right Hand Side of the quantization condition

$$
\frac{1}{(2 \pi)^{2}} S_{+} S_{-}=\text {integer }
$$

is independent of the black hole mass.

- It is also independent of scalar VEVs, i.e. on the position in moduli space.
- In particular, the relation can be continued from weak to strong coupling.
- This aspect can be thought of as a generalized attractor mechanism.

8 A First Law for the Inner Horizon

- "Thermodynamics" of the inner horizon must be considered in Lorentzian signature.
- For this Wald's formalism works well (see later).
- The conservation of the Noether charge for the Killing generator of the inner horizon gives a "first law"

$$
T_{-} d S_{-}=d M-\Omega_{-} d J-\Phi_{-} d Q-\Psi_{-} d P
$$

- In order to circumvent stability issues the differentials must be taken "in the space of solutions"; so there are no physical perturbations involved.
- The temperature $T_{-}<0$ in the convention here (normal outward).

9 Consistency Relation

- Differentiation of the quantization rule with respect to mass gives:

$$
T_{+} S_{+}=-T_{-} S_{-} .
$$

This is a stange relation that is highly nonobvious in concrete examples.

- Recall $T_{-}<0$.
- Derivation of this consistency relation is tantamount to derivation of the quantization rule.

10 Interpretation of the Consistency Relation

- Suppose the general entropy can be divided into "chiral halves", as in 2D CFT:

$$
S_{+}=S_{L}+S_{R} \equiv \frac{1}{2}\left(S_{+}+S_{-}\right)+\frac{1}{2}\left(S_{+}-S_{-}\right)
$$

- The $T_{+} S_{+}=-T_{-} S_{-}$relation gives

$$
\frac{S_{R}}{T_{R}}=\frac{S_{L}}{T_{L}} .
$$

- Interpretation: the central charge is the same in R and L sectors - so there is no diffeomorphism anomaly.

11 Another Consistency Relation?

- There is also the relation:

$$
\frac{\Omega_{-}}{T_{-}}=-\frac{\Omega_{+}}{T_{+}}
$$

This relation is equally bizarre.

- In the context of a CFT with two halves this relation amounts to

$$
\left(\frac{\partial S_{L}}{\partial J}\right)_{M}=0
$$

- Interpretation: only R-movers in the 2D CFT have the ability to carry angular momentum.

12 Interpretation: Quantization Cond.

Model for the CFT (motivated by perturbative strings):

- Each chiral half has a quantized oscillator level $N_{L, R}$.
- Each has a zero mode contribution that depends on mass and moduli.
- Translational invariance imposes level matching:

$$
N_{L}-N_{R}=J^{2}+J_{4} .
$$

Extremal limits:

- BPS states: $N_{R}=0$ and $J=0$ preserves $S U S Y$.
- Kerr/CFT states: $N_{R}=0$ and $J \neq 0$ breaks SUSY spontaneously.
- Non-BPS states: $N_{L}=0$.

13 Multistring Theory?

- DVV proposed a chiral multistring theory with level matching condition:

$$
\sum_{k, l} k^{(l)} N_{k}^{(l)}=J_{4}
$$

Here k is the momentum quantum number and l is the number of strings.

- A version of the theory is realized by the standard precision counting formulae (Igusa cusp form).
- The structure needed for non-extremal black holes would have both right and left movers.
- The general level matching condition can approximated for large charges as

$$
\sum k^{(l)} N_{L, k}^{(l)}-\sum k^{(l)} N_{R, k}^{(l)}=J^{2}+J_{4} .
$$

14 A GR Challenge

- The central observation is simply:

$$
A_{+} A_{-}=\text {independent of mass } \Leftrightarrow T_{+} S_{+}+T_{-} S_{-}=0 .
$$

- It should be possible to prove this in classical GR!
- The following is an attempt in this direction (which unfortunately is not complete).

15 Noether-Wald Charge

- The variation of the Lagrangian n-form:

$$
\delta \mathbf{L}=\mathbf{E} \delta \phi+d \mathbf{\Theta} .
$$

where ϕ denotes all fields, both metric (g) and matter fields (ψ); and $\mathbf{E}=0$ is the equations of motion.

- The current $(n-1)$-form corresponding to a diffeomorphism ξ is

$$
\mathbf{J}=\boldsymbol{\Theta}\left(\phi, \mathcal{L}_{\xi} \phi\right)-\xi \cdot \mathbf{L}
$$

- Its divergence vanishes upon imposing the equations of motion so on-shell there is a Noether charge $(n-2)$-form \mathbf{Q} for each diffeomorphism ξ :

$$
\mathbf{J}=d \mathbf{Q}
$$

16 Killing Horizons

- Wald's entropy is essentially the Noether charge of a Killing vector, computed at the Killing horizon. In this context

$$
\mathbf{Q}=\frac{1}{2} \epsilon_{a b c d} \nabla^{a} \chi^{b} d x^{c} \wedge d x^{d}
$$

- The outer and inner horizons are Killing horizons of the Killing vectors

$$
\chi_{ \pm}=\partial_{t}+\Omega_{ \pm} \partial_{\phi}
$$

- The covariant derivatives of these Killing simplify at their respective horizons:

$$
\left.\nabla^{a} \chi_{ \pm}^{b}\right|_{ \pm \mathrm{hor}}= \pm \kappa_{ \pm} \epsilon^{a b},
$$

where the bimetric satisfies $g^{a b}=\epsilon^{a c} g_{c d} \epsilon^{c b}$.

- The sign of the bimetric $\epsilon^{a b}$ is such that it defines an outgoing normal at the outer horizon.

17 Killing Horizons

- For the Killing vectors, the total charges (after integration over the respective horizon at the bifurcation point) :

$$
\mathbf{Q}\left[\xi_{ \pm}\right]= \pm \kappa_{ \pm} A_{ \pm}= \pm 8 \pi G T_{ \pm} S_{ \pm}
$$

- Charge conservation gives the desired identity: $T_{+} S_{+}+T_{-} S_{-}=0$.
- Well, almost.
- The "cross-terms" (the charges for $\chi_{ \pm}$evaluated at the \mp horisons) cancel in explicit computations but it is not clear that there is a general argument.

18 Summary

A discussion of an apparent quantization condition:

$$
\frac{1}{\left(8 \pi G_{4}\right)^{2}} A_{+} A_{-}=\text {integer } .
$$

Comments:

- The right hand side does not depend on black hole mass.
- So it appears that there is some kind of index that can be continued from extremality to non-extremality.
- The right hand side also does not depend on scalars.
- So it appears that the index can be continued from weak to strong coupling (before of after going to the extreme limit).

THANKS TO THE ORGANIZERS!

