The D3-D7 Holographic Dual of Relativistic Materials in 3D

Gordon W. Semenoff

University of British Columbia

THE HOLOGRAPHIC WAY, Nordita, October 17,

Outline

- 1. D3-D7
- 2. Graphene as a realization of SO(2,3) CFT
- 3. D3-D7 as a planar expansion of graphene

Relativistic fermions in 2+1-dimensions

We want to model systems of SO(2,1) symmetric (relativi fermions in 2+1-dimensions

$$S = \int d^3x \sum_i \bar{\psi}_i(x) i \gamma^\mu \partial_\mu \psi_i(x) + \text{ interactions}$$

 $\psi_i(x)$ is a 2-component spinor of SO(2, 1)**C P T**: Fermion mass $m\bar{\psi}_i\psi_i$ breaks parity and time reversal sym

or flavor symmetry

$$\mu_{ij} = \langle \bar{\psi}_j(x)\bar{\psi}_i(x)\rangle$$

D3-D7 brane system

	0	1	2	3	4	5	6	7	8	9
D3	X	X	X	X	0	0	0	0	0	0
D7	X	X	X	O	X	X	X	X	X	0

brane extends in directions Xbrane sits at single point in directions O

#ND = 6 system – no supersymmetry – no tachyon – on modes of 3-7 strings are in R-sector and are 2-component (N_7 flavors and N_3 colors).

Mass = separation in x_9 -direction.

$$S = \int d^3x \sum_{\sigma=1}^{N_7} \sum_{\alpha=1}^{N_3} \bar{\psi}^{\sigma}_{\alpha} [i\gamma^{\mu}\partial_{\mu} - m] \psi^{\sigma}_{\alpha} + \text{interaction}$$

 $N_3 \to \infty, \lambda = 4\pi g_s N_3$ fixed \to replace D3's by $AdS_5 \times S^5$ probe D7-branes in $AdS_5 \times S^5$

D3-D7 system

D3-D7 system

	0	1	2	3	4	5	6	7	8	9
D3	X	X	X	X	0	0	0	0	0	0
D7	X	X	X	0	X	X	X	X	X	O

R. C. Myers and M. C. Wapler, JHEP 0812, 115 ([arXiv:0811.0480 [hepth]]. Stabilize by putting instanton bundle on S^4 . O. Bergman, N. Jokela, G. Lifschytz and M. Lippe JHEP 1010 (2010) 063 [arXiv:1003.4965 [hep-th]]. Probe brane geometry $AdS_4 \times S^2 \times S^2$ with U(1) fluxes 2-spheres Stable when f or \tilde{f} large enough. Discrete symmetries, P and C: $f = \tilde{f}$. J.Davis, H.Omid and G.S., arXiv:1107.4397 [hep-t

Nordita, October 17, 2012

One-point function in defect CFT x,y,t Z < O(x) >Bulk primary operator one-point function $\langle \mathcal{O}_{\Delta}(x) \rangle = \frac{c_{\Delta}}{|z|^{\Delta}}$ Compute c_{Δ} for chiral primary operators K.Nagasaki, S.Yamaguchi, arXiv:1205.1674 for D3-J C.Kristjansen, GWS, D.Young, to appear for D3-D small parameter (like BMN) $\frac{\lambda}{k_1^2 + k_2^2} \quad , \quad \sqrt{\lambda} << k_1, k_2 << N$

Chiral Primary operator

$$\mathcal{O}_{\Delta I}(x) \equiv \frac{(8\pi^2)^{\frac{\Delta}{2}}}{\lambda^{\frac{\Delta}{2}}\sqrt{\Delta}} C_I^{i_1 i_2 \dots i_{\Delta}} \operatorname{Tr} \left(\phi_{i_1}(x)\phi_{i_2}(x) \dots \phi_{i_{\Delta}}(x)\right)^{\frac{\Delta}{2}} \sum_{i_1 i_2 \dots i_{\Delta}} C_I^{i_1 i_2 \dots i_{\Delta}} C_J^{i_1 i_2 \dots i_{\Delta}} = \delta_{IJ}$$

$$\langle \mathcal{O}_{\Delta I}(x)\mathcal{O}_{\Delta' I'}(y)\rangle = \frac{\delta_{\Delta \Delta'}\delta_{II'}}{|x-y|^{2\Delta}}$$

At each Δ , \exists a unique chiral primary operator \mathcal{O}_{δ} with $SO(3) \times SO(3)$ symmetry which can have a 1-point funct

$$\langle \mathcal{O}_{\Delta}(x) \rangle = \frac{c_{\Delta}}{|z|^{\Delta}}$$

Classical solution of $\mathcal{N}=4$ SYM $A_{\mu}=0, \ \psi=0,$ $\nabla^2 \phi_i - \sum_{i=1}^6 [\phi_j, [\phi_j, \phi_i]] = 0 , \ \phi_i \nabla \phi_i = 0$ $\phi_i(z) = -\frac{1}{z} (t_i^{k_1} \otimes 1_{k_2 \times k_2}) \oplus 0_{(N-k_1k_2) \times (N-k_1k_2)},$ i = $\phi_i(z) = -\frac{1}{z} (1_{k_1 \times k_1} \otimes t_i^{k_2}) \oplus 0_{(N-k_1k_2) \times (N-k_1k_2)},$ plug into Tr $(\phi_{i_1}(x)\phi_{i_2}(x)\dots\phi_{i_{\Delta}}(x))$ $N >> k_1, k_2 >> \sqrt{\lambda}$

Classical solution of $\mathcal{N}=4$ SYM

Semiclassical computation of chiral primary operator yield

$$\langle \mathcal{O}_{\Delta}(x) \rangle = \frac{k_1 k_2}{\sqrt{\Delta}} \left(\frac{2\pi^2 (k_1^2 + k_2^2)}{\lambda} \right)^{\Delta/2} Y_{\Delta}(\psi) \frac{1}{|z|^{\Delta}},$$

$$\langle \mathcal{O}_{\Delta}(x) \rangle = 0, \quad (z > 0).$$

where Δ is even ψ in

$$ds^2 = d\psi^2 + \cos^2\psi d\Omega_2^2 + \sin^2\psi d\tilde{\Omega}_2^2$$

is

$$\psi = \arctan\left(\frac{k_2}{k_1}\right)$$

String theory computation: Small parameter is $\sqrt{\frac{\lambda}{k_1^2+\lambda}}$ The supergravity dual of the chiral primary operators is s

$$\begin{split} h^{AdS_5}_{\mu\nu} &= -\frac{2\Delta(\Delta-1)}{\Delta+1}g^{AdS_5}s + \frac{4}{\Delta+1}\nabla_{\mu}\nabla_{\nu}s \\ h^{S^5}_{\alpha\beta} &= 2\Delta g^{S^5}_{\alpha\beta}s, \\ a^{AdS_5}_{\mu\nu\rho\sigma} &= 4i\sqrt{g^{AdS_5}}\epsilon_{\mu\nu\rho\sigma\omega}\nabla^{\omega}s, \end{split}$$

s is replaced by its bulk-to-boundary propagator, correspondent a delta-function source s_0 on the boundary at (t, x, y, z) =

$$s \to \frac{\Delta + 1}{2^{2 - \Delta/2} N \sqrt{\Delta}} \frac{Y_{\Delta}(\psi)}{r^{\Delta} (t^2 + x^2 + y^2 + z^2 + 1/r^2)^{\Delta}}$$

Compute
$$\langle \mathcal{O}_{\Delta} \rangle = -\delta S_{\text{DBI}} - \delta S_{\text{WZ}}$$

 $\langle \mathcal{O}_{\Delta}(x) \rangle = \frac{k_1 k_2}{\sqrt{\Delta}} \left(\frac{2\pi^2 (k_1^2 + k_2^2)}{\lambda} \right)^{\Delta/2} Y_{\Delta} \left[\arctan(\frac{k_2}{k_1}) \right]$
 $\langle \mathcal{O}_{\Delta}(x) \rangle \sim \left(\frac{(k_1^2 + k_2^2)}{\lambda} \right)^{-\Delta/2}, \quad (z > 0).$

Graphene is a 2-dimensional array of carbon atom with a hexagonal lattice

TEAM Electron Microscope image

a

Jannik C. Meyer, C. Kisielowski, R. Erni, Marta D. Rosse Crommie, and A. Zettl, Nano Letters 8, 3582 (2008).

Band structure of graphene

Tight binding model with one electron per site of 2D hexa lattice has valence and conduction bands

Graphene with Coulomb interaction $V(r) = \frac{e^2}{4\pi r}$

$$S = \int d^3x \, \sum_{k=1}^{4} \bar{\psi}_k \left[\gamma^t (i\partial_t - A_t) + v_F \vec{\gamma} \cdot (i\vec{\nabla} - \vec{A}) \right] \psi_k$$

$$+\frac{1}{4e^{2}}\int dt d^{2}x \left[F_{0i}\frac{1}{2\sqrt{\partial_{t}^{2}-c^{2}\nabla^{2}}}F_{0i}-F_{ij}\frac{c^{2}}{2\sqrt{\partial_{t}^{2}-c^{2}}}\right]$$

- The interaction is not relativistic since speeds of light different
- This theory is strongly coupled: the graphene fine str constant is larger than one,

$$\alpha_{\text{graphene}} = \frac{\frac{e^2}{4\pi\lambda}}{\hbar v_F/\lambda} = \frac{e^2}{4\pi\hbar v_F} = \frac{e^2}{4\pi\hbar c} \frac{c}{v_F} \approx \frac{300}{137} , \ e^2 =$$

Nordita, October 17, 2012

Nordita, October 17, 2012

"Dirac cones reshaped by interaction effects in sus graphene"

D.C.Elias, R.V.Gorbachev, A.S.Mayorov, S.V.Morozov,
A.A.Zhukov, P.Blake, L.A.Ponomarenko, I.V.Grigorieva,
K.S.Novoselov, F.Guinea, A.K.Geim
Nature Physics 7, 701704 (2011) doi:10.1038/nphys2049
Received 01 April 2011 Accepted 17 June 2011 Published
July 2011 Corrected online 21 December 2011 Corrigendu
(February, 2012)

Large N approximation

$$S = \int dt d^2x \, \sum_{k=1}^{N} \bar{\psi}_k \left[\gamma^t (i\partial_t - A_t) + v_F \vec{\gamma} \cdot (i\vec{\nabla} - \vec{A}) \right] \psi$$

$$+\frac{1}{4e^2} \int dt d^2x \left[F_{0i} \frac{1}{2\sqrt{\partial_t^2 - c^2 \nabla^2}} F_{0i} - F_{ij} \frac{c^2}{2\sqrt{\partial_t^2 - c^2}} F_{ij} F_{ij}$$

In this large N, we integrate out fermions to get effective

$$S = \frac{N}{32} \int dt d^2 x \left[F_{0i} \frac{1}{2\sqrt{\partial_t^2 - v_F^2 \nabla^2}} F_{0i} - v_F^2 F_{ij} \frac{1}{2\sqrt{\partial_t^2 - v_F^2 \nabla^2}} F_{ij} \frac{1}{2\sqrt{\partial_t^2 - v_F^2 \nabla^2}}} F_{ij} \frac{1}{2\sqrt{\partial_t^2 - v_F^2 \nabla^2}}} F_{ij} \frac{1}{2\sqrt{\partial_t^2 - v_F^2 \nabla^2}} F_{ij} \frac{1}{2\sqrt{\partial_t^2 - v_F^2 \nabla^2}}} F_{ij} \frac{1}{2\sqrt{\partial_t^2 - v_F^2 \nabla^2}}} F_{ij} \frac{1}{2\sqrt{\partial_t^2 - v_F^2 \nabla^2}} F_{ij} \frac{1}{2\sqrt{\partial_t^2 - v_F^2 \nabla^2}} F_{ij} \frac{1}{2\sqrt{\partial_t^2 - v_F^2 \nabla^2}}} F_{ij} \frac{1}{2\sqrt{\partial_t^2 - v_F^2 \nabla^2}} F_{ij} \frac{1}{2\sqrt{\partial_t^2 - v_F^2 \nabla^2}} F_{ij} \frac{1}{2\sqrt{\partial_t^2 - v_F^2 \nabla^2}}} F_{ij} \frac{1}{2\sqrt{\partial_t^2 - v_F^2 \nabla^2}}} F_{ij} \frac{1}{2\sqrt{\partial_t^2 - v_F^2 \nabla^2}} F_{ij} \frac{1}{2\sqrt{\partial_t^2 - v_F^2 \nabla^2}} F_{ij} \frac{1}{2\sqrt{\partial_t^2 - v_F^2 \nabla^2}}} F_{ij} \frac{1}{2\sqrt{\partial_t^2 - v_F^2 \nabla^2}}} F_{ij} \frac{1}{2\sqrt{\partial_t^2 - v_F^2 \nabla^2}} F_{ij} \frac{1}{2\sqrt{\partial_t^2 - v_F^2 \nabla^2}}} F_{ij} \frac{1}{2\sqrt{\partial_t^2 - v_F^2 \nabla^2}}} F_{ij} \frac{1}{2\sqrt{\partial_t^2 - v_F^2 \nabla^2}} F_{ij} \frac{1}{2\sqrt{\partial_t^2 - v_F^2 \nabla^2}} F_{ij} \frac{1}{2\sqrt{\partial_t^2 - v_F^2 \nabla^2}}} F_{ij} \frac{1}{2\sqrt{\partial_t^2 - v_F^2 \nabla^2}}} F_{ij} \frac{$$

$$+ \frac{1}{4e^2} \int dt d^2x \left[F_{0i} \frac{1}{2\sqrt{\partial_t^2 - c^2 \nabla^2}} F_{0i} - F_{ij} \frac{c^2}{2\sqrt{\partial_t^2 - c^2}} F_{ij} F$$

Relativistic at infinite N with speed of light v_F . AC conductivity $\sigma(\omega) = \frac{e^2 N}{16} + \mathcal{O}(1)$.

DBI + WZ Action for D7-Brane

$$L = N_7 T_7 \left[-\sqrt{-\det(g + 2\pi\alpha' F)} + F \wedge F \wedge \omega^{(4)} \right]$$

 AdS_5 coordinates and 4-form

$$\frac{dS^2}{\sqrt{\lambda}\alpha'} = r^2(dt^2 + dx^2 + dy^2 + dz^2) + \frac{dr^2}{r^2} + d\psi^2 + \sin^2\psi d^2\Omega_2 + dz^2$$

$$\omega^{(4)} = \lambda {\alpha'}^2 r^4 dt \wedge dx \wedge dy \wedge dz + \lambda {\alpha'}^2 \frac{c(\psi)}{2} d\Omega_2 \wedge dz$$

 \exists C P symmetric solution with D7-metric $AdS_4 \times S^2 \times S^2$ ds^2 2(1) $ds^2 = 2$ $dr^2 (1 + f^2)^2 = 1$ dr^2

$$\frac{d\sigma}{\sqrt{\lambda}\alpha'} = r^2(-dt^2 + dx^2 + dy^2) + \frac{dr}{r^2} \frac{(1+f^2)}{1+2f^2} + \frac{1}{2}d^2\Omega_2$$
$$\psi = \frac{\pi}{4} , \ z(r) = -\frac{f^2}{\sqrt{1+2f^2}} \frac{1}{r}$$
$$F = \frac{n_D}{2}(d\Omega_2 + d\tilde{\Omega}_2) , \ n_D = \sqrt{\lambda}f , \ \left(f^2 > \frac{23}{50}\right)$$

Charge Density \exists a solution $(q \sim \rho)$ $ds^{2} = \sqrt{\lambda}\alpha' \left[r^{2}(-dt^{2} + dx^{2} + dy^{2}) + \frac{dr^{2}}{r^{2}} \frac{(1+f^{2})^{2} + q^{2}/r}{1+2f^{2} + q^{2}/r} \right]$ $F = \frac{\sqrt{\lambda}}{2\pi} \frac{q}{(1+2f^2)r^4 + q^2} dt \wedge dr + \frac{n_D}{2} (d\Omega_2 + d\tilde{\Omega}_2)$ $\rho = \frac{8\pi\sqrt{2f^2 + 1} N}{\Gamma^4[\frac{1}{4}]} \mu^2 \sim .065N\mu^2 \quad \text{with} \ f^2 = 1/2$ Free field theory: $\rho = \frac{N}{(2\pi)^2} \int d^2k \theta(\mu - |k|) = \frac{N}{4\pi} \mu^2 \sim .080$ Debye mass $M_D = \frac{d}{d\mu}\rho = \frac{16\pi\sqrt{2f^2 + 1} \ N}{\Gamma^4[\frac{1}{4}]}\mu$

Diamagnetism

$$\begin{aligned} M &\sim -\frac{\partial}{\partial B}F \\ F &\sim B^{\frac{3}{2}} \ , \ M &\sim \sqrt{B} \end{aligned}$$

$$M = -\frac{(f^2+1)^{\frac{1}{2}}3N}{4(2f^2+1)^{\frac{1}{4}}\sqrt{(2\pi)^5\lambda}}\mathcal{B}[\frac{1}{4},\frac{1}{4}]\sqrt{B} \sim -\frac{(0.06)}{\sqrt{\lambda}}N\sqrt{B}$$

For free fields

$$F = -4\frac{|B|}{2\pi}\sum_{n=1}^{\infty}\sqrt{2|B|n} = -4\sqrt{\frac{1}{2\pi^2}}|B|^{\frac{3}{2}}\zeta(-1/2)$$
$$M = 4\sqrt{\frac{9}{8\pi^2}}\zeta(-1/2)\sqrt{|B|} \sim -(4)(0.07)\sqrt{|B|}$$

 $\sigma(\omega) \simeq \frac{3e^2}{\pi^2 \hbar} \label{eq:screening}$ Debye screening length

$$\mu L_D \simeq e \ , \ e \simeq 5$$

Diamagnetism

AC conductivity

$$M \simeq -(0.24)e\sqrt{B}$$

Free fermions:

$$\sigma(\omega) = \frac{e^2}{4\hbar}$$
$$\mu L_D \simeq 1.6$$
$$M \simeq -0.28\sqrt{B} \operatorname{sign}(B)$$

WIP: Plasmon frequency, Thermodynamics, Heat transpo

Conclusions

- D7-D3 system as strongly coupled 2+1-dimensional refermions
- Conformal field theory at strong coupling
- Graphene as a strongly coupled quantum fluid
 - AC conductivity
 - Screening length versus chemical potential
 - Magnetization density
 - Experimental signatures of strong coupling, confor symmetry?